Autonomous Navigation of Mobile Robots: A Hierarchical Planning–Control Framework with Integrated DWA and MPC
Abstract
:1. Introduction
- For better local planning performance, the selection of a local target requires careful consideration of the spatial relationships of the robot and the obstacle to ensure effective navigation. Additionally, enhancing path smoothness through geometric continuity constraints is essential for maintaining control stability during obstacle avoidance maneuvers. In addition, guaranteeing planning success rates in complex environments necessitates adaptive methods that preserve path connectivity between the start and goal points under varying obstacle situations.
- How to design an effective controller that will ensure smooth transitions between global and local paths for the robot to achieve high tracking accuracy and operational safety.
- A hierarchical planning–control framework with integrated DWA and MPC was proposed. The proposed framework holistically considers trajectory feasibility, continuity during path recovery, and tracking accuracy. The overall scheme is shown in Figure 2.
- For the local path planning module, an online local target point selection strategy was developed to address the limitations of conventional planning methods that inadequately consider the correlation between local and global paths, while simultaneously improving planning success rates across diverse environments. Additionally, building upon the standard DWA, we improved the path smoothness through modifications to the path evaluation function. These enhancements provide convenience for the subsequent control module.
- Regarding the trajectory tracking control module, a curvature-adaptive reference point adjustment mechanism was proposed to mitigate tracking accuracy degradation in the obstacle avoidance mode. Furthermore, we implemented adaptive optimization of both prediction horizon and control horizon parameters, thereby significantly improving the tracking precision and the computational efficiency of the controller.
2. Preliminaries
2.1. The Dynamic Window Approach
2.2. System Modeling
3. Methodology
3.1. The Improved DWA
3.1.1. Modification of the Evaluation Function
3.1.2. Adaptive Sub-Target Selection Strategy
3.1.3. Design of the Sub-Goal Evaluation Function
3.2. Trajectory Tracking Controller with MPC
3.2.1. Design of Objective Function and Constraints
3.2.2. Curvature-Adaptive Reference Point Adjustment Mechanism
4. Experiment
Algorithm 1 DWA-MPC Hierarchical Navigation Framework |
|
4.1. Local Path Planning Layer
4.2. Path Tracking Layer
4.3. Real-World Experiments
4.3.1. Scene I
4.3.2. Scene II
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. Sensors 2021, 21, 6340. [Google Scholar] [CrossRef] [PubMed]
- Arents, J.; Greitans, M. Smart Industrial Robot Control Trends, Challenges and Opportunities within Manufacturing. Appl. Sci. 2022, 12, 937. [Google Scholar] [CrossRef]
- Nagy, M.; Lăzăroiu, G.; Valaskova, K. Machine Intelligence and Autonomous Robotic Technologies in the Corporate Context of SMEs: Deep Learning and Virtual Simulation Algorithms, Cyber-Physical Production Networks, and Industry 4.0-Based Manufacturing Systems. Appl. Sci. 2023, 13, 1681. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, S.; Ahn, C.K.; Xie, Y. Adaptive Neural Consensus for Fractional-Order Multi-Agent Systems With Faults and Delays. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 7873–7886. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, S.; Zheng, S.; Hu, Z. Advanced Sensing and Control Technologies for Autonomous Robots. Sensors 2024, 24, 5478. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.; Scoccia, C. Motion Planning and Control of Redundant Manipulators for Dynamical Obstacle Avoidance. Machines 2021, 9, 121. [Google Scholar] [CrossRef]
