Thymus mastichina: Composition and Biological Properties with a Focus on Antimicrobial Activity
Abstract
:1. Introduction
2. Search Strategy
3. Chemical Composition of T. mastichina Essential Oils and Extracts
4. Biological Properties
4.1. Antibacterial and Antifungal Activities
4.2. Antioxidant Activity
4.3. Anticancer Activity
4.4. Antiviral Activity
4.5. Insecticidal and Insect Repellent Activity
4.6. Anti-Alzheimer Activity
4.7. Anti-Inflammatory Activity
4.8. α-Amylase and α-Glucosidase Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Utad, J.B. Ficha da Espécie Thymus mastichina. Available online: https://jb.utad.pt/especie/Thymus_mastichina (accessed on 23 July 2020).
- Arantes, S.M.; Piçarra, A.; Guerreiro, M.; Salvador, C.; Candeias, F.; Caldeira, A.T.; Martins, M.R. Toxicological and pharmacological properties of essential oils of Calamintha nepeta, Origanum virens and Thymus mastichina of Alentejo (Portugal). Food Chem. Toxicol. 2019, 133, 110747. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, O.; Delgado, F. Tipos e Espécies de PAM. Guia Para a Produção de Plantas Aromáticas e Medicinais em Portugal. 2015. Available online: http://epam.pt/guia/tipos-e-especies-de-pam/ (accessed on 18 September 2020).
- Cutillas, A.-B.B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS ONE 2018, 13, e0190790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girón, V.; Garnatje, T.; Vallès, J.; Pérez-Collazos, E.; Catalán, P.; Valdés, B. Geographical distribution of diploid and tetraploid cytotypes of Thymus sect. mastichina (Lamiaceae) in the Iberian Peninsula, genome size and evolutionary implications. Folia Geobot. 2012, 47, 441–460. [Google Scholar]
- Méndez-Tovar, I.; Martín, H.; Santiago, Y.; Ibeas, A.; Herrero, B.; Asensio-S-Manzanera, M.C. Variation in morphological traits among Thymus mastichina (L.) L. populations. Genet. Resour. Crop Evol. 2015, 62, 1257–1267. [Google Scholar] [CrossRef]
- Miguel, G.; Guerrero, C.; Rodrigues, H.; Brito, J.; Venâncio, F.; Tavares, R.; Duarte, F. Effect of substrate on the essential oils composition of Thymus mastichina (L.) L. subsp. mastichina collected in Sesimbra region (Portugal). In Natural Products in the New Millennium: Prospects and Industrial Application; Springer: Dordrecht, The Netherlands, 2002; pp. 143–148. [Google Scholar]
- Miguel, M.G.; Duarte, F.L.; Venâncio, F.; Tavares, R. Comparison of the main components of the essential oils from flowers and leaves of Thymus mastichina (L.) L. ssp. mastichina collected at different regions of portugal. J. Essent. Oil Res. 2004, 16, 323–327. [Google Scholar]
- Méndez-Tovar, I.; Sponza, S.; Asensio-S-Manzanera, M.C.; Novak, J. Contribution of the main polyphenols of Thymus mastichina subsp: Mastichina to its antioxidant properties. Ind. Crops Prod. 2015, 66, 291–298. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Chemical characterization and bioactivity of extracts from Thymus mastichina: A Thymus with a distinct salvianolic acid composition. Antioxidants 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. From famine plants to tasty and fragrant spices: Three Lamiaceae of general dietary relevance in traditional cuisine of Trás-os-Montes (Portugal). LWT Food Sci. Technol. 2011, 44, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Asensio-S-Manzanera, M.C.; Mendez, I.; Santiago, Y.; Martin, H.; Herrero, B. Phenolic compounds variability in hydrodistilled residue of Thymus mastichina. In VII Congreso Iberico de Agroingeniería y Ciencias Hortícolas: Innovar y Producir Para el Futuro; UPM: Madrid, Spain, 2014; pp. 2086–2091. [Google Scholar]
- Barros, L.; Heleno, S.A.; Carvalho, A.M.; Ferreira, I.C.F.R. Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT Food Sci. Technol. 2010, 43, 544–550. [Google Scholar] [CrossRef]
