Next Article in Journal
Thyroid Hormone Effect on the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like Cells
Next Article in Special Issue
Phytoestrogens for the Management of Endometriosis: Findings and Issues
Previous Article in Journal
Scaffold Hopping of α-Rubromycin Enables Direct Access to FDA-Approved Cromoglicic Acid as a SARS-CoV-2 MPro Inhibitor
Previous Article in Special Issue
Myo-Inositol as a Key Supporter of Fertility and Physiological Gestation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

PPARγ Agonists: Emergent Therapy in Endometriosis

by
Alexandre Vallée
1,*,
Jean-Noël Vallée
2,3,
Alain Le Blanche
4,5 and
Yves Lecarpentier
6
1
Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
2
Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80000 Amiens, France
3
DACTIM-Mis, Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
4
Laboratoire CeRSM (EA-2931), UPL, Université Paris Nanterre, F92000 Nanterre, France
5
Hôpital René-Dubos de Pontoise and Université de Versailles-Saint-Quentin, Simone Veil UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France
6
Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France
*
Author to whom correspondence should be addressed.
Pharmaceuticals 2021, 14(6), 543; https://doi.org/10.3390/ph14060543
Submission received: 10 May 2021 / Revised: 31 May 2021 / Accepted: 4 June 2021 / Published: 6 June 2021
(This article belongs to the Special Issue Novel Regulators of Female Reproduction)

Abstract

:
Endometriosis is one of the major gynecological diseases of reproductive-age women. This disease is characterized by the presence of glands and stroma outside the uterine cavity. Several studies have shown the major role of inflammation, angiogenesis, adhesion and invasion, and apoptosis in endometriotic lesions. Nevertheless, the mechanisms underlying endometriotic mechanisms still remain unclear and therapies are not currently efficient. The introduction of new agents can be effective by improving the condition of patients. PPARγ ligands can directly modulate these pathways in endometriosis. However, data in humans remain low. Thus, the purpose of this review is to summarize the potential actions of PPARγ agonists in endometriosis by acting on inflammation, angiogenesis, invasion, adhesion, and apoptosis.

1. Introduction

Endometriosis is a gynecological disorder characterized by the presence of glands and stroma outside the uterine cavity [1]. Six to ten percent of reproductive-age women are affected by this disease. The main symptoms of this disease are infertility and pelvic pain, with over 10% of women affected [2]. Other symptoms are listed, such as dysuria, dyspareunia, dysmenorrhea, and irregular uterine bleeding [3,4]. Nevertheless, the diagnosis of this disease remains uncommon [5]. Lesions observed in endometriosis are for the main part observed in the ovaries, fallopian tubes, the ligaments of the uterus, the cervical-vaginal area, the abdominal wall and umbilicus, the urinary tract, and the rectum [6,7]. Several factors have been observed as initiators of endometriosis, including immune, genetic, endocrine, and environmental markers [8,9]. However, the mechanisms of endometriosis initiation and development remain unclear.
Recent studies have shown that inflammation processes are an important factor in endometriosis through their action on angiogenesis, apoptosis, and cell proliferation [1]. The pro-inflammatory hypothesis was reported in several studies showing that peritoneal fluid of endometriotic patients presents high levels of activated macrophages, angiogenic markers, cytokines, and growth factors [10,11]. Moreover, inflammatory cells may be the initiators of endometriotic processes [12].
Hormone therapy, medication, and surgery are used to eradicate the symptoms in endometriotic patients. Pain-relieving, non-steroidal anti-inflammatory drugs, aromatase inhibitors, progestins, combined estrogen–progestin therapy, and selective progesterone receptor modulators are the main common recommended therapies [7,13]. Nevertheless, the mechanisms underlying this disease are still unclear, and therapies are not currently efficient.
The introduction of new agents can be effective by improving the condition of patients [14]. PPARγ ligands can directly modulate inflammation, metabolic processes, fibrosis, angiogenesis, and several other pathways [15,16,17]. In endometrial stromal cells, both rosiglitazone and pioglitazone reduce inflammation process by acting on IL-6 secretion [18]. Moreover, other PPARγ agonists can act by reducing angiogenesis [19], invasion and adhesion [20], and apoptosis [21].
Thus, the purpose of this review is to summarize the potential actions of PPARγ agonists in endometriosis by acting on inflammation, angiogenesis, invasion and adhesion, and apoptosis.

2. PPARγ

PPARs (peroxisome proliferator-activated receptors) belong to the superfamily of nuclear hormone receptors and call for their activation, which is controlled by the peroxisome proliferators. There are three subtypes of PPARs (PPARα, PPARβ, and PPARγ). These subtypes are expressed differently in tissues. PPARγ is mainly expressed in adipose tissue [22]. PPARs consist of four domains (A/B, C, D, and E/F). The A/B region, localized at the N end of the receptor protein, is the active functional region, differs among the PPARs subtypes, and is independent of ligands. Region C is the DNA-binding domain containing two zinc finger structures. Region D is the hinge domain. Region E/F, localized at the end of C, is the ligand-binding domain and contains a ligand-dependent transcriptional activation functional region [23]. The PPARγ gene can be transcribed into different PPARγ mRNAs and translated into two isoforms (PPAR γ1 and PPAR γ2) [24]. PPARs are ligand-activated transcription factors that bind PPRE (PPAR-response elements). In the nucleus, PPARs form a heterodimer with the retinoid X receptor (RXR) [25]. They are composed of a ligand-binding domain that interacts with a DNA-binding domain to modulate it [26]. PPARs are involved in numerous pathophysiological processes, such as cell differentiation, protein metabolism, lipid metabolism, carcinogenesis [27,28], adipocyte differentiation, insulin sensitivity, and inflammation [29,30]. Among the many biological responses involved, PPARγ has a corresponding function by controlling the expression of several pathways, such as JAK-STAT, NF-kB, nuclear factor of activated T cell, AP-1, PI3K, leptin, and adiponectin [31].
PPARγ ligands can be synthetic or natural. PPARγ ligands have hypoglycemic and hypocholesterolemic roles, such as glitazones, which have been used in the treatment of type 2 diabetes [32]. PPARγ ligands, such as thiazolidinediones (TZDs), can also decrease inflammatory activity [32]. Natural ligands include prostaglandins and unsaturated fatty acids [33]. PPARγ ligands can be synthetic or natural. Natural ligands include prostaglandins and unsaturated fatty acids. Moreover, PPARγ ligands, such as thiazolidinediones, can directly decrease inflammatory activity [17], the fibrosis process [34], and lung inflammation [35]. PPARγ agonists have an antiangiogenic role observed in several organs [36,37]. Indeed, PPARγ activation leads to the inhibition of the expression of vascular endothelial growth factor (VEGF), a proangiogenic factor [38]. The expression of PPARγ is observed in the choriocapillaris, choroidal endothelial cells, retinal endothelial cells, and retinal pigmented epithelium [39]. Several animal models have shown the interest of PPARγ agonists in endometriosis [40]. Ciglitazone and rosiglitazone can both prevent and treat endometriosis in a rodent model of the disease [41,42,43,44]. A randomized study also confirmed the effectiveness of rosiglitazone in baboons [45]. Nevertheless, data in humans remain low [21].

3. PPARγ Agonists Actions on the Pathophysiology of Endometriosis

3.1. Inflammation

Inflammation presents a major role in the process of endometriosis [46]. The cascade of the different inflammatory factors stimulates several markers, including metalloproteinases, prostaglandins, cytokines, and chemokines [6]. These markers are stimulated in the peritoneal serum of endometriosis patients and in the endometrium [47,48,49]. However, normal cells of the endometrium are not affected by this mechanism [50]. Interlieukin-10 (IL-10, IL-6, IL-8, COX2 (cyclooxygenase-2)), VEGF, and tumor necrosis factor α (TNF-α) are upregulated in the peritoneal fluid of endometriosis [49,51]. The stroma of the endometrium are correlated with the process of adhesion of extracellular matrix proteins when IL-8 and matrix metalloproteinase (MMP) have been upregulated [52,53,54,55]. Furthermore, endometriosis is associated with the activation of the NF-κB pathway leading to enhance cell growth, proliferation, and apoptosis during the process of endometriosis [56].
The cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway is involved during endometriosis. Pelvic inflammation is closely related to the activation of peritoneal immune cells, such as macrophages [57,58,59]. Women with endometriosis show an increased number of macrophages with dysfunctional phenotype. Peritoneal macrophages have reduced phagocytic capacity due to lower levels and activity of MMP9, which is required for extracellular matrix degradation and is regulated by PGE2 [60]. Elevation of COX-2 expression has a main role in the initiation and development of endometriosis [61,62]. The overexpression of COX-2 contributes to the increase of PGE2 in endometriosis [63] and participates in the control of ectopic implantation and endometrium growth, angiogenesis, and immunosuppression [64]. Thus, PGE2 appears to be one of the main controllers of the immune response in endometriosis [65]. The endometrial glandular epithelium is the localization of COX-2 production. This production varies according to the menstrual cycle. Expression of COX-2 is low in the early proliferative stage and gradually increases thereafter to reach a maximum at the secretory stage [66]. The expression of COX-2 is higher in women affected by endometriosis in the endometrial stroma and glandular epithelium than in non-affected women [67,68,69,70]. Nevertheless, the COX-2 levels vary throughout the menstrual cycle regardless of whether its expression is affected [67]. During the proliferative and secretory phase, in the eutopic endometrium and in ovarian endometriotic tissue, COX-2 expression is higher in endometriosis women compared with healthy women [71]. NF-κB pathway can directly activate the COX-2/PGE2 to increase the production of estrogen in the endometrium [72].
In endometrial stromal cells, both rosiglitazone and pioglitazone can reduce the inflammation process by acting on IL-6 secretion [18] (Table 1). Glitazone can target Il-6 to decrease the activity of the STAT3 pathway [73,74]. Moreover, TZDs can diminish the expression of numerous inflammatory factors, and TZDs could be used as treatment for pain management in endometriosis [44,75,76].

