Spatial–Temporal Dynamics of Vegetation Indices in Response to Drought Across Two Traditional Olive Orchard Regions in the Iberian Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. “Trás-os-Montes” Agrarian Region
2.1.2. Badajoz Province
2.2. Data Collection
2.2.1. Olive Orchard Data
2.2.2. Climate Data
2.2.3. Remote Sensing Satellite Data and Vegetation Indices
2.3. Data Analysis
3. Results
3.1. Climate and Vegetation Data
3.2. Droughts and Vegetation Indices
3.2.1. Drought Spatial and Temporal Assessment
3.2.2. SAVI Analysis
3.2.3. NDMI Analysis
3.3. Regional Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maldonado, N.G.; López, M.J.; Caudullo, G.; de Rigo, D. Olea Europaea in Europe: Distribution, Habitat, Usage and Threats. 2016. Available online: https://ies-ows.jrc.ec.europa.eu/efdac/download/Atlas/pdf/Olea_europaea.pdf (accessed on 1 January 2020).
- Sánchez-Martín, J.M.; Guillén-Peñafiel, R.; Flores-García, P.; García-Berzosa, M.J. Conceptualization and Potential of Agritourism in Extremadura (Spain) from the Perspective of Tourism Demand. Agriculture 2024, 14, 716. [Google Scholar] [CrossRef]
- Nteve, G.-M.; Kostas, S.; Polidoros, A.N.; Madesis, P.; Nianiou-Obeidat, I. Adaptation Mechanisms of Olive Tree under Drought Stress: The Potential of Modern Omics Approaches. Agriculture 2024, 14, 579. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Gonçalves, J.F.; Moreno, M.; Villar, R. Projected Climate Changes Are Expected to Decrease the Suitability and Production of Olive Varieties in Southern Spain. Sci. Total Environ. 2020, 709, 136161. [Google Scholar] [CrossRef] [PubMed]
- Langgut, D.; Cheddadi, R.; Carrión, J.S.; Cavanagh, M.; Colombaroli, D.; Eastwood, W.J.; Greenberg, R.; Litt, T.; Mercuri, A.M.; Miebach, A.; et al. The Origin and Spread of Olive Cultivation in the Mediterranean Basin: The Fossil Pollen Evidence. Holocene 2019, 29, 902–922. [Google Scholar] [CrossRef]
- Souilem, S.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; Sayadi, S.; Galanakis, C.M. Olive Oil Production Sector: Environmental Effects and Sustainability Challenges. In Olive Mill Waste; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–28. ISBN 978-0-12-805314-0. [Google Scholar]
- Dini, I.; Laneri, S. Spices, Condiments, Extra Virgin Olive Oil and Aromas as Not Only Flavorings, but Precious Allies for Our Wellbeing. Antioxidants 2021, 10, 868. [Google Scholar] [CrossRef]
- Bilal, R.M.; Liu, C.; Zhao, H.; Wang, Y.; Farag, M.R.; Alagawany, M.; Hassan, F.; Elnesr, S.S.; Elwan, H.A.M.; Qiu, H.; et al. Olive Oil: Nutritional Applications, Beneficial Health Aspects and Its Prospective Application in Poultry Production. Front. Pharmacol. 2021, 12, 723040. [Google Scholar] [CrossRef]
- Riolo, R.; De Rosa, R.; Simonetta, I.; Tuttolomondo, A. Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int. J. Mol. Sci. 2022, 23, 16002. [Google Scholar] [CrossRef]
- Albuquerque, T.G.; Costa, H.S.; Oliveira, M.B.P.P. An Overview of Portuguese Olive Oils and Table Olives with Protected Designation of Origin. Eur. J. Lipid Sci. Technol. 2019, 121, 1800129. [Google Scholar] [CrossRef]
- Pérez, Y.; Pérez, L.; Gracia, A. Consumer Preferences for Olive Oil in Spain: A Best-Worst Scaling Approach. Sustainability 2023, 15, 11283. [Google Scholar] [CrossRef]
- Morgado, R.; Ribeiro, P.F.; Santos, J.L.; Rego, F.; Beja, P.; Moreira, F. Drivers of Irrigated Olive Grove Expansion in Mediterranean Landscapes and Associated Biodiversity Impacts. Landsc. Urban Plan. 2022, 225, 104429. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Honorio, F.; Aguirado, C.; Paniagua, L.L.; García-Martín, A.; Rebollo, L.; Rebollo, F.J. Exploring the Climate and Topography of Olive Orchards in Extremadura, Southwestern Spain. Land 2024, 13, 495. [Google Scholar] [CrossRef]
