Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Marker-Based Motion Capture System (MoCap)
2.2. COSMED Reference System
2.3. Populations
Experimental Trials and Protocol
2.4. Data Analysis
2.4.1. Synchronization Protocol
2.4.2. Breath Identification
2.4.3. Tidal Volume Calculation
2.4.4. Respiratory Frequency Calculation
2.4.5. Compartmental Contribution
2.4.6. Comparison Between Systems
3. Results
3.1. Athletes During Incremental Test
3.2. Untrained Volunteers During Quiet Breathing
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AB | Abdomen |
COSMED | Reference metabolic cart (Quark CPET) |
Respiratory Frequency | |
MoCap | Motion capture system |
RCp | Pulmonary rib cage |
RCa | Abdominal rib cage |
Tidal Volume |
References
- Bedo, B.; Cesar, G.; Andrade, V.; Moura, F.A.; Vieira, L.H.P.; Aquino, R.; Domingos, M.; Santiago, P.R.P. Landing mechanics of basketball and volleyball athletes: A kinematic approach. Hum. Mov. 2022, 23, 80–88. [Google Scholar] [CrossRef]
- Miri, A.L.; Laskovski, L.; Bueno, M.E.B.; Rodrigues, D.C.; Moura, F.A.; Smaili, S.M. A biomechanical analysis of turning during gait in individuals with different subtypes of Parkinson’s disease. Clin. Biomech. 2024, 112, 106166. [Google Scholar] [CrossRef]
- Ramari, C.; Moraes, A.G.; Tauil, C.B.; von Glehn, F.; Motl, R.; de David, A.C. Knee flexor strength and balance control impairment may explain declines during prolonged walking in women with mild multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 20, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Banks, L.; Santiago, P.; Torres, R.; Oliveira, D.; Moura, F. Accuracy of a markerless system to estimate the position of taekwondo athletes in an official combat area. Int. J. Perform. Anal. Sport 2024, 24, 479–494. [Google Scholar] [CrossRef]
- Lodovico, A.; Cerveri, P.; Ferrigno, G.; Barros, R.M.L. A novel video-based method using projected light to measure trunk volumes during respiration. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 707–713. [Google Scholar] [CrossRef]
- Molinaro, N.; Zangarelli, F.; Schena, E.; Silvestri, S.; Massaroni, C. Cardiorespiratory Parameters Monitoring Through a Single Digital Camera in Real Scenarios: ROI Tracking and Motion Influence. IEEE Sens. J. 2023, 23, 20097–20106. [Google Scholar] [CrossRef]
- Cala, S.J.; Kenyon, C.M.; Ferrigno, G.; Carnevali, P.; Aliverti, A.; Pedotti, A.; Macklem, P.T.; Rochester, D.F. Chest wall and lung volume estimation by optical reflectance motion analysis. J. Appl. Physiol. 1996, 81, 2680–2689. [Google Scholar] [CrossRef]
- Aliverti, A.; Dellacà, R.; Pedotti, A. Optoelectronic plethysmography: A new tool in respiratory medicine. Recent. Progress. Med. 2001, 92, 644–647. [Google Scholar]
- Ward, M.E.; Ward, J.W.; Macklem, P.T. Analysis of human chest wall motion using a two-compartment rib cage model. J. Appl. Physiol. 1992, 72, 1338–1347. [Google Scholar] [CrossRef]
- Kenyon, C.M.; Cala, S.J.; Yan, S.; Aliverti, A.; Scano, G.; Duranti, R.; Pedotti, A.; Macklem, P.T. Rib cage mechanics during quiet breathing and exercise in humans. J. Appl. Physiol. 1997, 83, 1242–1255. [Google Scholar] [CrossRef]
- Ferrigno, G.; Carnevali, P.; Aliverti, A.; Molteni, F.; Beulcke, G.; Pedotti, A. Three-dimensional optical analysis of chest wall motion. J. Appl. Physiol. 1994, 77, 1224–1231. [Google Scholar] [CrossRef]
- Boudarham, J.; Pradon, D.; Prigent, H.; Vaugier, I.; Barbot, F.; Letilly, N.; Falaize, L.; Orlikowski, D.; Petitjean, M.; Lofaso, F. Optoelectronic Vital Capacity Measurement for Restrictive Diseases. Respir. Care 2013, 58, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Dellaca, R.L.; Ventura, M.L.; Zannin, E.; Natile, M.; Pedotti, A.; Tagliabue, P. Measurement of Total and Compartmental Lung Volume Changes in Newborns by Optoelectronic Plethysmography. Pediatr. Res. 2010, 67, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Aliverti, A.; Dellacá, R.; Pelosi, P.; Chiumello, D.; Pedotti, A.; Gattinoni, L. Optoelectronic plethysmography in intensive care patients. Am. J. Respir. Crit. Care Med. 2000, 161, 1546–1552. [Google Scholar] [CrossRef]