- Albano, S.M.; Sofia Lima, A.; Graça Miguel, M.; Pedro, L.G.; Barroso, J.G.; Figueiredo, A.C. Antioxidant, anti-5-lipoxygenase and antiacetylcholinesterase activities of essential oils and decoction waters of some aromatic plants. Rec. Nat. Prod. 2012, 6, 35–48. [Google Scholar]
- Salgueiro, L.R.; Vila, R.; Tomàs, X.; Cañigueral, S.; Da Cunha, A.P.; Adzet, T. Composition and variability of the essential oils of Thymus species from section mastichina from Portugal. Biochem. Syst. Ecol. 1997, 25, 659–672. [Google Scholar] [CrossRef]
- Faleiro, L.; Miguel, G.M.; Guerrero, C.A.C.; Brito, J.M.C. Antimicrobial activity of essential oils of Rosmarinus officinalis L., Thymus mastichina (L) L. ssp Mastichina and Thymus albicans Hofmanns & link. Acta Hortic. 1999, 501, 45–48. [Google Scholar]
- Jiménez-Carmona, M.M.; Ubera, J.L.; Luque De Castro, M.D. Comparison of continuous subcritical water extraction and hydrodistillation of marjoram essential oil. J. Chromatogr. A 1999, 855, 625–632. [Google Scholar] [CrossRef]
- Miguel, M.G.; Guerrero, C.A.C.; Brito, J.M.C.; Venâncio, F.; Tavares, R.; Martins, A.; Duarte, F. Essential oils from Thymus mastichina (L.) L. ssp. mastichina and Thymus albicans Hoffmanns & link. Acta Hortic. 1999, 500, 59–63. [Google Scholar]
- Miguel, M.G.; Duarte, F.; Venâncio, F.; Tavares, R. Chemical composition of the essential oils from Thymus mastichina over a day period. Acta Hortic. 2002, 597, 87–90. [Google Scholar] [CrossRef]
- Miguel, M.G.; Duarte, F.; Venâncio, F.; Tavares, R.; Guerrero, C.; Martins, H.; Carrasco, J. Changes of the chemical composition of the essential oil of portuguese Thymus mastichina in the course of two vegetation cycles. Acta Hortic. 2002, 576, 83–86. [Google Scholar] [CrossRef]
- Faleiro, M.L.; Miguel, M.G.; Ladeiro, F.; Venâncio, F.; Tavares, R.; Brito, J.C.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Lett. Appl. Microbiol. 2003, 36, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Miguel, M.G.; Figueiredo, A.C.; Costa, M.M.; Martins, D.; Duarte, J.; Barroso, J.G.; Pedro, L.G. Effect of the volatile constituents isolated from Thymus albicans, Th. mastichina, Th. carnosus and Thymbra capitata in sunflower oil. Nahr. Food 2003, 47, 397–402. [Google Scholar] [CrossRef]
- Miguel, M.G.; Guerrero, C.; Rodrigues, H.; Brito, J.; Duarte, F.; Venâncio, F.; Tavares, R. Essential oils of Portuguese Thymus mastichina (L.) L. subsp. mastichina grown on different substrates and harvested on different dates. J. Hortic. Sci. Biotechnol. 2003, 78, 355–358. [Google Scholar]
- Miguel, M.G.; Guerrero, C.; Rodrigues, H.; Brito, J.C.; Duarte, F.; Venâncio, F.; Tavares, R. Main components of the essential oils from wild portuguese Thymus mastichina (L.) L. ssp. mastichina in different developmental stages or under culture conditions. J. Essent. Oil Res. 2004, 16, 111–114. [Google Scholar] [CrossRef]
- Miguel, G.; Simões, M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Carvalho, L. Composition and antioxidant activities of the essential oils of Thymus caespititius, Thymus camphoratus and Thymus mastichina. Food Chem. 2004, 86, 183–188. [Google Scholar] [CrossRef]
- Pina-Vaz, C.; Rodrigues, A.G.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Moldão-Martins, M.; Beirão-da-Costa, S.; Neves, C.; Cavaleiro, C.; Salgueiro, L.; Luísa Beirão-da-Costa, M. Olive oil flavoured by the essential oils of Mentha × piperita and Thymus mastichina L. Food Qual. Prefer. 2004, 15, 447–452. [Google Scholar] [CrossRef]
- Miguel, M.G.; Falcato-Simões, M.; Figueiredo, A.C.; Barroso, J.M.G.; Pedro, L.G.; Carvalho, L.M. Evaluation of the antioxidant activity of Thymbra capitata, Thymus mastichina and Thymus camphoratus essential oils. J. Food Lipids 2005, 12, 181–197. [Google Scholar]
- Peñalver, P.; Huerta, B.; Borge, C.; Astorga, R.; Romero, R.; Perea, A. Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family. APMIS 2005, 113, 1–6. [Google Scholar] [CrossRef]