- Lombardo, N.; Marone, E.; Alessandrino, M.; Godino, G.; Madeo, A.; Fiorino, P. Influence of Growing Season Temperatures in the Fatty Acids (FAs) of Triacilglycerios (TAGs) Composition in Italian Cultivars of Olea Europaea. Adv. Hortic. Sci. 2008, 2008, 1000–1005. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2020, 11, 56. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Delgado, A.M.; Quintas, C. Main Challenges Expected from the Impact of Climate Change on Microbial Biodiversity of Table Olives: Current Status and Trends. Foods 2023, 12, 3712. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Oliveira, C.M.; Montoya, F.; López-Urrea, R.; Salman, M. Single and Basal Crop Coefficients for Estimation of Water Use of Tree and Vine Woody Crops with Consideration of Fraction of Ground Cover, Height, and Training System for Mediterranean and Warm Temperate Fruit and Leaf Crops. Irrig. Sci. 2024, 42, 1019–1058. [Google Scholar] [CrossRef]
- Freitas, T.R.; Santos, J.A.; Paredes, P.; Fraga, H. Future Aridity and Drought Risk for Traditional and Super- Intensive Olive Orchards in Portugal. Clim. Change 2024, 177, 155. [Google Scholar]
- INE. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_main (accessed on 19 August 2024).
- Inês, C.S.F. Variedades de olivo: Caracterización de los primeros estadios del desarrollo vegetativo y reproductivo. 2015. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=63743 (accessed on 17 December 2024).
- MAPA. Available online: https://www.mapa.gob.es/es/default.aspx (accessed on 19 August 2024).
- Molina-Moral, J.C.; Moriana-Elvira, A.; Pérez-Latorre, F.J. The Sustainability of Irrigation Strategies in Traditional Olive Orchards. Agronomy 2021, 12, 64. [Google Scholar] [CrossRef]
- Silveira, C.; Almeida, A.; Ribeiro, A.C. Technological Innovation in the Traditional Olive Orchard Management: Advances and Opportunities to the Northeastern Region of Portugal. Water 2022, 14, 4081. [Google Scholar] [CrossRef]
- Barranco, D.; Rallo, L. Olive Cultivars in Spain. Horttech 2000, 10, 107–110. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Barandica, J.M.; Aguilera, P.A.; Rescia, A.J. Examining Potential Environmental Consequences of Climate Change and Other Driving Forces on the Sustainability of Spanish Olive Groves under a Socio-Ecological Approach. Agriculture 2020, 10, 509. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Moutinho-Pereira, J.; Correia, C.M. Drought Stress Effects and Olive Tree Acclimation under a Changing Climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Inês, C.; Gomez-Jimenez, M.C.; Cordeiro, A.M. Inflorescence Emergence and Flowering Response of Olive Cultivars Grown in Olive Reference Collection of Portugal (ORCP). Plants 2023, 12, 2086. [Google Scholar] [CrossRef]
- Dias, M.C.; Araújo, M.; Silva, S.; Santos, C. Sustainable Olive Culture under Climate Change: The Potential of Biostimulants. Horticulturae 2022, 8, 1048. [Google Scholar] [CrossRef]
- Fraga, H.; Guimarães, N.; Freitas, T.R.; Malheiro, A.C.; Santos, J.A. Future Scenarios for Olive Tree and Grapevine Potential Yields in the World Heritage Côa Region, Portugal. Agronomy 2022, 12, 350. [Google Scholar] [CrossRef]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean Olive Groves to Climate Change through Sustainable Cultivation Practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef]
- Ahmed, S.; Manel, L.; Cheyma, S.; Saied, S. Key Factors Influencing Olive Yields for Sustainable Development in Arid Regions of Djelfa and M’sila, Algeria. NRSD 2023, 13, 311–330. [Google Scholar] [CrossRef]
- Orlandi, F.; Garcia-Mozo, H.; Dhiab, A.B.; Galán, C.; Msallem, M.; Romano, B.; Abichou, M.; Dominguez-Vilches, E.; Fornaciari, M. Climatic Indices in the Interpretation of the Phenological Phases of the Olive in Mediterranean Areas during Its Biological Cycle. Clim. Change 2013, 116, 263–284. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Lorenzo, M.N.; Pereira, H.; Alvarez, I.; Dias, J.M. Standardized Precipitation Index (SPI) Evolution over the Iberian Peninsula during the 21st Century. Atmos. Res. 2024, 297, 107132. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Volume 45, p. 58.