3.2. Angiogenesis

Angiogenesis is marked by the formation of new capillaries by proliferative and migrative phenomenon of preexisting differentiated endothelial cells. The angiogenesis process operates in both embryonic initiation and postnatal life [86,87]. Angiogenesis is characterized by the dysfunction of the vessel basement membrane and the surrounding extracellular matrix (ECM) [88]. The MMP enzyme family degrade components of ECM by collagenases, gelatinases, stromelysins, and membrane-associated MMPs. Gelatinase-A (MMP-2) and gelatinase (MMP-9) are present in blood vessels. MMP-2 and MMP-9 have synergistic effects on basement membrane degradation [89]. The angiogenesis process is observed in endometriosis with several angiogenic factors involved, such as IL-8, VEGFA/C, and angiogenin in both clinic specimens and animal models [90,91,92].
Several signaling pathways are implicated in angiogenesis initiation [93]. The dysregulation of growth factors has a main function in angiogenesis [94]. VEGF can be activated by physiological stimulators, such as inflammation and hypoxia processes [95,96]. Hypoxia-inducible factor 1 α (HIF-1α)/VEGF signaling leads to the activation of different processes, such as proliferation and migration of endothelial cells [97]. Several stages can define angiogenesis: blood vessel breakdown, basement membrane degradation, a surrounding extracellular matrix (ECM), endothelial cells migration, and new blood vessel formation [98]. From existing vessels, novel blood vessels are generated through the dissolution of aspects of native vessels. Angiopoietin-1 and 2 (ANG-1 and ANG-2) are main endothelial growth factors that operate by the tyrosine kinase with immunoglobulin and EGF homology domains (TIE-2) receptor tyrosine kinase (RTK) expressed in endothelial cells. Under physiological conditions, ANG-1 binds to TIE-2, leading to the association between pericytes and endothelial cells to stabilize the vasculature [99,100]. ANG-1 acts as an activator ligand for TIE-2, whereas ANG-2 inhibits the phosphorylation of TIE-2, even in the presence of ANG-1 [101,102]. TIE-2 is a major marker of the physiological vascular initiation and of mature vasculature homeostasis [103]. Destabilization of the blood vessels’ structure is induced by ANG-2, which acts as an antagonist of TIE-2 phosphorylation [102,104]. Thus, VEGF expression leads to the proliferation and migration of endothelial cells in the presence of ANG-2 to participate in the stimulation of new blood vessel growth [105]. AT1R stimulation involves the increase of VEGF expression to activate angiogenesis [106]. Moreover, AT1R activates inflammation by increasing the expression of leukocytic and endothelial adhesion molecules [107].
In vitro studies have shown interest in using anti-VEGF factors to decrease the growth of endometriosis without impact on ovarian function [108]. The stimulation of VEGF leads to the activation of the phosphatidylinositol 3-kinase-protein kinase B (PI3K/Akt) pathway [109]. This stimulated signaling can initiate the angiogenesis process and can participate in the decrease of apoptosis [110]. Through the stimulation of both hypoxia inducible factor 1 alpha (HIF-1α) and cyclin D1, the PI3K/Akt pathway involves angiogenesis without hypoxia [110,111]. The decrease in NME1 gene expression in the endometrium stimulates both the PI3K/Akt pathway and the expression of VEGF and IL-8 to induce production of new vascular cells in ectopic endometrial lesions [112]. In endometriosis, the stimulation of the PI3K/Akt pathway is associated with NOS expression and oxidative stress [113]. By maintaining the fibrotic environment of endometriosis, the PI3K/Akt pathway stimulates the ERK pathway [114]. Furthermore, in endometriosis, the PI3K/Akt pathway stimulates the NF-κB pathway, a major stimulator of VEGF, leading to cell proliferation and angiogenesis [115].
Several animal studies have shown that the use of PPARγ agonists lead to the prevention of the development of endometriotic-like lesions [21,41,42,43,45,77] (Table 1). TZDs downregulate the proliferation of endothelial cells and lead to the reduction of vasculature lesions by inhibiting VEGF expression [44,76,116,117]. The stimulation of PPARγ expression is associated with the reduction of AT1R proteins in endometriotic lesions leading to a decrease in the density of CD31-positive micro-vessels and to the reduction of immune cells [78].
Telmisartan, a PPARγ agonist possessing anti-atherogenic properties, can block AT1R in endometrial stromal cells [19]. Thus, the AT1R antagonism of telmisartan can downregulate the choroidal inflammation and neovascularization [118] and can prevent hepatocarcinogenesis through the suppression of hepatic blood vessel formation [119]. The anti-angiogenic action of telmisartan is modulated by the stimulation of PPARγ [78,120]. Furthermore, rosiglitazone can diminish endothelial cell proliferation and migration and can decrease the expression of VEGF in human umbilical vein endothelial cells [79]. Pioglitazone and rosiglitazone can decrease the activation of basic fibroblast growth factor (bFGF)- and VEGF-induced blood vessel formation in the chorioallantois membrane model [80].

3.3. Adhesion and Invasion

Molecules adhesion increases the attachment of endometrial-like tissues to ectopic sites [121]. Several findings have shown that ectopic endometriotic cells possess the ability to invade their surrounding environment and that they have the potential to metastasize in lymph nodes and in the abdominal cavity [122].
An increase in the production of MMP, including MMP-1,2,3,9,11, ICAM-1, integrins, and cadherins, has been observed in the peritoneum of endometriotic women. These molecules have a major function in tissue attachment, in the invasion of ectopic lesions, and in implant progression and angiogenesis [123,124]. Thus, MMPs are involved in several reproductive mechanisms, such as ovulation, menstruation, and embryo implantation [125,126]. The expression of endometrial MMPs is low in the proliferative stage, declines in the early secretory stage, but increases in the late secretory stage. One of the main inhibitors of MMPs is progesterone. Progesterone controls many different hormones, growth factors, and cytokines. MMPs can modulate the expression of progesterone by controlling the plasminogen activator (PAI) pathway [127,128,129]. Retinoic acid and transforming growth factor-β (TGF-β) both increase the expression of tissue inhibitors of metalloproteinases (TIMPs), allowing MMP activity to mediate the maintenance and survival of lesions [130].
Moreover, PGE2 acts through G protein-coupled receptors and modulates many cellular pathways. In endometriosis, these G protein-coupled receptors are defined by three subtypes of the PGE receptor (EP2, EP3, and EP4) [131]. Previous findings have shown that EP receptors intracellularly transactivate the MAPK, Wnt, and PI3K/Akt pathways, leading to the modulation of cell apoptosis, proliferation, invasion, migration, angiogenesis, pain, and immunomodulation [132,133]. The administration of COX-2 inhibitors is associated with the decrease in survival, migration, and invasion of endometriotic cells, resulting in a decrease of PGE2 production [134,135]. The inhibition of COX-2 in endometriotic cells is controlled by MMP-2 and MMP-9 [136]. Nevertheless, the underlying molecular processes of COX-2 inhibitors remain unclear [64].
PPARγ activation is associated with a reduction of invasion by acting on LP9 cells and through the co-adhesion molecule (CAM) on peritoneal mesothelial cells [81] (Table 1). Previous findings have explored the potential effects of PPARγ agonists on the inhibition of CAM expression in inflammatory processes. Pioglitazone can influence monocyte–endothelial cell binding by inhibiting vascular cell adhesion molecule-1 (VCAM-1) expression on activated endothelial cells [82]. PPARγ agonists can suppress the vascular adhesion molecule expression in endometriosis [20]. PPARγ agonists can decrease the expression of ICAM-1 in lung epithelial cells, leading to the b2-integrin-mediated adhesion of monocytic effector cells to monolayers of these respiratory syncytial virus-infected human lung cells [83]. Moreover, rosiglitazone can reduce proliferation, apoptosis, and invasion in in vitro endometrial tissues by acting on the promoters of the MAT2A gene [84].

3.4. Apoptosis

The maintenance of tissue homeostasis is modulated by cell death. An imbalance is observed between cell apoptosis and proliferation to maintain this homeostasis against cell disorders. Many findings have shown that apoptosis is upregulated during the menstrual cycle to retain cell homeostasis and to remove aged cells from the functional layer of the endometrium [137,138]. In endometriosis, the diminution in cell death may be the cause of the development of this disease [139,140]. The proportion of cell apoptosis is diminished in endometrial cells [141]. Furthermore, in endometriosis, the stimulation of the NF-κB pathway is correlated with both proliferation and apoptosis [142,143].
The PI3K/Akt pathway is stimulated in endometriotic cells [144] and increases the apoptosis process [145]. A vicious circle is observed between NF-κB and PI3K/Akt pathways to increase the activation of cell apoptosis [146]. The NF-κB pathway decreases the antiapoptotic function of the PI3K/Akt pathway [147]. Xlinked inhibitor of apoptosis protein (XIAP) acts as caspase-3 and caspase-9 inhibitors and modulates the BAX/cytochrome c pathway to involve apoptosis by diminishing the expression of caspase-9 [148]. The PI3K/Akt pathway leads to the activation of XIAP and B cell lymphoma extra-large (BclxL) expressions. Furthermore, Bcl-xL is stimulated by the PI3K/Akt pathway [149,150]. In ectopic endometriotic tissues, Bcl-2 exerts many modulatory functions in both cellular apoptosis and proliferation [151]. Bcl2 can lead to antiapoptotic features [152]. In physiological conditions, the stimulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) increases the proliferation of cells and then promotes angiogenesis [153,154]. ERK1/2 activation decreases Bcl2 expression, decreasing mitochondrial-dependent cell death [155]. The PI3K/Akt and MAPK pathways both stimulate the process of anti-apoptosis in endometriosis [144,156]. An opposing interplay is observed between the ERK and PI3K/Akt pathways [157,158]. A decrease in the PI3K/Akt pathway is associated with the stimulation of the ERK pathway [159]. The reciprocity is verifiable [160]. Many findings have shown an interest in co-targeting these two signaling pathways in endometriotic cells [161].
Inhibition of EP2 and EP4, two receptors of PGE2, can facilitate the interactions between antiapoptotic proteins, such as Bcl-2 and Bcl-XX, and proapoptotic proteins, such as Bax and Bad, to increase cytochrome c release and to then activate the caspase-3 pathway [162]. Moreover, the inhibition of both COX-2 and PGE2 is associated with decrease in proliferation in endometriotic epithelial and stromal cells [135]. Thus, the administration of COX-2 inhibitors to the ectopic and eutopic endometrium can participate in decreasing proliferation, growth, and then to increasing apoptosis [163].
PPARγ activation is associated with apoptosis and cell cycle regulation in human endometriotic epithelial and stromal cells [21]. Rosiglitazone can decrease endometriotic implant growth, cell proliferation, and vascularization, and it stimulates the process of apoptosis in the mouse model of endometriosis [44] (Table 1). Rosiglitazone, ciglitazone, or pioglitazone can decrease the growth of implants in a mouse model of endometriosis [41,42,43] and can diminish postsurgical adhesions with endometriotic lesions in a chimeric mouse model [85]. The role of estrogen in the growth of endometriosis is well known. P450 aromatase can catalyze the last stages of the biosynthesis of estrogen from androgens in two ways: (a) from androstenedione into estrone and (b) from testosterone into estradiol [164,165,166,167]. The P450 aromatase protein is highly expressed in endometriosis [165]. In endometriotic stromal cells, PGE2 stimulates the expression P450 aromatase by EP2 [166,167]. TZDs, PPARγ agonists, can diminish the expression of P450 aromatase in human breast tissue and breast cancer [168,169] as well as in ovarian granulosa cells [170]. The function for PGE2 is well-known in the initiation of endometriosis [162,163,171]. Recent findings have shown that PGE2, via EP2 and EP4, can stimulate the cAMP/PKA/CREB pathway, enhancing P450 aromatase transcription and increasing the activity of aromatase [168]. Stimulation of PPARγ by pioglitazone can downregulate P450 aromatase expression through the induction of BRCA1 and through the inhibition of the PGE2/cAMP/KA pathway in breast cancer [168].