- Miguel, M.G.; Costa, L.A.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Assessment of the antioxidant ability of Thymus albicans, Th. mastichina, Th. camphoratus and Th. carnosus essential oils by TBARS and Micellar Model systems. Nat. Prod. Commun. 2007, 2, 399–406. [Google Scholar]
- Galego, L.; Almeida, V.; Gonçalves, V.; Costa, M.; Monteiro, I.; Matos, F.; Miguel, G. Antioxidant activity of the essential oils of Thymbra capitata, Origanum vulgare, Thymus mastichina, and Calamintha baetica. Acta Hortic. 2008, 765, 325–334. [Google Scholar] [CrossRef]
- Bentes, J.; Miguel, M.G.; Monteiro, I.; Costa, M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Antioxidant activities of essential oils and extracts of Portuguese Thymbra capitata and Thymus mastichina. Ital. J. Food Sci. 2009, XVIII, 1–125. [Google Scholar]
- Asensio-S-Manzanera, M.C.; Martín, H.; Sanz, M.A.; Herrero, B. Antioxidant activity of Lavandula latifolia, Salvia lavandulifolia and Thymus mastichina collected in Spain. Acta Hortic. 2011, 925, 281–290. [Google Scholar] [CrossRef]
- Fernández-Pan, I.; Royo, M.; Ignacio Maté, J. Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. J. Food Sci. 2012, 77, M383–M390. [Google Scholar]
- Ballester-Costa, C.; Sendra, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical composition and in vitro antibacterial properties of essential oils of four Thymus species from organic growth. Ind. Crops Prod. 2013, 50, 304–311. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus xylophilus: Nematotoxics from essential oils, essential oils fractions and decoction waters. Phytochemistry 2013, 94, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, T.; Marinero, P.; Asensio-S-Manzanera, M.C.; Asensio, C.; Herrero, B.; Pereira, J.A.; Ramalhosa, E. Antioxidant activity of twenty wild Spanish Thymus mastichina L. populations and its relation with their chemical composition. LWT Food Sci. Technol. 2014, 57, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Miguel, M.G.; Gago, C.; Antunes, M.D.; Megías, C.; Cortés-Giraldo, I.; Vioque, J.; Lima, A.S.; Figueiredo, A.C. Antioxidant and antiproliferative activities of the essential oils from Thymbra capitata and Thymus species grown in Portugal. Evid. Based Complement. Altern. Med. 2015, 2015, 1–8. [Google Scholar]
- Méndez-Tovar, I.; Sponza, S.; Asensio-S-Manzanera, C.; Schmiderer, C.; Novak, J. Volatile fraction differences for Lamiaceae species using different extraction methodologies. J. Essent. Oil Res. 2015, 27, 497–505. [Google Scholar] [CrossRef]
- Aazza, S.; El-Guendouz, S.; Miguel, M.G.; Dulce Antunes, M.; Leonor Faleiro, M.; Isabel Correia, A.; Cristina Figueiredo, A. Antioxidant, anti-inflammatory and anti-hyperglycaemic activities of essential oils from Thymbra capitata, Thymus albicans, Thymus caespititius, Thymus carnosus, Thymus lotocephalus and Thymus mastichina from Portugal. Nat. Prod. Commun. 2016, 11, 1029–1038. [Google Scholar]
- Fraternale, D.; Giamperi, L.; Ricci, D. Chemical Composition and antifungal activity of essential oil obtained from in vitro plants of Thymus mastichina L. J. Essent. Oil Res. 2003, 15, 278–281. [Google Scholar]
- Ibáñez, M.D.; Blázquez, M.A. Herbicidal value of essential oils from oregano-like flavour species. Food Agric. Immunol. 2017, 28, 1168–1180. [Google Scholar] [CrossRef] [Green Version]
- Arantes, S.; Piçarra, A.; Candeias, F.; Caldeira, A.T.; Martins, M.R.; Teixeira, D. Antioxidant activity and cholinesterase inhibition studies of four flavouring herbs from Alentejo. Nat. Prod. Res. 2017, 31, 2183–2187. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Adámez, J.; Garrido, M.; Bote, M.E.; Fuentes-Pérez, M.C.; Espino, J.; Martín-Vertedor, D. Chemical composition and bioactivity of essential oils from flower and fruit of Thymbra capitata and Thymus species. J. Food Sci. Technol. 2017, 54, 1857–1865. [Google Scholar]