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate Trends and Behaviour of Drought Indices Based on Precipitation and Evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- Merabti, A.; Darouich, H.; Paredes, P.; Meddi, M.; Pereira, L.S. Assessing Spatial Variability and Trends of Droughts in Eastern Algeria Using SPI, RDI, PDSI, and MedPDSI—A Novel Drought Index Using the FAO56 Evapotranspiration Method. Water 2023, 15, 626. [Google Scholar] [CrossRef]
- Paulo, A.; Martins, D.S.; Paredes, P.; Rosa, R.D.; Pereira, L.S. Modification of the Palmer Drought Severity Index for Mediterranean Environments: Model and Application. Eur. Water 2017, 60, 195–201. [Google Scholar]
- Alley, W.M. The Palmer Drought Severity Index: Limitations and Assumptions. J. Appl. Meteorol. Climatol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef]
- Nkemdirim, L.C. Palmer Drought Index. In Encyclopedia of Atmospheric Sciences; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1685–1691. ISBN 978-0-12-227090-1. [Google Scholar]
- Carreño-Conde, F.; Sipols, A.E.; Simón, C.; Mostaza-Colado, D. A Forecast Model Applied to Monitor Crops Dynamics Using Vegetation Indices (NDVI). Appl. Sci. 2021, 11, 1859. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1978, 8, 127–150. [Google Scholar] [CrossRef]
- Yildirim, T.; Zhou, Y.; Flynn, K.C.; Gowda, P.H.; Ma, S.; Moriasi, D.N. Evaluating the Sensitivity of Vegetation and Water Indices to Monitor Drought for Three Mediterranean Crops. Agron. J. 2021, 113, 123–134. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D.; U.S. International Biological Program; International Symposium on Remote Sensing of Environment. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie, Pawnee National Grasslands, Colorado; IBP Grassland Biome; Department of Watershed Sciences, College of Forestry and Natural Resources, Colorado State University: Fort Collins, CO, USA, 1972. [Google Scholar]
- Rouse, W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. 1973; pp. 309–317. Available online: https://ntrs.nasa.gov/citations/19740022614 (accessed on 17 December 2024).
- Berni, J.A.J.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Fereres, E.; Villalobos, F. Mapping Canopy Conductance and CWSI in Olive Orchards Using High Resolution Thermal Remote Sensing Imagery. Remote Sens. Environ. 2009, 113, 2380–2388. [Google Scholar] [CrossRef]
- Arab, S.T.; Noguchi, R.; Ahamed, T. Yield Loss Assessment of Grapes Using Composite Drought Index Derived from Landsat OLI and TIRS Datasets. Remote Sens. Appl. Soc. Environ. 2022, 26, 100727. [Google Scholar] [CrossRef]
- Mateos, L.; González-Dugo, M.P.; Testi, L.; Villalobos, F.J. Monitoring Evapotranspiration of Irrigated Crops Using Crop Coefficients Derived from Time Series of Satellite Images. I. Method validation. Agric. Water Manag. 2013, 125, 81–91. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Sousa, J.J.; Fernandes-Silva, A. Advancements in Remote Sensing Imagery Applications for Precision Management in Olive Growing: A Systematic Review. Remote Sens. 2024, 16, 1324. [Google Scholar] [CrossRef]
- Berca, M.; Horoiaș, R. NDMI Use in Recognition of Water Stress Issues, Related to Winter Wheat Yields in Southern Romania. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2022, 22, 105–112. [Google Scholar]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Andrade, C.; Fonseca, A.; Santos, J.A.; Bois, B.; Jones, G.V. Historic Changes and Future Projections in Köppen–Geiger Climate Classifications in Major Wine Regions Worldwide. Climate 2024, 12, 94. [Google Scholar] [CrossRef]
- de Figueiredo, T.; Almeida, A.; Araújo, J. Edaphic Characteristics of Olive-Tree Areas in the Trás-Os-Montes Region (Portugal): A Map-Based Approach. 2002. Available online: https://core.ac.uk/download/pdf/153408181.pdf (accessed on 11 October 2024).
- Instituto Geográfico Nacional (IGN). Available online: https://www.ign.es/web/ign/portal/ane-datos-geograficos/-/datos-geograficos/datosGenerales?tipoBusqueda=altitudes (accessed on 11 October 2024).