4. Conclusions

PPARγ agonists can decrease inflammation, angiogenesis, invasion and adhesion, and can induce apoptosis in endometrial lesions. Nevertheless, these actions are for the main part observed in animals and remain hypothetical in women. However, the use of natural PPARγ ligands could be interesting in dietary prevention and disease management for women. Nevertheless, the limited number of studies focusing on the different interactions of PPARγ agonists in endometriosis restricts its clear and immediate use as a therapeutic strategy. Future clinical trials are needed to better investigate and highlight the role of PPARγ agonists in endometriosis.

Author Contributions

Conceptualization, A.V.; writing—original draft preparation, A.V.; writing—review and editing, J.-N.V., A.L.B. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Burney, R.O.; Giudice, L.C. Pathogenesis and Pathophysiology of Endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. As-Sanie, S.; Black, R.; Giudice, L.C.; Gray Valbrun, T.; Gupta, J.; Jones, B.; Laufer, M.R.; Milspaw, A.T.; Missmer, S.A.; Norman, A.; et al. Assessing Research Gaps and Unmet Needs in Endometriosis. Am. J. Obstet. Gynecol. 2019, 221, 86–94. [Google Scholar] [CrossRef]
  3. Darling, A.M.; Chavarro, J.E.; Malspeis, S.; Harris, H.R.; Missmer, S.A. A Prospective Cohort Study of Vitamins B, C, E, and Multivitamin Intake and Endometriosis. J. Endometr. 2013, 5, 17–26. [Google Scholar] [CrossRef] [Green Version]
  4. Tariverdian, N.; Theoharides, T.C.; Siedentopf, F.; Gutiérrez, G.; Jeschke, U.; Rabinovich, G.A.; Blois, S.M.; Arck, P.C. Neuroendocrine-Immune Disequilibrium and Endometriosis: An Interdisciplinary Approach. Semin. Immunopathol. 2007, 29, 193–210. [Google Scholar] [CrossRef] [Green Version]
  5. Ballard, K.; Lowton, K.; Wright, J. What’s the Delay? A Qualitative Study of Women’s Experiences of Reaching a Diagnosis of Endometriosis. Fertil. Steril. 2006, 86, 1296–1301. [Google Scholar] [CrossRef]
  6. Vetvicka, V.; Laganà, A.S.; Salmeri, F.M.; Triolo, O.; Palmara, V.I.; Vitale, S.G.; Sofo, V.; Králíčková, M. Regulation of Apoptotic Pathways during Endometriosis: From the Molecular Basis to the Future Perspectives. Arch. Gynecol. Obstet. 2016, 294, 897–904. [Google Scholar] [CrossRef]
  7. Laganà, A.S.; Vitale, S.G.; Salmeri, F.M.; Triolo, O.; Ban Frangež, H.; Vrtačnik-Bokal, E.; Stojanovska, L.; Apostolopoulos, V.; Granese, R.; Sofo, V. Unus pro Omnibus, Omnes pro Uno: A Novel, Evidence-Based, Unifying Theory for the Pathogenesis of Endometriosis. Med. Hypotheses 2017, 103, 10–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Kobayashi, H.; Yamada, Y.; Morioka, S.; Niiro, E.; Shigemitsu, A.; Ito, F. Mechanism of Pain Generation for Endometriosis-Associated Pelvic Pain. Arch. Gynecol. Obstet. 2014, 289, 13–21. [Google Scholar] [CrossRef]
  9. Trovó de Marqui, A.B. Genetic Polymorphisms and Endometriosis: Contribution of Genes That Regulate Vascular Function and Tissue Remodeling. Rev. Assoc. Med. Bras. 2012, 58, 620–632. [Google Scholar] [CrossRef]
  10. Lousse, J.-C.; Van Langendonckt, A.; Defrere, S.; Ramos, R.G.; Colette, S.; Donnez, J. Peritoneal Endometriosis Is an Inflammatory Disease. Front. Biosci. 2012, 4, 23–40. [Google Scholar] [CrossRef]
  11. Dull, A.-M.; Moga, M.A.; Dimienescu, O.G.; Sechel, G.; Burtea, V.; Anastasiu, C.V. Therapeutic Approaches of Resveratrol on Endometriosis via Anti-Inflammatory and Anti-Angiogenic Pathways. Molecules 2019, 24, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Kobayashi, H.; Higashiura, Y.; Shigetomi, H.; Kajihara, H. Pathogenesis of Endometriosis: The Role of Initial Infection and Subsequent Sterile Inflammation (Review). Mol. Med. Rep. 2014, 9, 9–15. [Google Scholar] [CrossRef] [Green Version]
  13. Laganà, A.S.; Vitale, S.G.; Granese, R.; Palmara, V.; Ban Frangež, H.; Vrtačnik-Bokal, E.; Chiofalo, B.; Triolo, O. Clinical Dynamics of Dienogest for the Treatment of Endometriosis: From Bench to Bedside. Expert Opin. Drug Metab. Toxicol. 2017, 13, 593–596. [Google Scholar] [CrossRef] [Green Version]
  14. Vallée, A.; Lecarpentier, Y. Curcumin and Endometriosis. Int. J. Mol. Sci. 2020, 21, 2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Vallée, A.; Lecarpentier, Y.; Guillevin, R.; Vallée, J.-N. Interactions between TGF-Β1, Canonical WNT/β-Catenin Pathway and PPAR γ in Radiation-Induced Fibrosis. Oncotarget 2017, 8, 90579–90604. [Google Scholar] [CrossRef] [Green Version]
  16. Vallée, A.; Vallée, J.-N.; Lecarpentier, Y. PPARγ Agonists: Potential Treatment for Autism Spectrum Disorder by Inhibiting the Canonical WNT/β-Catenin Pathway. Mol. Psychiatry 2018. [Google Scholar] [CrossRef]
  17. Vallée, A.; Lecarpentier, Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front. Immunol. 2018, 9, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Rocha, A.L.L.; Reis, F.M.; Petraglia, F. New Trends for the Medical Treatment of Endometriosis. Expert Opin. Investig. Drugs 2012, 21, 905–919. [Google Scholar] [CrossRef] [PubMed]
  19. Braileanu, G.T.; Simasko, S.M.; Speth, R.C.; Daubert, D.; Hu, J.; Mirando, M.A. Angiotensin II Increases Intracellular Calcium Concentration in Pig Endometrial Stromal Cells through Type 1 Angiotensin Receptors, but Does Not Stimulate Phospholipase C Activity or Prostaglandin F2alpha Secretion. Reprod. Fertil. Dev. 2002, 14, 199–205. [Google Scholar] [CrossRef]
  20. Wang, N.; Verna, L.; Chen, N.-G.; Chen, J.; Li, H.; Forman, B.M.; Stemerman, M.B. Constitutive Activation of Peroxisome Proliferator-Activated Receptor-Gamma Suppresses pro-Inflammatory Adhesion Molecules in Human Vascular Endothelial Cells. J. Biol. Chem. 2002, 277, 34176–34181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  21. Lebovic, D.I.; Kavoussi, S.K.; Lee, J.; Banu, S.K.; Arosh, J.A. PPARγ Activation Inhibits Growth and Survival of Human Endometriotic Cells by Suppressing Estrogen Biosynthesis and PGE2 Signaling. Endocrinology 2013, 154, 4803–4813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Semple, R.K.; Chatterjee, V.K.K.; O’Rahilly, S. PPAR Gamma and Human Metabolic Disease. J. Clin. Investig. 2006, 116, 581–589. [Google Scholar] [CrossRef] [Green Version]
  23. Hallenborg, P.; Petersen, R.K.; Kouskoumvekaki, I.; Newman, J.W.; Madsen, L.; Kristiansen, K. The Elusive Endogenous Adipogenic PPARγ Agonists: Lining up the Suspects. Prog. Lipid Res. 2016, 61, 149–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Goto, T.; Kim, Y.-I.; Takahashi, N.; Kawada, T. Natural Compounds Regulate Energy Metabolism by the Modulating the Activity of Lipid-Sensing Nuclear Receptors. Mol. Nutr. Food Res. 2013, 57, 20–33. [Google Scholar] [CrossRef]
  25. Smirnov, A.N. Nuclear Receptors: Nomenclature, Ligands, Mechanisms of Their Effects on Gene Expression. Biochem. Mosc. 2002, 67, 957–977. [Google Scholar] [CrossRef]
  26. Kota, B.P.; Huang, T.H.-W.; Roufogalis, B.D. An Overview on Biological Mechanisms of PPARs. Pharmacol. Res. 2005, 51, 85–94. [Google Scholar] [CrossRef]
  27. Lee, C.-H.; Olson, P.; Evans, R.M. Minireview: Lipid Metabolism, Metabolic Diseases, and Peroxisome Proliferator-Activated Receptors. Endocrinology 2003, 144, 2201–2207. [Google Scholar] [CrossRef] [Green Version]
  28. Marx, N.; Duez, H.; Fruchart, J.-C.; Staels, B. Peroxisome Proliferator-Activated Receptors and Atherogenesis: Regulators of Gene Expression in Vascular Cells. Circ. Res. 2004, 94, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
  29. Cunard, R.; Ricote, M.; DiCampli, D.; Archer, D.C.; Kahn, D.A.; Glass, C.K.; Kelly, C.J. Regulation of Cytokine Expression by Ligands of Peroxisome Proliferator Activated Receptors. J. Immunol. 2002, 168, 2795–2802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  30. Ricote, M.; Li, A.C.; Willson, T.M.; Kelly, C.J.; Glass, C.K. The Peroxisome Proliferator-Activated Receptor-Gamma Is a Negative Regulator of Macrophage Activation. Nature 1998, 391, 79–82. [Google Scholar] [CrossRef]