- Vieira, M.; Bessa, L.J.; Martins, M.R.; Arantes, S.; Teixeira, A.P.S.; Mendes, Â.; Martins da Costa, P.; Belo, A.D.F. Chemical composition, antibacterial, antibiofilm and synergistic properties of essential oils from Eucalyptus globulus Labill. and seven mediterranean aromatic plants. Chem. Biodivers. 2017, 14, e1700006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.-J. Chemical constituents of essential oils possessing anti-influenza A/WS/33 virus activity. Osong Public Health Res. Perspect. 2018, 9, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Diánez, F.; Santos, M.; Parra, C.; Navarro, M.J.; Blanco, R.; Gea, F.J. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom. Lett. Appl. Microbiol. 2018, 67, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Queiroga, M.C.; Pinto Coelho, M.; Arantes, S.M.; Potes, M.E.; Martins, M.R. Antimicrobial activity of essential oils of Lamiaceae aromatic spices towards sheep mastitis-causing Staphylococcus aureus and Staphylococcus epidermidis. J. Essent. Oil Bear. Plants 2018, 21, 1155–1165. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; del Mar Contreras, M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phyther. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef]
- Albano, S.M.; Miguel, M.G. Biological activities of extracts of plants grown in Portugal. Ind. Crops Prod. 2011, 33, 338–343. [Google Scholar] [CrossRef]
- Sánchez-Vioque, R.; Polissiou, M.; Astraka, K.; de los Mozos-Pascual, M.; Tarantilis, P.; Herraiz-Peñalver, D.; Santana-Méridas, O. Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Ind. Crops Prod. 2013, 49, 150–159. [Google Scholar] [CrossRef]
- Gordo, J.; Máximo, P.; Cabrita, E.; Lourenço, A.; Oliva, A.; Almeida, J.; Filipe, M.; Cruz, P.; Barcia, R.; Santos, M.; et al. Thymus mastichina: Chemical constituents and their anti-cancer activity. Nat. Prod. Commun. 2012, 7, 1491–1494. [Google Scholar]
- Giner, M.J.; Vegara, S.; Funes, L.; Martí, N.; Saura, D.; Micol, V.; Valero, M. Antimicrobial activity of food-compatible plant extracts and chitosan against naturally occurring micro-organisms in tomato juice. J. Sci. Food Agric. 2012, 92, 1917–1923. [Google Scholar] [CrossRef]
- Ballester-Costa, C.; Sendra, E.; Fernández-López, J.; Viuda-Martos, M. Evaluation of the antibacterial and antioxidant activities of chitosan edible films incorporated with organic essential oils obtained from four Thymus species. J. Food Sci. Technol. 2016, 53, 3374–3379. [Google Scholar] [CrossRef] [Green Version]
- Ballester-Costa, C.; Sendra, E.; Viuda-Martos, M. Assessment of antioxidant and antibacterial properties on meat homogenates of essential oils obtained from four Thymus species achieved from organic growth. Foods 2017, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal, F.; Coelho, A.C.; Soriano, T.; Alves, C.; Matos, M. Fungicide activity of Thymus mastichina and Mentha rotundifolia in plants in vitro. J. Med. Food 2013, 16, 273. [Google Scholar] [CrossRef]
- Hood, J.R.; Wilkinson, J.M.; Cavanagh, H.M.A. Evaluation of common antibacterial screening methods utilized in essential oil research. J. Essent. Oil Res. 2003, 15, 428–433. [Google Scholar] [CrossRef]
- Figueiredo, A.; Barroso, J.G.; Pedro, L.G.; Salgueiro, L.; Miguel, M.G.; Faleiro, M.L. Portuguese Thymbra and Thymus species volatiles: Chemical composition and biological activities. Curr. Pharm. Des. 2008, 14, 3120–3140. [Google Scholar] [CrossRef]
- Kovač, K.; Diez-Valcarce, M.; Raspor, P.; Hernández, M.; Rodríguez-Lázaro, D. Natural plant essential oils do not inactivate non-enveloped enteric viruses. Food Environ. Virol. 2012, 4, 209–212. [Google Scholar]
- Pavela, R. Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 2005, 76, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phyther. Res. 2008, 22, 274–278. [Google Scholar] [CrossRef] [PubMed]