- Fernández, M.P.; Keshavarzi, A.; Rodrigo-Comino, J.; Schnabel, S.; Contador, J.F.L.; Gutiérrez, Á.G.; Parra, F.J.L.; González, J.B.; Torreño, A.A.; Cerdà, A. Developing Scoring Functions to Assess Soil Quality at a Regional Scale in Rangelands of SW Spain. Rev. Bras. Ciênc. Solo 2020, 44, e0200090. [Google Scholar] [CrossRef]
- Etienne, A.; Valderrama, J.M.; Díaz-Ambrona, C.H. Productive Model of Evergreen Oak and Annual Pastures in Extremadura (Spain). 2008. Available online: https://oa.upm.es/4784/ (accessed on 10 February 2024).
- European Environment Agency. Corine Land Cover 2018 (Vector), Europe, 6-Yearly—Version 2020_20u1. 2020. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (accessed on 28 November 2024).
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- George, H.H.; Zohrab, A. Samani Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Paredes, P.; Pereira, L.S.; Almorox, J.; Darouich, H. Reference Grass Evapotranspiration with Reduced Data Sets: Parameterization of the FAO Penman-Monteith Temperature Approach and the Hargeaves-Samani Equation Using Local Climatic Variables. Agric. Water Manag. 2020, 240, 106210. [Google Scholar] [CrossRef]
- FAO; IIASA. Harmonized World Soil Database Version 2.0; FAO; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2023; ISBN 978-92-5-137499-3. [Google Scholar]
- Pires, V.C. Frequência e Intensidade de Fenómenos Meteorológicos Associados a Precipitação. Desenvolvimento de uma sistema de monitorização de seca em Portugal Continental. Master’s Thesis, University of Lisbon, Lisboa, Portugal, 2003. [Google Scholar]
- Masek, J.; Ju, J.; Roger, J.-C.; Skakun, S.; Vermote, E.; Claverie, M.; Dungan, J.; Yin, Z.; Freitag, B.; Justice, C. HLS Operational Land Imager Surface Reflectance and TOA Brightness Daily Global 30m v2.0. 2021. Available online: https://catalog.data.gov/dataset/hls-landsat-operational-land-imager-surface-reflectance-and-toa-brightness-daily-global-30-b44b4 (accessed on 31 October 2024).
- Quille-Mamani, J.A.; Huayna, G.; Pino-Vargas, E.; Chucuya-Mamani, S.; Vera-Barrios, B.; Ramos-Fernandez, L.; Espinoza-Molina, J.; Cabrera-Olivera, F. Spatio-Temporal Evolution of Olive Tree Water Status Using Land Surface Temperature and Vegetation Indices Derived from Landsat 5 and 8 Satellite Imagery in Southern Peru. Agriculture 2024, 14, 662. [Google Scholar] [CrossRef]
- Antognelli, S. NDVI and NDMI Vegetation Indices: Instructions for Use. 2018. Available online: https://www.agricolus.com/en/vegetation-indices-ndvi-ndmi/ (accessed on 29 November 2024).
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Martins, S.; Pereira, S.; Dinis, L.-T.; Brito, C. Enhancing Olive Cultivation Resilience: Sustainable Long-Term and Short-Term Adaptation Strategies to Alleviate Climate Change Impacts. Horticulturae 2024, 10, 1066. [Google Scholar] [CrossRef]
- Lorite, I.J.; Gabaldón-Leal, C.; Ruiz-Ramos, M.; Belaj, A.; De La Rosa, R.; León, L.; Santos, C. Evaluation of Olive Response and Adaptation Strategies to Climate Change under Semi-Arid Conditions. Agric. Water Manag. 2018, 204, 247–261. [Google Scholar] [CrossRef]
- Wang, W.; Straffelini, E.; Tarolli, P. 44% of Steep Slope Cropland in Europe Vulnerable to Drought. Geogr. Sustain. 2024, 5, 89–95. [Google Scholar] [CrossRef]
- Ezzine, A.; Saidi, S.; Hermassi, T.; Kammessi, I.; Darragi, F.; Rajhi, H. Flood Mapping Using Hydraulic Modeling and Sentinel-1 Image: Case Study of Medjerda Basin, Northern Tunisia. Egypt. J. Remote Sens. Space Sci. 2020, 23, 303–310. [Google Scholar] [CrossRef]
- Ozelkan, E.; Chen, G.; Ustundag, B.B. Multiscale Object-Based Drought Monitoring and Comparison in Rainfed and Irrigated Agriculture from Landsat 8 OLI Imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 159–170. [Google Scholar] [CrossRef]
- Duran, P.M. Olive Yield Forecasting from Remote Sensing and Climate Datasets in the Jaen Province (Spain). 2024. Available online: https://lup.lub.lu.se/student-papers/search/publication/9172345 (accessed on 11 September 2024).