- Bioengineering, B. Optoelectronic plethysmography compedium marker setup—A handbook about marker positioning on subjects in standing and supine positions. Brooklyn BTS Bioeng. 2011. [Google Scholar]
- Layton, A.; Moran, S.; Garber, C.; Armstrong, H.; Basner, R.; Thomashow, B.; Bartels, M. Optoelectronic plethysmography compared to spirometry during maximal exercise. Respir. Physiol. Neurobiol. 2013, 185, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Martins Rodrigues, I.; Torres Pereira, E.; de Castro Lopes, A.L.; Massaroni, C.; Baroni, G.; Cerveri, P.; Silvestri, S.; Dickinson, J.; Jacon Sarro, K.; Piaia Silvatti, A. Is age rating enough to investigate changes in breathing motion pattern associated with aging of physically active women? J. Biomech. 2021, 125, 110582. [Google Scholar] [CrossRef]
- Lopes, A.L.; Sarro, K.J.; Rodrigues, I.M.; Leite, R.D.; Massaroni, C.; Amorim, P.R.D.S.; Cerveri, P.; Silvatti, A.P. Breathing Motion Pattern in Cyclists: Role of Inferior against Superior Thorax Compartment. Int. J. Sport. Med. 2024, 45, 450–457. [Google Scholar] [CrossRef]
- Massaroni, C.; Silvatti, A.; Delestre-Levai, I.; Dickinson, J.; Winter, S.; Schena, E.; Silvestri, S. Comparison of marker models for the analysis of the volume variation and thoracoabdominal motion pattern in untrained and trained participants. J. Biomech. 2018, 76, 247–252. [Google Scholar] [CrossRef]
- OptiTrack. Prime 17W. 2024. Available online: http://optitrack.com/products/prime-17w/ (accessed on 4 September 2024).
- Massaroni, C.; Senesi, G.; Schena, E.; Silvestri, S. Analysis of breathing via optoelectronic systems: Comparison of four methods for computing breathing volumes and thoraco-abdominal motion pattern. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1678–1689. [Google Scholar] [CrossRef] [PubMed]
- COSMED. Quark CPET—Cardio Pulmonary Exercise Testing. 2024. Available online: https://www.cosmed.com/en/products/cardio-pulmonary-exercise-testing/quark-cpet (accessed on 4 September 2024).
- Lode. Excalibur Sport. 2024. Available online: https://www.lode.nl/en/product/excalibur-sport/3 (accessed on 4 September 2024).
- Innocenti, L.; Romano, C.; Greco, G.; Nuccio, S.; Bellini, A.; Mari, F.; Silvestri, S.; Schena, E.; Sacchetti, M.; Massaroni, C.; et al. Breathing Monitoring in Soccer: Part I—Validity of Commercial Wearable Sensors. Sensors 2024, 24, 4571. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.; Nicolò, A.; Innocenti, L.; Sacchetti, M.; Schena, E.; Massaroni, C. Design and Testing of a Smart Facemask for Respiratory Monitoring during Cycling Exercise. Biosensors 2023, 13, 369. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolò, A.; Girardi, M.; Camera, A.; Schena, E.; Sacchetti, M.; Silvestri, S.; Taffoni, F. Validation of a Wearable Device and an Algorithm for Respiratory Monitoring During Exercise. IEEE Sens. J. 2019, 19, 4652–4659. [Google Scholar] [CrossRef]
- Kipp, S.; Leahy, M.G.; Hanna, J.A.; Sheel, A.W. Partitioning the work of breathing during running and cycling using optoelectronic plethysmography. J. Appl. Physiol. 2021, 130, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Massaroni, C.; Carraro, E.; Vianello, A.; Miccinilli, S.; Morrone, M.; Levai, I.K.; Schena, E.; Saccomandi, P.; Sterzi, S.; Dickinson, J.W.; et al. Optoelectronic Plethysmography in Clinical Practice and Research: A Review. Respir. Int. Rev. Thorac. Dis. 2017, 93, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Berkebile, J.A.; Mabrouk, S.A.; Ganti, V.G.; Srivatsa, A.V.; Sanchez-Perez, J.A.; Inan, O.T. Towards Estimation of Tidal Volume and Respiratory Timings via Wearable-Patch-Based Impedance Pneumography in Ambulatory Settings. IEEE Trans. Biomed. Eng. 2022, 69, 1909–1919. [Google Scholar] [CrossRef]
- Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y.; Pham, H.N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D.M.; Khine, M. Respiration rate and volume measurements using wearable strain sensors. NPJ Digit. Med. 2019, 2, 8. [Google Scholar] [CrossRef]