Plant Material (Growth Phase) | Period of Year | Source | Yield | Major Constituents | Reference |
---|---|---|---|---|---|
Flowering branches | May–July | Trás-os-Montes; Beira Alta; Beira Baixa; Estremadura; Ribatejo; Alto Alentejo; Algarve (Portugal) | 2.2% (v/w) | 1,8-cineole (53.3%); linalool (5.5%) | [15] |
Leaves | December; May | Nave do Barão, Algarve (Portugal) | - | 1,8-cineole (46.29%); camphor (10.77%); camphene (6.31%); α-pinene (5.23%) | [16] |
Leaves | - | Vadofresno, Córdoba (Spain) | - | 1,8-cineole (24.81%) | [17] |
1,8-cineole (18.87%) | |||||
Leaves and flowers | December; May | Algarve (Portugal) | - | 1,8-cineole (46.3–50.4%); camphor (9.6–10.8%); camphene (5.0–6.3%); α-pinene (4.0–5.3%); | [18] |
Leaves | - | S. Brás de Alportel, Algarve (Portugal) | 0.4–0.9% (v/w) | 1,8-cineole (50.2–61.0%); camphor (7.6–10,1%); δ-terpineol (6.5–9.7%); camphene (4.4–6.1%) | [19] |
Flowers | 1.6–2.2% (v/w) | 1,8-cineole (46.7–50.2%); δ-terpineol (5.9–8.2%) | |||
Aerial parts | December; May; June; October January; May, June; October (2 years) | S. Brás de Alportel, Algarve (Portugal) | - | 1,8-cineole (42.1–50.43%); camphor (7.4–11.5%); camphene (3.1–6.3%); α-terpineol (3.4–5.7%); trans-sabinene hydrate (0.2–5.6%); α-pinene (3.1–5.3%) | [20] |
Flowers (full flowering phase) | May | S. Brás de Alportel, Algarve, Sotavento (Portugal) | - | 1,8-cineole (46.9%); camphor (6.7%); α-terpineol (5.2%) | [21] |
Leaves (full flowering phase) | 1,8-cineole (42.4%); camphor (7.7%); borneol (6.8%); α-terpineol (6.1%) | ||||
Aerial parts (beginning of flowering phase) | Sesimbra, Estremadura (Portugal) | - | Chemotype A (aerial parts): linalool (44.4%); 1,8-cineole (37.4%) Chemotype B (aerial parts): linalool (61.4%); camphor (5.3%) | ||
Aerial parts (flowering phase) | - | Algarve (Portugal) | - | 1,8-cineole (45.3%); camphor (8.5%); camphene (6.6%); α-pinene (5.4%); limonene (5.2%); borneol (5.0%) | [22] |
Estremadura (Portugal) | linalool (52.3%); 1,8-cineole (9.6%); limonene (6.4%); p-cymene (6.2%) | ||||
Aerial parts | October; January; April; June | Nave do Barão, Algarve (Portugal) | 0.7–3.6% (v/w) | 1,8-cineole (45.1–58.6%); camphor (5.5–8.9%); α-pinene (4.6–6.8%); camphene (4.3–6.0%) | [23] |
Aerial parts (vegetative phase and flowering phase) | October; May | Sesimbra (Portugal) | 0.7–2.7% (v/w) | linalool (58.7–69%); 1,8-cineole (1.1–10.8%); elemol (0.9–6.6%); camphor (2.4–5.3%) | [24] |
Aerial parts | January | Direção Regional de Agricultura de Trás-os-Montes (Portugal) | 1.3% (v/w) | 1,8-cineole (57.8%); limonene (10.8%) | [25] |
Aerial parts | - | Direção Regional de Agricultura de Trás-os-Montes, Mirandela (Portugal) | - | 1,8-cineole (67.4%) | [26] |
Leaves | June | Sesimbra (Portugal) | 2.2% | linalool (68.5%); 1,8-cineole (9.4%) | [8] |
Flowers | 2.6% | linalool (73.5%); 1,8-cineole (10.2%) | |||
Leaves | Arrábida (Portugal) | 1.7% | 1,8-cineole (69.2%); linalool (6.3%) | ||
Flowers | 3.5% | 1,8-cineole (54.6%); linalool (13.7%) | |||
Leaves | Mértola (Portugal) | 2.0% | 1,8-cineole (44.2%) | ||
Flowers | 3.0% | 1,8-cineole (39.4%); linalool (8.1%) | |||
Leaves | S. Brás de Alportel (Portugal) | 1.4% | 1,8-cineole (49.7%) | ||
Flowers | 2.0% | 1,8-cineole (48.5%) | |||
Aerial parts (flowering phase) | Mirandela (Portugal) | 2.4% (v/w) | 1,8-cineole (64.1%); α-terpineol (5.6%) | [27] | |
Aerial parts (vegetative phase) | January | Algarve (Portugal) | 2.3% (v/w) | 1,8-cineole (49.4%); limonene (9.3%) | [28] |
Aerial parts | - | Córdoba (Spain) | - | 1,8-cineole (45.67%); linalool (27.88%) | [29] |
Aerial parts | - | Mértola (Portugal) | 1,8-cineole (61.0%) | [30] | |
Vila Real de Santo António (Portugal) | 1.0–1.3% (v/w) | 1,8-cineole (49.4%) | |||
Sesimbra (Portugal) | linalool (39.7%); 1,8-cineole (9.6%) | ||||