- Reyes Rojas, L.A.; Moletto-Lobos, I.; Corradini, F.; Mattar, C.; Fuster, R.; Escobar-Avaria, C. Determining Actual Evapotranspiration Based on Machine Learning and Sinusoidal Approaches Applied to Thermal High-Resolution Remote Sensing Imagery in a Semi-Arid Ecosystem. Remote Sens. 2021, 13, 4105. [Google Scholar] [CrossRef]
- Bchir, A.; Masmoudi-Charfi, C. Estimating and Mapping NDVI and NDMI Indexes by Remote Sensing of Olive Orchards in Different Tunisian Regions. In Proceedings of the Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 3rd ed.; Ksibi, M., Negm, A., Hentati, O., Ghorbal, A., Sousa, A., Rodrigo-Comino, J., Panda, S., Lopes Velho, J., et al., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 515–518. [Google Scholar]
- Carrasco-Benavides, M.; Ortega-Farías, S.; Ahumada-Orellana, L.E.; Olguín-Cáceres, J.M.; De La Fuente-Sáiz, D.; Zuñiga, M. Assessing Olive Tree Water Status Using Canopy Spectral Reflectance Indices. Irrig. Sci. 2024. [Google Scholar] [CrossRef]
Values | MedPDSI Classes | Colour Code |
---|---|---|
≥4 | Very humid | |
3–4 | Severe humid | |
2–3 | Moderate humid | |
1–2 | Slightly humid | |
−1–1 | Normal conditions | |
−2–−1 | Drought-neutral conditions | |
−3–−2 | Moderate drought | |
−4–−3 | Severe drought | |
≤−4 | Extreme drought |
Values | Interpretation | Colour Code |
---|---|---|
<0.1 | Bare ground, water bodies, clouds | |
0.1–0.2 | Sparse vegetation cover or areas | |
0.2–0.3 | Water stress | |
>0.3 | Healthy and dense vegetation |
Value | Interpretation | Colour Code |
---|---|---|
≤−0.8 | Bare soil | |
−0.8–−0.6 | Almost absent canopy cover | |
−0.6–−0.4 | Very low canopy cover | |
−0.4–−0.2 | Low canopy cover, dry or very low canopy cover, wet | |
−0.2–0 | Mid-low canopy cover, high water stress or low canopy cover, low water stress | |
0–0.2 | Average canopy cover, high water stress or mid–low canopy cover, low water stress | |
0.2–0.4 | Mid–high canopy cover, high water stress or average canopy cover, low water stress | |
0.4–0.6 | High canopy cover, no water stress | |
0.6–0.8 | Very high canopy cover, no water stress | |
>0.8 | Total canopy cover, no water stress/waterlogging |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo, N.; Pádua, L.; Paredes, P.; Rebollo, F.J.; Moral, F.J.; Santos, J.A.; Fraga, H. Spatial–Temporal Dynamics of Vegetation Indices in Response to Drought Across Two Traditional Olive Orchard Regions in the Iberian Peninsula. Sensors 2025, 25, 1894. https://doi.org/10.3390/s25061894
Crespo N, Pádua L, Paredes P, Rebollo FJ, Moral FJ, Santos JA, Fraga H. Spatial–Temporal Dynamics of Vegetation Indices in Response to Drought Across Two Traditional Olive Orchard Regions in the Iberian Peninsula. Sensors. 2025; 25(6):1894. https://doi.org/10.3390/s25061894
Chicago/Turabian StyleCrespo, Nazaret, Luís Pádua, Paula Paredes, Francisco J. Rebollo, Francisco J. Moral, João A. Santos, and Helder Fraga. 2025. "Spatial–Temporal Dynamics of Vegetation Indices in Response to Drought Across Two Traditional Olive Orchard Regions in the Iberian Peninsula" Sensors 25, no. 6: 1894. https://doi.org/10.3390/s25061894
APA StyleCrespo, N., Pádua, L., Paredes, P., Rebollo, F. J., Moral, F. J., Santos, J. A., & Fraga, H. (2025). Spatial–Temporal Dynamics of Vegetation Indices in Response to Drought Across Two Traditional Olive Orchard Regions in the Iberian Peninsula. Sensors, 25(6), 1894. https://doi.org/10.3390/s25061894