  31. Wu, L.; Guo, C.; Wu, J. Therapeutic Potential of PPARγ Natural Agonists in Liver Diseases. J. Cell Mol. Med. 2020, 24, 2736–2748. [Google Scholar] [CrossRef]
  32. Giannini, S.; Serio, M.; Galli, A. Pleiotropic Effects of Thiazolidinediones: Taking a Look beyond Antidiabetic Activity. J. Endocrinol. Investig. 2004, 27, 982–991. [Google Scholar] [CrossRef] [PubMed]
  33. Rogue, A.; Spire, C.; Brun, M.; Claude, N.; Guillouzo, A. Gene Expression Changes Induced by PPAR Gamma Agonists in Animal and Human Liver. PPAR Res. 2010, 2010, 325183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Vallée, A.; Lecarpentier, Y.; Vallée, J.-N. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process. Int. J. Mol. Sci. 2017, 18, 2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Aoki, Y.; Maeno, T.; Aoyagi, K.; Ueno, M.; Aoki, F.; Aoki, N.; Nakagawa, J.; Sando, Y.; Shimizu, Y.; Suga, T.; et al. Pioglitazone, a Peroxisome Proliferator-Activated Receptor Gamma Ligand, Suppresses Bleomycin-Induced Acute Lung Injury and Fibrosis. Respiration 2009, 77, 311–319. [Google Scholar] [CrossRef]
  36. Bishop-Bailey, D. PPARs and Angiogenesis. Biochem. Soc. Trans. 2011, 39, 1601–1605. [Google Scholar] [CrossRef]
  37. Panigrahy, D.; Edin, M.L.; Lee, C.R.; Huang, S.; Bielenberg, D.R.; Butterfield, C.E.; Barnés, C.M.; Mammoto, A.; Mammoto, T.; Luria, A.; et al. Epoxyeicosanoids Stimulate Multiorgan Metastasis and Tumor Dormancy Escape in Mice. J. Clin. Investig. 2012, 122, 178–191. [Google Scholar] [CrossRef] [Green Version]
  38. Xin, X.; Yang, S.; Kowalski, J.; Gerritsen, M.E. Peroxisome Proliferator-Activated Receptor Gamma Ligands Are Potent Inhibitors of Angiogenesis in Vitro and in Vivo. J. Biol. Chem. 1999, 274, 9116–9121. [Google Scholar] [CrossRef] [Green Version]
  39. Sarayba, M.A.; Li, L.; Tungsiripat, T.; Liu, N.H.; Sweet, P.M.; Patel, A.J.; Osann, K.E.; Chittiboyina, A.; Benson, S.C.; Pershadsingh, H.A.; et al. Inhibition of Corneal Neovascularization by a Peroxisome Proliferator-Activated Receptor-Gamma Ligand. Exp. Eye Res. 2005, 80, 435–442. [Google Scholar] [CrossRef] [PubMed]
  40. Fedele, L.; Somigliana, E.; Frontino, G.; Benaglia, L.; Vigano, P. New Drugs in Development for the Treatment of Endometriosis. Expert Opin. Investig. Drugs 2008, 17, 1187–1202. [Google Scholar] [CrossRef]
  41. Lebovic, D.I.; Kir, M.; Casey, C.L. Peroxisome Proliferator-Activated Receptor-Gamma Induces Regression of Endometrial Explants in a Rat Model of Endometriosis. Fertil. Steril. 2004, 82 (Suppl. 3), 1008–1013. [Google Scholar] [CrossRef]
  42. Demirturk, F.; Aytan, H.; Caliskan, A.C.; Aytan, P.; Koseoglu, D.R. Effect of Peroxisome Proliferator-Activated Receptor-Gamma Agonist Rosiglitazone on the Induction of Endometriosis in an Experimental Rat Model. J. Soc. Gynecol. Investig. 2006, 13, 58–62. [Google Scholar] [CrossRef]
  43. Aytan, H.; Caliskan, A.C.; Demirturk, F.; Aytan, P.; Koseoglu, D.R. Peroxisome Proliferator-Activated Receptor-Gamma Agonist Rosiglitazone Reduces the Size of Experimental Endometriosis in the Rat Model. Aust. N. Z. J. Obstet. Gynaecol. 2007, 47, 321–325. [Google Scholar] [CrossRef]
  44. Olivares, C.; Ricci, A.; Bilotas, M.; Barañao, R.I.; Meresman, G. The Inhibitory Effect of Celecoxib and Rosiglitazone on Experimental Endometriosis. Fertil. Steril. 2011, 96, 428–433. [Google Scholar] [CrossRef] [PubMed]
  45. Lebovic, D.I.; Mwenda, J.M.; Chai, D.C.; Mueller, M.D.; Santi, A.; Fisseha, S.; D’Hooghe, T. PPAR-Gamma Receptor Ligand Induces Regression of Endometrial Explants in Baboons: A Prospective, Randomized, Placebo- and Drug-Controlled Study. Fertil. Steril. 2007, 88, 1108–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Santulli, P.; Marcellin, L.; Noël, J.-C.; Borghese, B.; Fayt, I.; Vaiman, D.; Chapron, C.; Méhats, C. Sphingosine Pathway Deregulation in Endometriotic Tissues. Fertil. Steril. 2012, 97, 904–911. [Google Scholar] [CrossRef]
  47. Barcz, E.; Milewski, Ł.; Dziunycz, P.; Kamiński, P.; Płoski, R.; Malejczyk, J. Peritoneal Cytokines and Adhesion Formation in Endometriosis: An Inverse Association with Vascular Endothelial Growth Factor Concentration. Fertil. Steril. 2012, 97, 1380–1386.e1. [Google Scholar] [CrossRef]
  48. Fan, Y.-Y.; Chen, H.-Y.; Chen, W.; Liu, Y.-N.; Fu, Y.; Wang, L.-N. Expression of Inflammatory Cytokines in Serum and Peritoneal Fluid from Patients with Different Stages of Endometriosis. Gynecol. Endocrinol. 2018, 34, 507–512. [Google Scholar] [CrossRef]
  49. Sikora, J.; Smycz-Kubańska, M.; Mielczarek-Palacz, A.; Kondera-Anasz, Z. Abnormal Peritoneal Regulation of Chemokine Activation-The Role of IL-8 in Pathogenesis of Endometriosis. Am. J. Reprod. Immunol. 2017, 77. [Google Scholar] [CrossRef] [PubMed]
  50. Lebovic, D.I.; Baldocchi, R.A.; Mueller, M.D.; Taylor, R.N. Altered Expression of a Cell-Cycle Suppressor Gene, Tob-1, in Endometriotic Cells by CDNA Array Analyses. Fertil. Steril. 2002, 78, 849–854. [Google Scholar] [CrossRef]
  51. Sikora, J.; Mielczarek-Palacz, A.; Kondera-Anasz, Z. Association of the Precursor of Interleukin-1β and Peritoneal Inflammation-Role in Pathogenesis of Endometriosis. J. Clin. Lab. Anal. 2016, 30, 831–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Hsiao, K.-Y.; Chang, N.; Lin, S.-C.; Li, Y.-H.; Wu, M.-H. Inhibition of Dual Specificity Phosphatase-2 by Hypoxia Promotes Interleukin-8-Mediated Angiogenesis in Endometriosis. Hum. Reprod. 2014, 29, 2747–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Arici, A.; Tazuke, S.I.; Attar, E.; Kliman, H.J.; Olive, D.L. Interleukin-8 Concentration in Peritoneal Fluid of Patients with Endometriosis and Modulation of Interleukin-8 Expression in Human Mesothelial Cells. Mol. Hum. Reprod. 1996, 2, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Ryan, I.P.; Tseng, J.F.; Schriock, E.D.; Khorram, O.; Landers, D.V.; Taylor, R.N. Interleukin-8 Concentrations Are Elevated in Peritoneal Fluid of Women with Endometriosis. Fertil. Steril. 1995, 63, 929–932. [Google Scholar] [CrossRef]
  55. Kalu, E.; Sumar, N.; Giannopoulos, T.; Patel, P.; Croucher, C.; Sherriff, E.; Bansal, A. Cytokine Profiles in Serum and Peritoneal Fluid from Infertile Women with and without Endometriosis. J. Obstet. Gynaecol. Res. 2007, 33, 490–495. [Google Scholar] [CrossRef] [PubMed]
  56. Taniguchi, F.; Harada, T.; Miyakoda, H.; Iwabe, T.; Deura, I.; Tagashira, Y.; Miyamoto, A.; Watanabe, A.; Suou, K.; Uegaki, T.; et al. TAK1 Activation for Cytokine Synthesis and Proliferation of Endometriotic Cells. Mol. Cell. Endocrinol. 2009, 307, 196–204. [Google Scholar] [CrossRef]
  57. Gazvani, R.; Templeton, A. Peritoneal Environment, Cytokines and Angiogenesis in the Pathophysiology of Endometriosis. Reproduction 2002, 123, 217–226. [Google Scholar] [CrossRef]
  58. Lousse, J.-C.; Van Langendonckt, A.; González-Ramos, R.; Defrère, S.; Renkin, E.; Donnez, J. Increased Activation of Nuclear Factor-Kappa B (NF-KappaB) in Isolated Peritoneal Macrophages of Patients with Endometriosis. Fertil. Steril. 2008, 90, 217–220. [Google Scholar] [CrossRef]
  59. Ahn, S.H.; Monsanto, S.P.; Miller, C.; Singh, S.S.; Thomas, R.; Tayade, C. Pathophysiology and Immune Dysfunction in Endometriosis. BioMed Res. Int. 2015, 2015, 795976. [Google Scholar] [CrossRef] [Green Version]
  60. Wu, M.-H.; Shoji, Y.; Wu, M.-C.; Chuang, P.-C.; Lin, C.-C.; Huang, M.-F.; Tsai, S.-J. Suppression of Matrix Metalloproteinase-9 by Prostaglandin E(2) in Peritoneal Macrophage Is Associated with Severity of Endometriosis. Am. J. Pathol. 2005, 167, 1061–1069. [Google Scholar] [CrossRef] [Green Version]