Plants (flowering phase) | - | Direção Regional de Agricultura e Pescas do Algarve (Portugal) | - | 1,8-cineole (41.0%); β-pinene + trans-sabinene (7.0%); camphor (6.9%); borneol (6.5%); α-pinene (6.0%); camphene (5.5%) | [31] |
Aerial parts (flowering phase) | June | Direção Regional de Agricultura e Pescas do Algarve (Portugal) | 4% (w/w) | 1,8-cineole (44%); camphor (10%); borneol (7%); camphene (7%); α-pinene (6%); α-terpineol (5%) | [32] |
Plant (flowering phase) | Summer | Tordesillas, Valladolid; Truchas, Peradoones, Carrocera, Boñar, León; Almazán, Soria; Riaza, Villacastín, Segovia; Serranilos, Avila; Saldaña, Palencia (Spain) | 3.40–6.90% | - | [33] |
Aerial parts | - | Direção Regional de Agricultura e Pescas do Algarve (Portugal) | 6.3% (w/w) | 1,8-cineole (49.4%); α-pinene (7.0%); camphene (6.9%); camphor (5.8%); β-pinene (5.3%) | [14] |
Whole plants | - | Barcelona (Spain) | - | 1,8-cineole (52.57%); linalool (12.78%) | [34] |
Commercial samples: leaves, stem, and flowers | - | Esencias Martinez Lozano, Murcia (Spain) | - | 1,8-cineole (51.94%); linalool (19.90%) | [35] |
Aerial parts (vegetative phase) | - | Coimbra (Portugal) | 1.17% (v/w) | 1,8-cineole (46%); limonene (23%) | [36] |
Aerial parts (flowering phase) | June–July | Béjar, Valdemierque, Mozarbez, Golpejas, Salamanca; Carrocera, Boñar, Truchas, Peranzanes, León; Salas de los Infante, Lerma, Oña, Burgos; Villacastin, Riaza, Coca, Prádena, Segovia; Vinuesa, Aldealpozo, Almazán, Langa de Duero, Soria (Spain) | 2.27–6.48% (v/w) | 1,8-cineole (56.80–69.60%); linalool (0.62–15.7%); α-terpineol (2.07–5.99%); β-pinene (1.72–5.63%); limonene (1.07–5.10%) | [37] |
Aerial parts | - | Vila Chã (Portugal) | - | 1,8-cineole (47.4%); thymol (13.7%); p-cymene (9.7%); γ-terpinene (7.3%) | [38] |
Flowers and leaves | June | Carrocera, Léon (Spain) | 1,8-cineole + limonene (61.6%); linalool (6%); β-pinene (5.7%) | [39] | |
- | 1,8-cineole + limonene (69.3%) | ||||
1,8-cineole + limonene (64%) | |||||
Plants (flowering phase) | - | Algarve (Portugal) | 1.2% (v/w) | 1,8-cineole (52.8%); α-pinene (7.2%); camphene (7.2%); camphor (7.2%) | [40] |
Plants grown in vitro (all parts except roots) | - | Urbino (Italy) | 0.56% (v/w) | 1,8-cineole (55.6%); linalool (24.5%); β-pinene (5.9%) | [41] |
Commercial samples | Planalto DouradoTM; Freixedas (Portugal) | - | 1.8-cineole (49.94%); linalool (5.66%); α-terpineol (5.59%); β-pinene (5.54%) | [42] | |
Aerial parts | - | Évora, Alentejo (Portugal) | 1.1% (v/w) | 1,8-cineole (72.0%); α-terpineol (9.0%) | [43] |
Flowers | Badajoz (Spain) | - | limonene + 1,8-cineole (71.82%); β-myrcene (9.81%); α-terpineol (5.32%); camphene (5.15%) | [44] | |
Fruits | limonene + 1,8-cineole (78.37%); β-myrcene (5.69%); α-terpineol (5.05%) | ||||
Leaves | Summer | Alentejo (Portugal) | - | 1,8-cineole (74.2%); α-terpenyl acetate (7.9%) | [45] |
Leaves | - | UNIQ F&F Co., Ltd. (Seoul, Korea) | - | β-pinene (5.81%); 1,8-cineole (64.61%); linalool (15.28%) | [46] |
Aerial parts | July | Murcia (Spain) | 1.8–3.6% (v/w) | 1,8-cineole (38.8–74.0%); linalool (13.3–42.7%) | [4] |
Leaves and stem | - | Ciudad Real (Spain) | - | 1,8-cineole (43.26%); linalool (36.72%); linalyl acetate (5.58%) | [47] |
Commercial samples | - | Ervitas Catitas (Portugal) | 1,8-cineole (55.9%); β-pinene (10.8%) | [48] | |
Aerial parts | Évora, Alentejo (Portugal) | 1.06% (v/w) | 1.8-cineole (71.2%); α-terpineol (9.7%) | [2] |
Origin | Micro-Organisms | Species | Measured Response and Results Obtained | References | |||||
---|---|---|---|---|---|---|---|---|---|
S. Brás de Alportel, Algarve, Sotavento (Portugal) | Diameter of the zone of inhibition (mm), including the diameter of the disc (6 mm) | [21] | |||||||
Flower | Leaf | ||||||||
Gram-negative bacteria | Escherichia coli | 8.0 | 14.0 | ||||||
Proteus mirabilis | 7.0 | 7.3 | |||||||
Salmonella subsp. | 8.0 | 8.7 | |||||||