- Teso-Fz-Betoño, D.; Zulueta, E.; Fernandez-Gamiz, U.; Aramendia, I.; Uriarte, I. A Free Navigation of an AGV to a Non-Static Target with Obstacle Avoidance. Electronics 2019, 8, 159. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, X.; Yu, Y. Research on a Random Route-Planning Method Based on the Fusion of the A* Algorithm and Dynamic Window Method. Electronics 2022, 11, 2683. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, N.; Chen, H.; Wu, Q.; Lu, Y. RRT*-Fuzzy Dynamic Window Approach (RRT*-FDWA) for Collision-Free Path Planning. Appl. Sci. 2023, 13, 5234. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Yang, L.; Yang, Z.; Li, P.; Xia, G. Distributed Multi-Mobile Robot Path Planning and Obstacle Avoidance Based on ACO-DWA in Unknown Complex Terrain. Electronics 2022, 11, 2144. [Google Scholar] [CrossRef]
- Khan, A.; Zhang, J.; Ahmad, S.; Memon, S.; Qureshi, H.A.; Ishfaq, M. Dynamic Positioning and Energy-Efficient Path Planning for Disaster Scenarios in 5G-Assisted Multi-UAV Environments. Electronics 2022, 11, 2197. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, M.; Zhang, S.; Gong, H. Multi-UAV Cooperative Obstacle Avoidance of 3D Vector Field Histogram Plus and Dynamic Window Approach. Drones 2023, 7, 504. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, S.S.; Ahn, C.K.; Shi, P.; Lim, C.-C. Finite Distribution Estimation-Based Dynamic Window Approach to Reliable Obstacle Avoidance of Mobile Robot. IEEE Trans. Ind. Electron. 2021, 68, 9998–10006. [Google Scholar] [CrossRef]
- Dobrevski, M.; Skočaj, D. Dynamic Adaptive Dynamic Window Approach. IEEE Trans. Rob. 2024, 40, 3068–3081. [Google Scholar] [CrossRef]
- Yi, H.; Lin, R.; Wang, H.; Wang, Y.; Ying, C.; Wang, D.; Feng, L. Dynamic Obstacle Avoidance with Enhanced Social Force Model and DWA Algorithm Using SparkLink. Sensors 2025, 25, 992. [Google Scholar] [CrossRef]
- Teng, Y.; Feng, T.; Li, J.; Chen, S.; Tang, X. A Dual-Layer Symmetric Multi-Robot Path Planning System Based on an Improved Neural Network-DWA Algorithm. Symmetry 2025, 17, 85. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, D.; Wang, S.; Xie, Y.; Li, H.; Li, S. Position/Attitude Cascade Regulation of Nonholonomic Four-Wheeled Mobile Robot via Double-Loop Sliding-Mode Control Mechanism. Entropy 2023, 25, 27. [Google Scholar] [CrossRef]
- Geng, Q.; Yang, H.; Li, L.; Hua, C. Hybrid Dynamic Event-Triggered Tracking Control of Wheeled Mobile Robots Against Stochastic DoS Attacks. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 7805–7813. [Google Scholar] [CrossRef]
- Najafqolian, M.A.; Alipour, K.; Mousavifard, R.; Tarvirdizadeh, B. Control of Aerial Robots Using Convex QP LMPC and Learning-Based Explicit-MPC. IEEE Trans. Ind. Inform. 2024, 20, 10883–10891. [Google Scholar] [CrossRef]
- Benotsmane, R.; Kovács, G. Optimization of Energy Consumption of Industrial Robots Using Classical PID and MPC Controllers. Energies 2023, 16, 3499. [Google Scholar] [CrossRef]
- Arcos-Legarda, J.; Gutiérrez, Á. Robust Model Predictive Control Based on Active Disturbance Rejection Control for a Robotic Autonomous Underwater Vehicle. J. Mar. Sci. Eng. 2023, 11, 929. [Google Scholar] [CrossRef]
- Huang, K.; Wei, K.; Li, F.; Yang, C.; Gui, W. LSTM-MPC: A Deep Learning Based Predictive Control Method for Multimode Process Control. IEEE Trans. Ind. Electron. 2023, 70, 11544–11554. [Google Scholar] [CrossRef]
- Dai, L.; Lu, Y.; Xie, H.; Sun, Z.; Xia, Y. Robust Tracking Model Predictive Control With Quadratic Robustness Constraint for Mobile Robots With Incremental Input Constraints. IEEE Trans. Ind. Electron. 2021, 68, 9789–9799. [Google Scholar] [CrossRef]