  61. Lousse, J.-C.; Defrère, S.; Colette, S.; Van Langendonckt, A.; Donnez, J. Expression of Eicosanoid Biosynthetic and Catabolic Enzymes in Peritoneal Endometriosis. Hum. Reprod. 2010, 25, 734–741. [Google Scholar] [CrossRef] [Green Version]
  62. Bulun, S.E.; Monsavais, D.; Pavone, M.E.; Dyson, M.; Xue, Q.; Attar, E.; Tokunaga, H.; Su, E.J. Role of Estrogen Receptor-β in Endometriosis. Semin. Reprod. Med. 2012, 30, 39–45. [Google Scholar] [CrossRef] [Green Version]
  63. Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in Health and Disease. J. Lipid Res. 2009, 50, S423–S428. [Google Scholar] [CrossRef] [Green Version]
  64. Banu, S.K.; Lee, J.; Speights, V.O.; Starzinski-Powitz, A.; Arosh, J.A. Cyclooxygenase-2 Regulates Survival, Migration, and Invasion of Human Endometriotic Cells through Multiple Mechanisms. Endocrinology 2008, 149, 1180–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Park, G.Y.; Christman, J.W. Involvement of Cyclooxygenase-2 and Prostaglandins in the Molecular Pathogenesis of Inflammatory Lung Diseases. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L797–L805. [Google Scholar] [CrossRef] [Green Version]
  66. Maia, H.; Maltez, A.; Studard, E.; Zausner, B.; Athayde, C.; Coutinho, E. Effect of the Menstrual Cycle and Oral Contraceptives on Cyclooxygenase-2 Expression in the Endometrium. Gynecol. Endocrinol. 2005, 21, 57–61. [Google Scholar] [CrossRef]
  67. Ota, H.; Igarashi, S.; Sasaki, M.; Tanaka, T. Distribution of Cyclooxygenase-2 in Eutopic and Ectopic Endometrium in Endometriosis and Adenomyosis. Hum. Reprod. 2001, 16, 561–566. [Google Scholar] [CrossRef] [Green Version]
  68. Chishima, F.; Hayakawa, S.; Sugita, K.; Kinukawa, N.; Aleemuzzaman, S.; Nemoto, N.; Yamamoto, T.; Honda, M. Increased Expression of Cyclooxygenase-2 in Local Lesions of Endometriosis Patients. Am. J. Reprod. Immunol. 2002, 48, 50–56. [Google Scholar] [CrossRef]
  69. Wu, M.-H.; Wang, C.-A.; Lin, C.-C.; Chen, L.-C.; Chang, W.-C.; Tsai, S.-J. Distinct Regulation of Cyclooxygenase-2 by Interleukin-1β in Normal and Endometriotic Stromal Cells. J. Clin. Endocrinol. Metab. 2005, 90, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Wu, M.-H.; Sun, H.S.; Lin, C.-C.; Hsiao, K.-Y.; Chuang, P.-C.; Pan, H.-A.; Tsai, S.-J. Distinct Mechanisms Regulate Cyclooxygenase-1 and -2 in Peritoneal Macrophages of Women with and without Endometriosis. Mol. Hum. Reprod. 2002, 8, 1103–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  71. Cho, S.; Park, S.H.; Choi, Y.S.; Seo, S.K.; Kim, H.Y.; Park, K.H.; Cho, D.J.; Lee, B.S. Expression of Cyclooxygenase-2 in Eutopic Endometrium and Ovarian Endometriotic Tissue in Women with Severe Endometriosis. Gynecol. Obstet. Investig. 2010, 69, 93–100. [Google Scholar] [CrossRef] [PubMed]
  72. Wu, M.-H.; Lin, S.-C.; Hsiao, K.-Y.; Tsai, S.-J. Hypoxia-Inhibited Dual-Specificity Phosphatase-2 Expression in Endometriotic Cells Regulates Cyclooxygenase-2 Expression. J. Pathol. 2011, 225, 390–400. [Google Scholar] [CrossRef]
  73. Kim, B.G.; Yoo, J.-Y.; Kim, T.H.; Shin, J.-H.; Langenheim, J.F.; Ferguson, S.D.; Fazleabas, A.T.; Young, S.L.; Lessey, B.A.; Jeong, J.-W. Aberrant Activation of Signal Transducer and Activator of Transcription-3 (STAT3) Signaling in Endometriosis. Hum. Reprod. 2015, 30, 1069–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Ren, P.; Zhang, Y.; Huang, Y.; Yang, Y.; Jiang, M. Functions of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Gynecologic Disorders. Clin. Med. Insights Oncol. 2015, 9, CMO.S23527. [Google Scholar] [CrossRef] [Green Version]
  75. Moravek, M.B.; Ward, E.A.; Lebovic, D.I. Thiazolidinediones as Therapy for Endometriosis: A Case Series. Gynecol. Obstet. Investig. 2009, 68, 167–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Sharma, I.; Dhawan, V.; Saha, S.C.; Dhaliwal, L.K. In Vitro Effects of Peroxisome Proliferator-Activated Receptor-γ Ligands on Gene Expression in Lipopolysaccharide-Induced Endometrial and Endometriotic Stromal Cells. Fertil. Steril. 2011, 95, 829–831.e5. [Google Scholar] [CrossRef]
  77. Lebovic, D.I.; Mwenda, J.M.; Chai, D.C.; Santi, A.; Xu, X.; D’Hooghe, T. Peroxisome Proliferator-Activated Receptor-(Gamma) Receptor Ligand Partially Prevents the Development of Endometrial Explants in Baboons: A Prospective, Randomized, Placebo-Controlled Study. Endocrinology 2010, 151, 1846–1852. [Google Scholar] [CrossRef]
  78. Nenicu, A.; Körbel, C.; Gu, Y.; Menger, M.D.; Laschke, M.W. Combined Blockade of Angiotensin II Type 1 Receptor and Activation of Peroxisome Proliferator-Activated Receptor-γ by Telmisartan Effectively Inhibits Vascularization and Growth of Murine Endometriosis-like Lesions. Hum. Reprod. 2014, 29, 1011–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  79. Sheu, W.H.-H.; Ou, H.-C.; Chou, F.-P.; Lin, T.-M.; Yang, C.-H. Rosiglitazone Inhibits Endothelial Proliferation and Angiogenesis. Life Sci. 2006, 78, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
  80. Aljada, A.; O’Connor, L.; Fu, Y.-Y.; Mousa, S.A. PPAR Gamma Ligands, Rosiglitazone and Pioglitazone, Inhibit BFGF- and VEGF-Mediated Angiogenesis. Angiogenesis 2008, 11, 361–367. [Google Scholar] [CrossRef]
  81. Kavoussi, S.K.; Witz, C.A.; Binkley, P.A.; Nair, A.S.; Lebovic, D.I. Peroxisome-Proliferator Activator Receptor-Gamma Activation Decreases Attachment of Endometrial Cells to Peritoneal Mesothelial Cells in an in Vitro Model of the Early Endometriotic Lesion. Mol. Hum. Reprod. 2009, 15, 687–692. [Google Scholar] [CrossRef]
  82. Imamoto, E.; Yoshida, N.; Uchiyama, K.; Kuroda, M.; Kokura, S.; Ichikawa, H.; Naito, Y.; Tanigawa, T.; Yoshikawa, T. Inhibitory Effect of Pioglitazone on Expression of Adhesion Molecules on Neutrophils and Endothelial Cells. Biofactors 2004, 20, 37–47. [Google Scholar] [CrossRef]
  83. Arnold, R.; Neumann, M.; König, W. Peroxisome Proliferator-Activated Receptor-Gamma Agonists Inhibit Respiratory Syncytial Virus-Induced Expression of Intercellular Adhesion Molecule-1 in Human Lung Epithelial Cells. Immunology 2007, 121, 71–81. [Google Scholar] [CrossRef] [PubMed]
  84. Zhang, S.; Zhuang, L.; Liu, Q.; Yu, X.; Min, Q.; Chen, M.; Chen, Q. PPARγ Induces the Paroxysm of Endometriosis by Regulating the Transcription of MAT2A Gene. Am. J. Transl. Res. 2021, 13, 1377–1388. [Google Scholar]
  85. Herington, J.L.; Crispens, M.A.; Carvalho-Macedo, A.C.; Camargos, A.F.; Lebovic, D.I.; Bruner-Tran, K.L.; Osteen, K.G. Development and Prevention of Postsurgical Adhesions in a Chimeric Mouse Model of Experimental Endometriosis. Fertil. Steril. 2011, 95, 1295–1301.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Folkman, J.; Shing, Y. Angiogenesis. J. Biol. Chem. 1992, 267, 10931–10934. [Google Scholar] [CrossRef]
  87. Risau, W. Mechanisms of Angiogenesis. Nature 1997, 386, 671–674. [Google Scholar] [CrossRef]
  88. Rooprai, H.K.; McCormick, D. Proteases and Their Inhibitors in Human Brain Tumours: A Review. Anticancer. Res. 1997, 17, 4151–4162. [Google Scholar]
  89. Lakka, S.S.; Gondi, C.S.; Rao, J.S. Proteases and Glioma Angiogenesis. Brain Pathol. 2005, 15, 327–341. [Google Scholar] [CrossRef] [PubMed]
  90. Laschke, M.W.; Menger, M.D. Basic Mechanisms of Vascularization in Endometriosis and Their Clinical Implications. Hum. Reprod. Update 2018, 24, 207–224. [Google Scholar] [CrossRef]
  91. Anastasiu, C.V.; Moga, M.A.; Elena Neculau, A.; Bălan, A.; Scârneciu, I.; Dragomir, R.M.; Dull, A.-M.; Chicea, L.-M. Biomarkers for the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Rocha, A.L.L.; Reis, F.M.; Taylor, R.N. Angiogenesis and Endometriosis. Obstet. Gynecol. Int. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