Gram-positive bacteria | Staphylococcus aureus | 13.7 | 15.7 | ||||||
Listeria monocytogenes EGD | 9.7 | 12.3 | |||||||
Fungus | Candida albicans | 10.0 | 11.0 | ||||||
Sesimbra, Estremadura (Portugal) | Chemotype A | Chemotype B | |||||||
Gram-negative bacteria | Escherichia coli | 7.5 | 10.6 | ||||||
Proteus mirabilis | 7.5 | 10.0 | |||||||
Salmonella subsp. | 6.3 | 7.0 | |||||||
Gram-positive bacteria | Staphylococcus aureus | 13.3 | 9.6 | ||||||
Listeria monocytogenes EGD | ND | 11.0 | |||||||
Fungus | Candida albicans | 10.6 | 13.6 | ||||||
Direção Regional de Agricultura de Trás-os-Montes, Mirandela (Portugal) | MIC (μL/mL) | MLC (μL/mL) | [26] | ||||||
Fungi | Candida albicans | 2.5 | 2.5 | ||||||
Candida albicans | 1.25–2.5 | 2.5 | |||||||
Candida albicans | 2.5 | 5.0 | |||||||
Candida tropicalis | 2.5–5.0 | 5.0 | |||||||
Candida tropicalis | 5.0–10.0 | 5.0 | |||||||
Candida glabrata | 1.25–2.5 | 5.0 | |||||||
Candida glabrata | 2.5 | 5.0 | |||||||
Candida krusei | 1.25–2.5 | 2.5 | |||||||
Candida guilhermondii | 1.25 | 1.25 | |||||||
Candida parapsilosis | 2.5–5.0 | 5.0 | |||||||
Córdoba (Spain) | MIC (%, v/v) | [29] | |||||||
Gram-negative bacteria | Escherichia coli—origin in poultry | 4 | |||||||
Salmonella enteritidis—origin in poultry | 4 | ||||||||
Salmonella essen—origin in poultry | 4 | ||||||||
Escherichia coli (ETEC)—origin in pig | 4 | ||||||||
Salmonella choleraesuis—origin in pig | 4 | ||||||||
Salmonella typhimurium—origin in pig | 4 | ||||||||
Barcelona (Spain) | Area of the inhibition zone (mm2) excluding the film area | [34] | |||||||
6% | 7% | 8% | 9% | ||||||
Gram-positive bacteria | Listeria innocua | NA a | 0.79 a | 0.79 a | NF a | ||||
Methicillin-resistant Staphylococcus aureus | NA a | NA a | NA a | NF a | |||||
Gram-negative bacteria | Salmonella enteritidis | NA a | NA a | NA a | NF a | ||||
Pseudomona fragi | NA a | NA a | NA a | NF a | |||||
Monteloeder, SL (Elche, Spain) | MIC microdilution technique (μg/mL) | MIC dilution technique (μg/mL) | MBC broth dilution techniques (μg/mL) | [53] | |||||
After 24 h | After 48 h | After 24 h | After 48 h | Microdilution | Tube dilution | ||||
Gram-negative bacteria | Escherichia coli | 12,800 b | 25,600 b | 12,800 b | 25,600 b | 51,200 b | 51,200 b | ||
Salmonella enterica | 6400 b | 12,800 b | 12,800 b | 25,600 b | 25,600 b | 51,200 b | |||
Enterobacter aerogenes | 12,800 b | 51,200 b | 51,200 b | 102,400 b | 51,200 b | 102,400 b | |||
Gram-positive bacteria | Bacillus cereus | 1600 b | 3200 b | 3200 b | 3200 b | 6400 b | 6400 b | ||
Methicillin-resistant Staphylococcus aureus | 400 b | 800 b | 800 b | 1600 b | 1600 b | 3200 b | |||
Esencias Martinez Lozano (Murcia, Spain) | Diameter of the inhibition zone (mm) including disc diameter (9 mm) | MIC (μL/mL) | [35] | ||||||
Gram-positive bacteria | Listeria innocua | 26.83 | 3.75 | ||||||
Gram-negative bacteria | Serratia marcescens | 12.36 | 7.5 | ||||||
Pseudomonas fragi | 11.68 | 3.75 | |||||||
Pseudomonas fluorescens | 9.0 | 3.75 | |||||||
Aeromonas hydrophila | 11.29 | 3.75 | |||||||
Shewanella putrefaciens | 9.0 | 3.75 | |||||||
Achromobacter denitrificans | 10.69 | 3.75 | |||||||
Enterobacter amnigenus | 12.51 | 7.5 | |||||||
Enterobacter gergoviae | 12.14 | 7.5 | |||||||
Alcaligenes faecalis | 23.50 | 3.75 | |||||||
Esencias Martinez Lozano (Murcia, Spain) | Diameter of the inhibition zone (mm) including disc diameter (10 mm) | [54] | |||||||
1% | 2% | ||||||||
Gram-positive bacteria | Listeria innocua | 17.92 c | 25.51 c | ||||||
Gram-negative bacteria | Serratia marcescens | 21.15 c | 32.36 c | ||||||
Enterobacter amnigenus | NA c | NA c | |||||||
Alcaligenes faecalis | 18.42 c | 28.29 c | |||||||
Esencias Martinez Lozano (Murcia, Spain) | Diameter of the inhibition zone (mm) including disc diameter (9 mm) | [55] | |||||||
Minced beef | Cooked ham | Dry-cured sausage | |||||||