- Li, P.; Tong, X.; Wang, Z.; Xu, M.; Zhu, J. Sensorless Model Predictive Control of Single-Phase Inverter for UPS Applications via Accurate Load Current Estimation. Sensors 2023, 23, 3742. [Google Scholar] [CrossRef]
- Liu, W.; Guo, R.; Zhao, J. Adaptive Sliding Mode Predictive Control for Path Tracking of Wheeled Agricultural Vehicles. Machines 2025, 13, 157. [Google Scholar] [CrossRef]
- Liu, K.; Yu, J.; Zhao, W. Straight-Line Trajectory Tracking Control of Unmanned Sailboat Based on NMPC Velocity and Heading Joint Control. J. Mar. Sci. Eng. 2025, 13, 15. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, X.; Chen, H.; Hu, Y.; Wang, P.; Qu, T. Parallel Nonlinear Model Predictive Controller for Real-Time Path Tracking of Autonomous Vehicle. IEEE Trans. Ind. Electron. 2024, 71, 16503–16513. [Google Scholar] [CrossRef]
- Jeong, D.; Choi, S.B. Tube-Based Robust Model Predictive Control for Tracking Control of Autonomous Articulated Vehicles. IEEE Trans. Intell. Veh. 2024, 9, 2184–2196. [Google Scholar] [CrossRef]
- Shan, D.; Zhang, S.; Wang, X.; Zhang, P. Path-Planning Strategy: Adaptive Ant Colony Optimization Combined with an Enhanced Dynamic Window Approach. Electronics 2024, 13, 825. [Google Scholar] [CrossRef]
- Yuan, X.; Tong, C.; He, G.; Wang, H. Unmanned Vessel Collision Avoidance Algorithm by Dynamic Window Approach Based on COLREGs Considering the Effects of the Wind and Wave. J. Mar. Sci. Eng. 2023, 11, 1831. [Google Scholar] [CrossRef]
- Dao, T.-K.; Ngo, T.-G.; Pan, J.-S.; Nguyen, T.-T.-T.; Nguyen, T.-T. Enhancing Path Planning Capabilities of Automated Guided Vehicles in Dynamic Environments: Multi-Objective PSO and Dynamic-Window Approach. Biomimetics 2024, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. Enhancing CasADi: A software framework for nonlinear optimization and optimal control. Math. Program Comput. 2019, 11, 1–36. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Parameter | Symbol | Value |
---|---|---|---|---|---|
DWA_Distance weight | 0.2 | SubGoal_Obstacle weight | 0.5 | ||
DWA_Velocity weight | 0.1 | SubGoal_Distance weight | 0.3 | ||
DWA_Obstacle weight | 0.4 | SubGoal_Heading weight | 0.2 | ||
DWA_Curvature weight | 0.3 | Max Prediction horizon | 20 | ||
Max velocity (linear) | 0.3 m/s | Min Prediction horizon | 5 | ||
Max velocity (angular) | 1 rad/s | MPC_weight | Q | 0.8 | |
Horizon parameter | 0.4 | MPC_weight | R | 0.2 |
Traditional DWA | Proposed DWA | |
---|---|---|
Average path length (m) | 111.9768 | 103.3942 |
Success rate (%) | 60 | 95 |
IAE-x | IAE-y | |
---|---|---|
PID + DWA | 25.5889 | 30.0039 |
MPC + DWA | 20.4195 | 27.4022 |
Proposed MPC + DWA | 11.2496 | 15.2733 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, S.; Xie, Y.; Xiong, T.; Wang, C. Autonomous Navigation of Mobile Robots: A Hierarchical Planning–Control Framework with Integrated DWA and MPC. Sensors 2025, 25, 2014. https://doi.org/10.3390/s25072014
Wang Z, Wang S, Xie Y, Xiong T, Wang C. Autonomous Navigation of Mobile Robots: A Hierarchical Planning–Control Framework with Integrated DWA and MPC. Sensors. 2025; 25(7):2014. https://doi.org/10.3390/s25072014
Chicago/Turabian StyleWang, Zhongrui, Shuting Wang, Yuanlong Xie, Tifan Xiong, and Chao Wang. 2025. "Autonomous Navigation of Mobile Robots: A Hierarchical Planning–Control Framework with Integrated DWA and MPC" Sensors 25, no. 7: 2014. https://doi.org/10.3390/s25072014
APA StyleWang, Z., Wang, S., Xie, Y., Xiong, T., & Wang, C. (2025). Autonomous Navigation of Mobile Robots: A Hierarchical Planning–Control Framework with Integrated DWA and MPC. Sensors, 25(7), 2014. https://doi.org/10.3390/s25072014