  93. Zimna, A.; Kurpisz, M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res. Int. 2015, 2015, 549412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Chung, A.S.; Lee, J.; Ferrara, N. Targeting the Tumour Vasculature: Insights from Physiological Angiogenesis. Nat. Rev. Cancer 2010, 10, 505–514. [Google Scholar] [CrossRef] [PubMed]
  95. Ferrara, N.; Kerbel, R.S. Angiogenesis as a Therapeutic Target. Nature 2005, 438, 967–974. [Google Scholar] [CrossRef]
  96. Kerbel, R.S. Tumor Angiogenesis. N. Engl. J. Med. 2008, 358, 2039–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Safran, M.; Kaelin, W.G. HIF Hydroxylation and the Mammalian Oxygen-Sensing Pathway. J. Clin. Investig. 2003, 111, 779–783. [Google Scholar] [CrossRef] [PubMed]
  98. Onishi, M.; Ichikawa, T.; Kurozumi, K.; Date, I. Angiogenesis and Invasion in Glioma. Brain Tumor Pathol. 2011, 28, 13–24. [Google Scholar] [CrossRef]
  99. Bergers, G.; Song, S. The Role of Pericytes in Blood-Vessel Formation and Maintenance. Neuro-Oncology 2005, 7, 452–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  100. Reiss, Y.; Machein, M.R.; Plate, K.H. The Role of Angiopoietins during Angiogenesis in Gliomas. Brain Pathol. 2005, 15, 311–317. [Google Scholar] [CrossRef]
  101. Jones, N.; Iljin, K.; Dumont, D.J.; Alitalo, K. Tie Receptors: New Modulators of Angiogenic and Lymphangiogenic Responses. Nat. Rev. Mol. Cell Biol. 2001, 2, 257–267. [Google Scholar] [CrossRef]
  102. Maisonpierre, P.C.; Suri, C.; Jones, P.F.; Bartunkova, S.; Wiegand, S.J.; Radziejewski, C.; Compton, D.; McClain, J.; Aldrich, T.H.; Papadopoulos, N.; et al. Angiopoietin-2, a Natural Antagonist for Tie2 That Disrupts in Vivo Angiogenesis. Science 1997, 277, 55–60. [Google Scholar] [CrossRef]
  103. Dumont, D.J.; Gradwohl, G.; Fong, G.H.; Puri, M.C.; Gertsenstein, M.; Auerbach, A.; Breitman, M.L. Dominant-Negative and Targeted Null Mutations in the Endothelial Receptor Tyrosine Kinase, Tek, Reveal a Critical Role in Vasculogenesis of the Embryo. Genes Dev. 1994, 8, 1897–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Zagzag, D.; Amirnovin, R.; Greco, M.A.; Yee, H.; Holash, J.; Wiegand, S.J.; Zabski, S.; Yancopoulos, G.D.; Grumet, M. Vascular Apoptosis and Involution in Gliomas Precede Neovascularization: A Novel Concept for Glioma Growth and Angiogenesis. Lab. Investig. 2000, 80, 837–849. [Google Scholar] [CrossRef] [Green Version]
  105. Hardee, M.E.; Zagzag, D. Mechanisms of Glioma-Associated Neovascularization. Am. J. Pathol. 2012, 181, 1126–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Carbajo-Lozoya, J.; Lutz, S.; Feng, Y.; Kroll, J.; Hammes, H.-P.; Wieland, T. Angiotensin II Modulates VEGF-Driven Angiogenesis by Opposing Effects of Type 1 and Type 2 Receptor Stimulation in the Microvascular Endothelium. Cell Signal 2012, 24, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
  107. MacKenzie, A. Endothelium-Derived Vasoactive Agents, AT1 Receptors and Inflammation. Pharmacol. Ther. 2011, 131, 187–203. [Google Scholar] [CrossRef] [PubMed]
  108. Liu, S.; Xin, X.; Hua, T.; Shi, R.; Chi, S.; Jin, Z.; Wang, H. Efficacy of Anti-VEGF/VEGFR Agents on Animal Models of Endometriosis: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0166658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  109. Vallée, A.; Lecarpentier, Y.; Vallée, J.-N. Curcumin: A Therapeutic Strategy in Cancers by Inhibiting the Canonical WNT/β-Catenin Pathway. J. Exp. Clin. Cancer Res. 2019, 38, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  110. Vallée, A.; Guillevin, R.; Vallée, J.-N. Vasculogenesis and Angiogenesis Initiation under Normoxic Conditions through Wnt/β-Catenin Pathway in Gliomas. Rev. Neurosci. 2018, 29, 71–91. [Google Scholar] [CrossRef]
  111. Mayerhofer, M.; Valent, P.; Sperr, W.R.; Griffin, J.D.; Sillaber, C. BCR/ABL Induces Expression of Vascular Endothelial Growth Factor and Its Transcriptional Activator, Hypoxia Inducible Factor-1alpha, through a Pathway Involving Phosphoinositide 3-Kinase and the Mammalian Target of Rapamycin. Blood 2002, 100, 3767–3775. [Google Scholar] [CrossRef] [Green Version]
  112. Chang, K.-K.; Liu, L.-B.; Jin, L.-P.; Meng, Y.-H.; Shao, J.; Wang, Y.; Mei, J.; Li, M.-Q.; Li, D.-J. NME1 Suppression of Endometrial Stromal Cells Promotes Angiogenesis in the Endometriotic Milieu via Stimulating the Secretion of IL-8 and VEGF. Int. J. Clin. Exp. Pathol. 2013, 6, 2030–2038. [Google Scholar] [PubMed]
  113. Yeo, S.G.; Won, Y.S.; Lee, H.Y.; Kim, Y.I.; Lee, J.-W.; Park, D.C. Increased Expression of Pattern Recognition Receptors and Nitric Oxide Synthase in Patients with Endometriosis. Int. J. Med. Sci. 2013, 10, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
  114. Matsuzaki, S.; Darcha, C. Co-Operation between the AKT and ERK Signaling Pathways May Support Growth of Deep Endometriosis in a Fibrotic Microenvironment in Vitro. Hum. Reprod. 2015, 30, 1606–1616. [Google Scholar] [CrossRef] [Green Version]
  115. Zhang, H.; Zhao, X.; Liu, S.; Li, J.; Wen, Z.; Li, M. 17betaE2 Promotes Cell Proliferation in Endometriosis by Decreasing PTEN via NFkappaB-Dependent Pathway. Mol. Cell. Endocrinol. 2010, 317, 31–43. [Google Scholar] [CrossRef]
  116. Peeters, L.L.H.; Vigne, J.-L.; Tee, M.K.; Zhao, D.; Waite, L.L.; Taylor, R.N. PPAR Gamma Represses VEGF Expression in Human Endometrial Cells: Implications for Uterine Angiogenesis. Angiogenesis 2005, 8, 373–379. [Google Scholar] [CrossRef]
  117. Streuli, I.; de Ziegler, D.; Borghese, B.; Santulli, P.; Batteux, F.; Chapron, C. New Treatment Strategies and Emerging Drugs in Endometriosis. Expert Opin. Emerg. Drugs 2012. [Google Scholar] [CrossRef] [PubMed]
  118. Nagai, N.; Oike, Y.; Izumi-Nagai, K.; Urano, T.; Kubota, Y.; Noda, K.; Ozawa, Y.; Inoue, M.; Tsubota, K.; Suda, T.; et al. Angiotensin II Type 1 Receptor-Mediated Inflammation Is Required for Choroidal Neovascularization. Arter. Thromb. Vasc. Biol. 2006, 26, 2252–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  119. Tamaki, Y.; Nakade, Y.; Yamauchi, T.; Makino, Y.; Yokohama, S.; Okada, M.; Aso, K.; Kanamori, H.; Ohashi, T.; Sato, K.; et al. Angiotensin II Type 1 Receptor Antagonist Prevents Hepatic Carcinoma in Rats with Nonalcoholic Steatohepatitis. J. Gastroenterol. 2013, 48, 491–503. [Google Scholar] [CrossRef] [PubMed]
  120. Desouza, C.V.; Rentschler, L.; Fonseca, V. Peroxisome Proliferator-Activated Receptors as Stimulants of Angiogenesis in Cardiovascular Disease and Diabetes. Diabetes Metab. Syndr. Obes. 2009, 2, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  121. Kyama, C.M.; Overbergh, L.; Mihalyi, A.; Meuleman, C.; Mwenda, J.M.; Mathieu, C.; D’Hooghe, T.M. Endometrial and Peritoneal Expression of Aromatase, Cytokines, and Adhesion Factors in Women with Endometriosis. Fertil. Steril. 2008, 89, 301–310. [Google Scholar] [CrossRef] [PubMed]
  122. Borghese, B.; Mondon, F.; Noël, J.-C.; Fayt, I.; Mignot, T.-M.; Vaiman, D.; Chapron, C. Gene Expression Profile for Ectopic versus Eutopic Endometrium Provides New Insights into Endometriosis Oncogenic Potential. Mol. Endocrinol. 2008, 22, 2557–2562. [Google Scholar] [CrossRef]
  123. Hadler-Olsen, E.; Winberg, J.-O.; Uhlin-Hansen, L. Matrix Metalloproteinases in Cancer: Their Value as Diagnostic and Prognostic Markers and Therapeutic Targets. Tumour Biol. 2013, 34, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
  124. Jana, S.; Rudra, D.S.; Paul, S.; Snehasikta, S. Curcumin Delays Endometriosis Development by Inhibiting MMP-2 Activity. Indian J. Biochem. Biophys. 2012, 49, 342–348. [Google Scholar] [PubMed]
  125. Marbaix, E.; Kokorine, I.; Henriet, P.; Donnez, J.; Courtoy, P.J.; Eeckhout, Y. The Expression of Interstitial Collagenase in Human Endometrium Is Controlled by Progesterone and by Oestradiol and Is Related to Menstruation. Biochem. J. 1995, 305 Pt 3, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