Gram-positive bacteria | Listeria innocua | 34.98 | 15.23 | 19.45 | |||||
Gram-negative bacteria | Achromobacter denitrificans | 11.29 | 13.29 | 15.87 | |||||
Alcaligenes faecalis | 16.91 | 15.34 | 16.03 | ||||||
Aeromonas hydrophila | 14.7 | 12.13 | 24.94 | ||||||
Enterobacter amnigenus | 10.97 | 10.69 | 17.31 | ||||||
Enterobacter gergoviae | 10.82 | 13.81 | 9 | ||||||
Pseudomonas fluorescens | 12.07 | 12.86 | 16.7 | ||||||
Pseudomonas fragi | 11.61 | 11.78 | 14.19 | ||||||
Serratia marcescens | 11.84 | 12.69 | 11.49 | ||||||
Shewanella putrefaciens | 13.09 | 14.34 | 15.82 | ||||||
MIC (μg/mL) | MFC (mg/mL) | [41] | |||||||
Urbino (Italy) | Fungi | Fusarium culmorum | 1500 | 2 | |||||
Fusarium graminearum | 1500 | 2 | |||||||
Fusarium poae | 1500 | 2 | |||||||
Fusarium avenaceum | 1500 | 2 | |||||||
Fusarium equiseti | 2100 | 2.4 | |||||||
Fusarium semitectum | 2000 | 2.4 | |||||||
Fusarium sporotrichoides | 2000 | 2.4 | |||||||
Fusarium nivale | 2000 | 2.4 | |||||||
Alentejo (Portugal) | MIC (mg/mL) | MBC (mg/mL) | [45] | ||||||
Gram-positive bacteria | Methicillin-sensitive Staphylococcus aureus | 20 | 40 | ||||||
Bacillus subtilis | 15 | 30 | |||||||
Gram-negative bacteria | Escherichia coli | 15 | 30 | ||||||
Pseudomonas aeruginosa | 20 | 70 | |||||||
Ciudad Real (Spain) | ED50 | [47] | |||||||
Fungi | Botrytis cinerea | - | |||||||
Sclerotinia sclerotiorum | 14.87 | ||||||||
Fusarium oxysporum | 58.0 | ||||||||
Phytophthora parasitica | 22.0 | ||||||||
Alternaria brassicae | >100 | ||||||||
Cladobotryum mycophilum | 14.1 | ||||||||
Trichoderma agressivum | - | ||||||||
Murcia (Spain) | MIC (mg/mL) | MBC (mg/mL) | [4] | ||||||
Gram-negative bacteria | Escherichia coli | 2.3–9.4 | 2.3–9.4 | ||||||
Gram-positive bacteria | Methicillin-sensitive Staphylococcus aureus | 2.3–4.7 | 4.6–4.7 | ||||||
Fungus | Candida albicans | 2.3–4.7 | 2.3–4.7 | ||||||
Ervitas Catitas (Portugal) | Inhibition growth zone (mm) | MIC (μg/mL) | [48] | ||||||
Gram-positive bacteria | Methicillin-sensitive Staphylococcus aureus (isolates) | 9.0–11.8 | 500–4000 (or higher) | ||||||
Staphylococcus epidermidis (isolates) | ND; 9.0–13.8 | 4000–4000 (or higher) | |||||||
Évora, Alentejo (Portugal) | Inhibition growth zone (mm) | MIC (μL/mL) | [2] | ||||||
Gram-positive bacteria | Methicillin-sensitive Staphylococcus aureus | 19 | >2 | ||||||
Staphylococcus epidermidis | 21 | >2 | |||||||
Enterococcus faecalis | 21 | >2 | |||||||
Gram-negative bacteria | Escherichia coli | 11 | >2 | ||||||
Morganella morganii | 17 | 1.1 | |||||||
Proteus mirabilis | 9 | 0.5 | |||||||
Salmonella enteritidis | 11 | 0.1 | |||||||
Salmonella typhimurium | 8 | >2 | |||||||
Pseudomonas aeruginosa | 17 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M.; Lopes, A.C.; Vaz, F.; Filipe, M.; Alves, G.; Ribeiro, M.P.; Coutinho, P.; Araujo, A.R.T.S. Thymus mastichina: Composition and Biological Properties with a Focus on Antimicrobial Activity. Pharmaceuticals 2020, 13, 479. https://doi.org/10.3390/ph13120479
Rodrigues M, Lopes AC, Vaz F, Filipe M, Alves G, Ribeiro MP, Coutinho P, Araujo ARTS. Thymus mastichina: Composition and Biological Properties with a Focus on Antimicrobial Activity. Pharmaceuticals. 2020; 13(12):479. https://doi.org/10.3390/ph13120479
Chicago/Turabian StyleRodrigues, Márcio, Ana Clara Lopes, Filipa Vaz, Melanie Filipe, Gilberto Alves, Maximiano P. Ribeiro, Paula Coutinho, and André R. T. S. Araujo. 2020. "Thymus mastichina: Composition and Biological Properties with a Focus on Antimicrobial Activity" Pharmaceuticals 13, no. 12: 479. https://doi.org/10.3390/ph13120479
APA StyleRodrigues, M., Lopes, A. C., Vaz, F., Filipe, M., Alves, G., Ribeiro, M. P., Coutinho, P., & Araujo, A. R. T. S. (2020). Thymus mastichina: Composition and Biological Properties with a Focus on Antimicrobial Activity. Pharmaceuticals, 13(12), 479. https://doi.org/10.3390/ph13120479