- Monaco, V.; Stefanini, C. Assessing the tidal volume through wearables: A scoping review. Sensors 2021, 21, 4124. [Google Scholar] [CrossRef]
- Smith, C.M.; Chillrud, S.N.; Jack, D.W.; Kinney, P.; Yang, Q.; Layton, A.M. Laboratory validation of hexoskin biometric shirt at rest, submaximal exercise, and maximal exercise while riding a stationary bicycle. J. Occup. Environ. Med. 2019, 61, e104–e111. [Google Scholar] [CrossRef]
- Tipton, M.J.; Harper, A.; Paton, J.F.R.; Costello, J.T. The human ventilatory response to stress: Rate or depth? J. Physiol. 2017, 595, 5729–5752. [Google Scholar] [CrossRef]
- Nicolò, A.; Sacchetti, M. Differential control of respiratory frequency and tidal volume during exercise. Eur. J. Appl. Physiol. 2023, 123, 215–242. [Google Scholar] [CrossRef]
- Aliverti, A.; Rodger, K.; Dellacà, R.L.; Stevenson, N.; Lo Mauro, A.; Pedotti, A.; Calverley, P.M.A. Effect of salbutamol on lung function and chest wall volumes at rest and during exercise in COPD. Thorax 2005, 60, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Bruni, G.I.; Gigliotti, F.; Binazzi, B.; Romagnoli, I.; Duranti, R.; Scano, G. Dyspnea, chest wall hyperinflation, and rib cage distortion in exercising patients with chronic obstructive pulmonary disease. Med. Sci. Sport. Exerc. 2012, 44, 1049–1056. [Google Scholar] [CrossRef]
- Smyth, C.M.E.; Winter, S.L.; Dickinson, J.W. Novel Real-Time OEP Phase Angle Feedback System for Dysfunctional Breathing Pattern Training—An Acute Intervention Study. Sensors 2021, 21, 3714. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.A.; Bishop, B. Human breathing patterns on mouthpiece or face mask during air, CO2, or low O2. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982, 53, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Paek, D.; McCool, F.D. Breathing patterns during varied activities. J. Appl. Physiol. 1992, 73, 887–893. [Google Scholar] [CrossRef]
- Gilbert, R.; Auchincloss, J.; Brodsky, J.; Boden, W. Changes in tidal volume, frequency, and ventilation induced by their measurement. J. Appl. Physiol. 1972, 33, 252–254. [Google Scholar] [CrossRef]
- Bloch, K.; Barandun, J.; Sackner, M. Effect of mouthpiece breathing on cardiorespiratory response to intense exercise. Am. J. Respir. Crit. Care Med. 1995, 151, 1087–1092. [Google Scholar] [CrossRef]
- Massaroni, C.; Venanzi, C.; Silvatti, A.P.; Lo Presti, D.; Saccomandi, P.; Formica, D.; Giurazza, F.; Caponero, M.A.; Schena, E. Smart textile for respiratory monitoring and thoraco-abdominal motion pattern evaluation. J. Biophotonics 2018, 11, e201700263. [Google Scholar] [CrossRef]
- Seiler, A.; Großmann, D.; Jüttler, B. Spline surface fitting using normal data and norm-like functions. Comput. Aided Geom. Des. 2018, 64, 37–49. [Google Scholar] [CrossRef]
- Yoshiyasu, Y. Deformable mesh transformer for 3d human mesh recovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 17006–17015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massaroni, C.; Nicolò, A.; Lopes, A.L.d.C.; Romano, C.; Pinnelli, M.; Sarro, K.; Schena, E.; Cerveri, P.; Sacchetti, M.; Silvestri, S.; et al. Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise. Sensors 2025, 25, 2578. https://doi.org/10.3390/s25082578
Massaroni C, Nicolò A, Lopes ALdC, Romano C, Pinnelli M, Sarro K, Schena E, Cerveri P, Sacchetti M, Silvestri S, et al. Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise. Sensors. 2025; 25(8):2578. https://doi.org/10.3390/s25082578
Chicago/Turabian StyleMassaroni, Carlo, Andrea Nicolò, Ana Luiza de Castro Lopes, Chiara Romano, Mariangela Pinnelli, Karine Sarro, Emiliano Schena, Pietro Cerveri, Massimo Sacchetti, Sergio Silvestri, and et al. 2025. "Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise" Sensors 25, no. 8: 2578. https://doi.org/10.3390/s25082578
APA StyleMassaroni, C., Nicolò, A., Lopes, A. L. d. C., Romano, C., Pinnelli, M., Sarro, K., Schena, E., Cerveri, P., Sacchetti, M., Silvestri, S., & Silvatti, A. P. (2025). Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise. Sensors, 25(8), 2578. https://doi.org/10.3390/s25082578