  126. Hulboy, D.L.; Rudolph, L.A.; Matrisian, L.M. Matrix Metalloproteinases as Mediators of Reproductive Function. Mol. Hum. Reprod. 1997, 3, 27–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  127. Rodgers, W.H.; Matrisian, L.M.; Giudice, L.C.; Dsupin, B.; Cannon, P.; Svitek, C.; Gorstein, F.; Osteen, K.G. Patterns of Matrix Metalloproteinase Expression in Cycling Endometrium Imply Differential Functions and Regulation by Steroid Hormones. J. Clin. Investig. 1994, 94, 946–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Bruner, K.L.; Eisenberg, E.; Gorstein, F.; Osteen, K.G. Progesterone and Transforming Growth Factor-Beta Coordinately Regulate Suppression of Endometrial Matrix Metalloproteinases in a Model of Experimental Endometriosis. Steroids 1999, 64, 648–653. [Google Scholar] [CrossRef]
  129. Spuijbroek, M.D.; Dunselman, G.A.; Menheere, P.P.; Evers, J.L. Early Endometriosis Invades the Extracellular Matrix. Fertil. Steril. 1992, 58, 929–933. [Google Scholar] [CrossRef]
  130. Stamenkovic, I. Extracellular Matrix Remodelling: The Role of Matrix Metalloproteinases. J. Pathol. 2003, 200, 448–464. [Google Scholar] [CrossRef]
  131. Sun, H.S.; Hsiao, K.-Y.; Hsu, C.-C.; Wu, M.-H.; Tsai, S.-J. Transactivation of Steroidogenic Acute Regulatory Protein in Human Endometriotic Stromalcells Is Mediated by the Prostaglandin EP2 Receptor. Endocrinology 2003, 144, 3934–3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Buchanan, F.G.; Wang, D.; Bargiacchi, F.; DuBois, R.N. Prostaglandin E2 Regulates Cell Migration via the Intracellular Activation of the Epidermal Growth Factor Receptor. J. Biol. Chem. 2003, 278, 35451–35457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  133. Wang, D.; DuBois, R.N. The Role of Prostaglandin E(2) in Tumor-Associated Immunosuppression. Trends Mol. Med. 2016, 22, 1–3. [Google Scholar] [CrossRef] [Green Version]
  134. Lucidi, R.S.; Witz, C.A.; Chrisco, M.; Binkley, P.A.; Shain, S.A.; Schenken, R.S. A Novel in Vitro Model of the Early Endometriotic Lesion Demonstrates That Attachment of Endometrial Cells to Mesothelial Cells Is Dependent on the Source of Endometrial Cells. Fertil. Steril. 2005, 84, 16–21. [Google Scholar] [CrossRef]
  135. Laschke, M.W.; Elitzsch, A.; Scheuer, C.; Vollmar, B.; Menger, M.D. Selective Cyclo-Oxygenase-2 Inhibition Induces Regression of Autologous Endometrial Grafts by down-Regulation of Vascular Endothelial Growth Factor-Mediated Angiogenesis and Stimulation of Caspase-3-Dependent Apoptosis. Fertil. Steril. 2007, 87, 163–171. [Google Scholar] [CrossRef]
  136. Yao, M.; Kargman, S.; Lam, E.C.; Kelly, C.R.; Zheng, Y.; Luk, P.; Kwong, E.; Evans, J.F.; Wolfe, M.M. Inhibition of Cyclooxygenase-2 by Rofecoxib Attenuates the Growth and Metastatic Potential of Colorectal Carcinoma in Mice. Cancer Res. 2003, 63, 586–592. [Google Scholar]
  137. Kokawa, K.; Shikone, T.; Nakano, R. Apoptosis in the Human Uterine Endometrium during the Menstrual Cycle. J. Clin. Endocrinol. Metab. 1996, 81, 4144–4147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. Shikone, T.; Yamoto, M.; Kokawa, K.; Yamashita, K.; Nishimori, K.; Nakano, R. Apoptosis of Human Corpora Lutea during Cyclic Luteal Regression and Early Pregnancy. J. Clin. Endocrinol. Metab. 1996, 81, 2376–2380. [Google Scholar] [CrossRef] [PubMed]
  139. Gebel, H.M.; Braun, D.P.; Tambur, A.; Frame, D.; Rana, N.; Dmowski, W.P. Spontaneous Apoptosis of Endometrial Tissue Is Impaired in Women with Endometriosis. Fertil. Steril. 1998, 69, 1042–1047. [Google Scholar] [CrossRef]
  140. Harada, A.; Kimura, Y.; Kojima, C.; Kono, K. Effective Tolerance to Serum Proteins of Head-Tail Type Polycation Vectors by PEGylation at the Periphery of the Head Block. Biomacromolecules 2010, 11, 1036–1042. [Google Scholar] [CrossRef]
  141. Vaskivuo, T.E.; Stenbäck, F.; Karhumaa, P.; Risteli, J.; Dunkel, L.; Tapanainen, J.S. Apoptosis and Apoptosis-Related Proteins in Human Endometrium. Mol. Cell. Endocrinol. 2000, 165, 75–83. [Google Scholar] [CrossRef]
  142. Iba, Y.; Harada, T.; Horie, S.; Deura, I.; Iwabe, T.; Terakawa, N. Lipopolysaccharide-Promoted Proliferation of Endometriotic Stromal Cells via Induction of Tumor Necrosis Factor Alpha and Interleukin-8 Expression. Fertil. Steril. 2004, 82 (Suppl. 3), 1036–1042. [Google Scholar] [CrossRef] [Green Version]
  143. Khan, K.N.; Masuzaki, H.; Fujishita, A.; Kitajima, M.; Hiraki, K.; Sekine, I.; Matsuyama, T.; Ishimaru, T. Interleukin-6- and Tumour Necrosis Factor Alpha-Mediated Expression of Hepatocyte Growth Factor by Stromal Cells and Its Involvement in the Growth of Endometriosis. Hum. Reprod. 2005, 20, 2715–2723. [Google Scholar] [CrossRef] [Green Version]
  144. Cinar, O.; Seval, Y.; Uz, Y.H.; Cakmak, H.; Ulukus, M.; Kayisli, U.A.; Arici, A. Differential Regulation of Akt Phosphorylation in Endometriosis. Reprod. BioMed Online 2009, 19, 864–871. [Google Scholar] [CrossRef] [Green Version]
  145. Brazil, D.P.; Yang, Z.-Z.; Hemmings, B.A. Advances in Protein Kinase B Signalling: AKTion on Multiple Fronts. Trends Biochem. Sci. 2004, 29, 233–242. [Google Scholar] [CrossRef] [PubMed]
  146. Meng, F.; Liu, L.; Chin, P.C.; D’Mello, S.R. Akt Is a Downstream Target of NF-Kappa B. J. Biol. Chem. 2002, 277, 29674–29680. [Google Scholar] [CrossRef] [Green Version]
  147. Romashkova, J.A.; Makarov, S.S. NF-KappaB Is a Target of AKT in Anti-Apoptotic PDGF Signalling. Nature 1999, 401, 86–90. [Google Scholar] [CrossRef]
  148. Deveraux, Q.L.; Roy, N.; Stennicke, H.R.; Van Arsdale, T.; Zhou, Q.; Srinivasula, S.M.; Alnemri, E.S.; Salvesen, G.S.; Reed, J.C. IAPs Block Apoptotic Events Induced by Caspase-8 and Cytochrome c by Direct Inhibition of Distinct Caspases. EMBO J. 1998, 17, 2215–2223. [Google Scholar] [CrossRef] [Green Version]
  149. Jones, R.G.; Parsons, M.; Bonnard, M.; Chan, V.S.; Yeh, W.C.; Woodgett, J.R.; Ohashi, P.S. Protein Kinase B Regulates T Lymphocyte Survival, Nuclear Factor KappaB Activation, and Bcl-X(L) Levels in Vivo. J. Exp. Med. 2000, 191, 1721–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  150. Zong, W.X.; Edelstein, L.C.; Chen, C.; Bash, J.; Gélinas, C. The Prosurvival Bcl-2 Homolog Bfl-1/A1 Is a Direct Transcriptional Target of NF-KappaB That Blocks TNFalpha-Induced Apoptosis. Genes Dev. 1999, 13, 382–387. [Google Scholar] [CrossRef] [PubMed]
  151. Subramaniam, S.; Unsicker, K. ERK and Cell Death: ERK1/2 in Neuronal Death. FEBS J. 2010, 277, 22–29. [Google Scholar] [CrossRef] [PubMed]
  152. Mourtzikou, A.; Kosmas, K.; Marouga, A.; Stamouli, M.; Pouliakis, A.; Karakitsos, P. The Use of an Immunocytochemical Double-Labeling Staining Can Display the Distribution of Bcl-2/Ki-67 Cells in Endometrial Adenocarcinomas as Well as in Normal Endometrium. Clin. Lab. 2012, 58, 133–144. [Google Scholar]
  153. Andradas, C.; Caffarel, M.M.; Pérez-Gómez, E.; Salazar, M.; Lorente, M.; Velasco, G.; Guzmán, M.; Sánchez, C. The Orphan G Protein-Coupled Receptor GPR55 Promotes Cancer Cell Proliferation via ERK. Oncogene 2011, 30, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. Cai, W.-J.; Wang, M.-J.; Ju, L.-H.; Wang, C.; Zhu, Y.-C. Hydrogen Sulfide Induces Human Colon Cancer Cell Proliferation: Role of Akt, ERK and P21. Cell Biol. Int. 2010, 34, 565–572. [Google Scholar] [CrossRef]
  155. Wu, Z.; Wu, L.; Tashiro, S.; Onodera, S.; Ikejima, T. Phosphorylated Extracellular Signal-Regulated Kinase up-Regulated P53 Expression in Shikonin-Induced HeLa Cell Apoptosis. Chin. Med. J. 2005, 118, 671–677. [Google Scholar]
  156. Yin, X.; Pavone, M.E.; Lu, Z.; Wei, J.; Kim, J.J. Increased Activation of the PI3K/AKT Pathway Compromises Decidualization of Stromal Cells from Endometriosis. J. Clin. Endocrinol. Metab. 2012, 97, E35–E43. [Google Scholar] [CrossRef] [Green Version]
  157. Saini, K.S.; Loi, S.; de Azambuja, E.; Metzger-Filho, O.; Saini, M.L.; Ignatiadis, M.; Dancey, J.E.; Piccart-Gebhart, M.J. Targeting the PI3K/AKT/MTOR and Raf/MEK/ERK Pathways in the Treatment of Breast Cancer. Cancer Treat. Rev. 2013, 39, 935–946. [Google Scholar] [CrossRef]
  158. De Luca, A.; Maiello, M.R.; D’Alessio, A.; Pergameno, M.; Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT Signalling Pathways: Role in Cancer Pathogenesis and Implications for Therapeutic Approaches. Expert Opin. Ther. Targets 2012, 16 (Suppl. 2), S17–S27. [Google Scholar] [CrossRef]
  159. Serra, V.; Scaltriti, M.; Prudkin, L.; Eichhorn, P.J.A.; Ibrahim, Y.H.; Chandarlapaty, S.; Markman, B.; Rodriguez, O.; Guzman, M.; Rodriguez, S.; et al. PI3K Inhibition Results in Enhanced HER Signaling and Acquired ERK Dependency in HER2-Overexpressing Breast Cancer. Oncogene 2011, 30, 2547–2557. [Google Scholar] [CrossRef] [PubMed]
  160. Hoeflich, K.P.; O’Brien, C.; Boyd, Z.; Cavet, G.; Guerrero, S.; Jung, K.; Januario, T.; Savage, H.; Punnoose, E.; Truong, T.; et al. In Vivo Antitumor Activity of MEK and Phosphatidylinositol 3-Kinase Inhibitors in Basal-like Breast Cancer Models. Clin. Cancer Res. 2009, 15, 4649–4664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  161. Ngô, C.; Chéreau, C.; Nicco, C.; Weill, B.; Chapron, C.; Batteux, F. Reactive Oxygen Species Controls Endometriosis Progression. Am. J. Pathol. 2009, 175, 225–234. [Google Scholar] [CrossRef] [Green Version]
  162. Banu, S.K.; Lee, J.; Speights, V.O.; Starzinski-Powitz, A.; Arosh, J.A. Selective Inhibition of Prostaglandin E2 Receptors EP2 and EP4 Induces Apoptosis of Human Endometriotic Cells through Suppression of ERK1/2, AKT, NFkappaB, and Beta-Catenin Pathways and Activation of Intrinsic Apoptotic Mechanisms. Mol. Endocrinol. 2009, 23, 1291–1305. [Google Scholar] [CrossRef] [Green Version]
  163. Lee, J.; Banu, S.K.; Subbarao, T.; Starzinski-Powitz, A.; Arosh, J.A. Selective Inhibition of Prostaglandin E2 Receptors EP2 and EP4 Inhibits Invasion of Human Immortalized Endometriotic Epithelial and Stromal Cells through Suppression of Metalloproteinases. Mol. Cell Endocrinol. 2011, 332, 306–313. [Google Scholar] [CrossRef]
  164. Bulun, S.E.; Yang, S.; Fang, Z.; Gurates, B.; Tamura, M.; Sebastian, S. Estrogen Production and Metabolism in Endometriosis. Ann. N. Y. Acad. Sci. 2002, 955, 75–85, discussion 86–88, 396–406. [Google Scholar] [CrossRef]
  165. Bulun, S.E.; Fang, Z.; Imir, G.; Gurates, B.; Tamura, M.; Yilmaz, B.; Langoi, D.; Amin, S.; Yang, S.; Deb, S. Aromatase and Endometriosis. Semin. Reprod. Med. 2004, 22, 45–50. [Google Scholar] [CrossRef]
  166. Bulun, S.E.; Yilmaz, B.D.; Sison, C.; Miyazaki, K.; Bernardi, L.; Liu, S.; Kohlmeier, A.; Yin, P.; Milad, M.; Wei, J. Endometriosis. Endocr. Rev. 2019, 40, 1048–1079. [Google Scholar] [CrossRef] [PubMed]
  167. Attar, E.; Tokunaga, H.; Imir, G.; Yilmaz, M.B.; Redwine, D.; Putman, M.; Gurates, B.; Attar, R.; Yaegashi, N.; Hales, D.B.; et al. Prostaglandin E2 via Steroidogenic Factor-1 Coordinately Regulates Transcription of Steroidogenic Genes Necessary for Estrogen Synthesis in Endometriosis. J. Clin. Endocrinol. Metab. 2009, 94, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  168. Rubin, G.L.; Zhao, Y.; Kalus, A.M.; Simpson, E.R. Peroxisome Proliferator-Activated Receptor Gamma Ligands Inhibit Estrogen Biosynthesis in Human Breast Adipose Tissue: Possible Implications for Breast Cancer Therapy. Cancer Res. 2000, 60, 1604–1608. [Google Scholar] [PubMed]
  169. Subbaramaiah, K.; Howe, L.R.; Zhou, X.K.; Yang, P.; Hudis, C.A.; Kopelovich, L.; Dannenberg, A.J. Pioglitazone, a PPARγ Agonist, Suppresses CYP19 Transcription: Evidence for Involvement of 15-Hydroxyprostaglandin Dehydrogenase and BRCA1. Cancer Prev. Res. 2012, 5, 1183–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  170. Fan, W.; Yanase, T.; Morinaga, H.; Mu, Y.-M.; Nomura, M.; Okabe, T.; Goto, K.; Harada, N.; Nawata, H. Activation of Peroxisome Proliferator-Activated Receptor-Gamma and Retinoid X Receptor Inhibits Aromatase Transcription via Nuclear Factor-KappaB. Endocrinology 2005, 146, 85–92. [Google Scholar] [CrossRef]
  171. Banu, S.K.; Lee, J.; Satterfield, M.C.; Spencer, T.E.; Bazer, F.W.; Arosh, J.A. Molecular Cloning and Characterization of Prostaglandin (PG) Transporter in Ovine Endometrium: Role for Multiple Cell Signaling Pathways in Transport of PGF2alpha. Endocrinology 2008, 149, 219–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Table 1. Mechanisms by which PPARγ agonists modulate inflammation, angiogenesis, adhesion and invasion, and apoptosis in endometriosis.
Table 1. Mechanisms by which PPARγ agonists modulate inflammation, angiogenesis, adhesion and invasion, and apoptosis in endometriosis.
TargetPPARγ agonistTargetActionsModelReferences
InflammationRosiglitazone-Decreased symptom severity scale and painWomen[75]
Rosiglitazone-Diminution of implant volume, cell proliferation, apoptosis, and inflammationFemale BALB/c mice[44]
Rosiglitazone-Diminution of inflammationEndometriotic stromal cells[76]
AngiogenesisCiglitazone Decrease VEGFDecreased the size of ectopic uterine tissues and the mean explant wet weightRat model of endometriosis[41]
RosiglitazoneDecrease VEGFEndometriotic lesions were statistically significantly lower in rosiglitazone-treated baboons when compared with the placebo groupFemale baboons[45]
PioglitazoneDecrease VEGFThe surface area and volume of endometriotic lesions were significantly lower in pioglitazone-treated baboons than the placebo groupFemale baboons[77]
CiglitazoneDecrease PGE2
Decrease P450 aromatase
Inhibition growth cells and cell proliferationEndometriotic epithelial cells[21]
Pioglitazonereduction of AT1R proteinsDecrease in density of CD31-positive micro-vesselsMurine endometriosis-like lesions[78]
RosiglitazoneDecrease VEGFReduction of endothelial cell proliferation and migrationHuman umbilical vein endothelial cells[79]
Pioglitazone and rosiglitazoneDecrease bFGF and VEGFReduction in blood vessel formationChorioallantois membrane model[80]
Adhesion and InvasionCiglitazoneDecrease CAMReduction of invasionLP9 cells[81]
PioglitazoneDecrease VCAM-1Inhibition of vascular cell adhesionEndothelial cells[82]
15d-PGJ2, Ciglitazone, Troglitazone Decrease ICAM-1b2-integrin-mediated adhesionLung epithelial human cells[83]
RosiglitazoneModulation promoters of MAT2A geneReduction of proliferation, apoptosis, and invasionIn vitro endometrial lesions[84]
ApoptosisRosiglitazone-Endometriotic implant growthFemale BALB/c mice[44]
Rosiglitazone-Endometriotic implant growthRat model[42]
Rosiglitazone-Decrease in height and spherical volumesRat model[43]
Pioglitazone-Diminution of postsurgical adhesionsChimeric mouse model[85]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Vallée, A.; Vallée, J.-N.; Le Blanche, A.; Lecarpentier, Y. PPARγ Agonists: Emergent Therapy in Endometriosis. Pharmaceuticals 2021, 14, 543. https://doi.org/10.3390/ph14060543

AMA Style

Vallée A, Vallée J-N, Le Blanche A, Lecarpentier Y. PPARγ Agonists: Emergent Therapy in Endometriosis. Pharmaceuticals. 2021; 14(6):543. https://doi.org/10.3390/ph14060543

Chicago/Turabian Style

Vallée, Alexandre, Jean-Noël Vallée, Alain Le Blanche, and Yves Lecarpentier. 2021. "PPARγ Agonists: Emergent Therapy in Endometriosis" Pharmaceuticals 14, no. 6: 543. https://doi.org/10.3390/ph14060543

APA Style

Vallée, A., Vallée, J. -N., Le Blanche, A., & Lecarpentier, Y. (2021). PPARγ Agonists: Emergent Therapy in Endometriosis. Pharmaceuticals, 14(6), 543. https://doi.org/10.3390/ph14060543

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop