PPARγ Agonists: Emergent Therapy in Endometriosis
Abstract
:1. Introduction
2. PPARγ
3. PPARγ Agonists Actions on the Pathophysiology of Endometriosis
3.1. Inflammation
3.2. Angiogenesis
3.3. Adhesion and Invasion
3.4. Apoptosis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burney, R.O.; Giudice, L.C. Pathogenesis and Pathophysiology of Endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- As-Sanie, S.; Black, R.; Giudice, L.C.; Gray Valbrun, T.; Gupta, J.; Jones, B.; Laufer, M.R.; Milspaw, A.T.; Missmer, S.A.; Norman, A.; et al. Assessing Research Gaps and Unmet Needs in Endometriosis. Am. J. Obstet. Gynecol. 2019, 221, 86–94. [Google Scholar] [CrossRef]
- Darling, A.M.; Chavarro, J.E.; Malspeis, S.; Harris, H.R.; Missmer, S.A. A Prospective Cohort Study of Vitamins B, C, E, and Multivitamin Intake and Endometriosis. J. Endometr. 2013, 5, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Tariverdian, N.; Theoharides, T.C.; Siedentopf, F.; Gutiérrez, G.; Jeschke, U.; Rabinovich, G.A.; Blois, S.M.; Arck, P.C. Neuroendocrine-Immune Disequilibrium and Endometriosis: An Interdisciplinary Approach. Semin. Immunopathol. 2007, 29, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Ballard, K.; Lowton, K.; Wright, J. What’s the Delay? A Qualitative Study of Women’s Experiences of Reaching a Diagnosis of Endometriosis. Fertil. Steril. 2006, 86, 1296–1301. [Google Scholar] [CrossRef]
- Vetvicka, V.; Laganà, A.S.; Salmeri, F.M.; Triolo, O.; Palmara, V.I.; Vitale, S.G.; Sofo, V.; Králíčková, M. Regulation of Apoptotic Pathways during Endometriosis: From the Molecular Basis to the Future Perspectives. Arch. Gynecol. Obstet. 2016, 294, 897–904. [Google Scholar] [CrossRef]
- Laganà, A.S.; Vitale, S.G.; Salmeri, F.M.; Triolo, O.; Ban Frangež, H.; Vrtačnik-Bokal, E.; Stojanovska, L.; Apostolopoulos, V.; Granese, R.; Sofo, V. Unus pro Omnibus, Omnes pro Uno: A Novel, Evidence-Based, Unifying Theory for the Pathogenesis of Endometriosis. Med. Hypotheses 2017, 103, 10–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, H.; Yamada, Y.; Morioka, S.; Niiro, E.; Shigemitsu, A.; Ito, F. Mechanism of Pain Generation for Endometriosis-Associated Pelvic Pain. Arch. Gynecol. Obstet. 2014, 289, 13–21. [Google Scholar] [CrossRef]
- Trovó de Marqui, A.B. Genetic Polymorphisms and Endometriosis: Contribution of Genes That Regulate Vascular Function and Tissue Remodeling. Rev. Assoc. Med. Bras. 2012, 58, 620–632. [Google Scholar] [CrossRef]
- Lousse, J.-C.; Van Langendonckt, A.; Defrere, S.; Ramos, R.G.; Colette, S.; Donnez, J. Peritoneal Endometriosis Is an Inflammatory Disease. Front. Biosci. 2012, 4, 23–40. [Google Scholar] [CrossRef]
- Dull, A.-M.; Moga, M.A.; Dimienescu, O.G.; Sechel, G.; Burtea, V.; Anastasiu, C.V. Therapeutic Approaches of Resveratrol on Endometriosis via Anti-Inflammatory and Anti-Angiogenic Pathways. Molecules 2019, 24, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, H.; Higashiura, Y.; Shigetomi, H.; Kajihara, H. Pathogenesis of Endometriosis: The Role of Initial Infection and Subsequent Sterile Inflammation (Review). Mol. Med. Rep. 2014, 9, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Laganà, A.S.; Vitale, S.G.; Granese, R.; Palmara, V.; Ban Frangež, H.; Vrtačnik-Bokal, E.; Chiofalo, B.; Triolo, O. Clinical Dynamics of Dienogest for the Treatment of Endometriosis: From Bench to Bedside. Expert Opin. Drug Metab. Toxicol. 2017, 13, 593–596. [Google Scholar] [CrossRef] [Green Version]
- Vallée, A.; Lecarpentier, Y. Curcumin and Endometriosis. Int. J. Mol. Sci. 2020, 21, 2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallée, A.; Lecarpentier, Y.; Guillevin, R.; Vallée, J.-N. Interactions between TGF-Β1, Canonical WNT/β-Catenin Pathway and PPAR γ in Radiation-Induced Fibrosis. Oncotarget 2017, 8, 90579–90604. [Google Scholar] [CrossRef] [Green Version]
- Vallée, A.; Vallée, J.-N.; Lecarpentier, Y. PPARγ Agonists: Potential Treatment for Autism Spectrum Disorder by Inhibiting the Canonical WNT/β-Catenin Pathway. Mol. Psychiatry 2018. [Google Scholar] [CrossRef]
- Vallée, A.; Lecarpentier, Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front. Immunol. 2018, 9, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, A.L.L.; Reis, F.M.; Petraglia, F. New Trends for the Medical Treatment of Endometriosis. Expert Opin. Investig. Drugs 2012, 21, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Braileanu, G.T.; Simasko, S.M.; Speth, R.C.; Daubert, D.; Hu, J.; Mirando, M.A. Angiotensin II Increases Intracellular Calcium Concentration in Pig Endometrial Stromal Cells through Type 1 Angiotensin Receptors, but Does Not Stimulate Phospholipase C Activity or Prostaglandin F2alpha Secretion. Reprod. Fertil. Dev. 2002, 14, 199–205. [Google Scholar] [CrossRef]
- Wang, N.; Verna, L.; Chen, N.-G.; Chen, J.; Li, H.; Forman, B.M.; Stemerman, M.B. Constitutive Activation of Peroxisome Proliferator-Activated Receptor-Gamma Suppresses pro-Inflammatory Adhesion Molecules in Human Vascular Endothelial Cells. J. Biol. Chem. 2002, 277, 34176–34181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebovic, D.I.; Kavoussi, S.K.; Lee, J.; Banu, S.K.; Arosh, J.A. PPARγ Activation Inhibits Growth and Survival of Human Endometriotic Cells by Suppressing Estrogen Biosynthesis and PGE2 Signaling. Endocrinology 2013, 154, 4803–4813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semple, R.K.; Chatterjee, V.K.K.; O’Rahilly, S. PPAR Gamma and Human Metabolic Disease. J. Clin. Investig. 2006, 116, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Hallenborg, P.; Petersen, R.K.; Kouskoumvekaki, I.; Newman, J.W.; Madsen, L.; Kristiansen, K. The Elusive Endogenous Adipogenic PPARγ Agonists: Lining up the Suspects. Prog. Lipid Res. 2016, 61, 149–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, T.; Kim, Y.-I.; Takahashi, N.; Kawada, T. Natural Compounds Regulate Energy Metabolism by the Modulating the Activity of Lipid-Sensing Nuclear Receptors. Mol. Nutr. Food Res. 2013, 57, 20–33. [Google Scholar] [CrossRef]
- Smirnov, A.N. Nuclear Receptors: Nomenclature, Ligands, Mechanisms of Their Effects on Gene Expression. Biochem. Mosc. 2002, 67, 957–977. [Google Scholar] [CrossRef]
- Kota, B.P.; Huang, T.H.-W.; Roufogalis, B.D. An Overview on Biological Mechanisms of PPARs. Pharmacol. Res. 2005, 51, 85–94. [Google Scholar] [CrossRef]
- Lee, C.-H.; Olson, P.; Evans, R.M. Minireview: Lipid Metabolism, Metabolic Diseases, and Peroxisome Proliferator-Activated Receptors. Endocrinology 2003, 144, 2201–2207. [Google Scholar] [CrossRef] [Green Version]
- Marx, N.; Duez, H.; Fruchart, J.-C.; Staels, B. Peroxisome Proliferator-Activated Receptors and Atherogenesis: Regulators of Gene Expression in Vascular Cells. Circ. Res. 2004, 94, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Cunard, R.; Ricote, M.; DiCampli, D.; Archer, D.C.; Kahn, D.A.; Glass, C.K.; Kelly, C.J. Regulation of Cytokine Expression by Ligands of Peroxisome Proliferator Activated Receptors. J. Immunol. 2002, 168, 2795–2802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricote, M.; Li, A.C.; Willson, T.M.; Kelly, C.J.; Glass, C.K. The Peroxisome Proliferator-Activated Receptor-Gamma Is a Negative Regulator of Macrophage Activation. Nature 1998, 391, 79–82. [Google Scholar] [CrossRef]
- Wu, L.; Guo, C.; Wu, J. Therapeutic Potential of PPARγ Natural Agonists in Liver Diseases. J. Cell Mol. Med. 2020, 24, 2736–2748. [Google Scholar] [CrossRef]
- Giannini, S.; Serio, M.; Galli, A. Pleiotropic Effects of Thiazolidinediones: Taking a Look beyond Antidiabetic Activity. J. Endocrinol. Investig. 2004, 27, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Rogue, A.; Spire, C.; Brun, M.; Claude, N.; Guillouzo, A. Gene Expression Changes Induced by PPAR Gamma Agonists in Animal and Human Liver. PPAR Res. 2010, 2010, 325183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallée, A.; Lecarpentier, Y.; Vallée, J.-N. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process. Int. J. Mol. Sci. 2017, 18, 2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, Y.; Maeno, T.; Aoyagi, K.; Ueno, M.; Aoki, F.; Aoki, N.; Nakagawa, J.; Sando, Y.; Shimizu, Y.; Suga, T.; et al. Pioglitazone, a Peroxisome Proliferator-Activated Receptor Gamma Ligand, Suppresses Bleomycin-Induced Acute Lung Injury and Fibrosis. Respiration 2009, 77, 311–319. [Google Scholar] [CrossRef]
- Bishop-Bailey, D. PPARs and Angiogenesis. Biochem. Soc. Trans. 2011, 39, 1601–1605. [Google Scholar] [CrossRef]
- Panigrahy, D.; Edin, M.L.; Lee, C.R.; Huang, S.; Bielenberg, D.R.; Butterfield, C.E.; Barnés, C.M.; Mammoto, A.; Mammoto, T.; Luria, A.; et al. Epoxyeicosanoids Stimulate Multiorgan Metastasis and Tumor Dormancy Escape in Mice. J. Clin. Investig. 2012, 122, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Yang, S.; Kowalski, J.; Gerritsen, M.E. Peroxisome Proliferator-Activated Receptor Gamma Ligands Are Potent Inhibitors of Angiogenesis in Vitro and in Vivo. J. Biol. Chem. 1999, 274, 9116–9121. [Google Scholar] [CrossRef] [Green Version]
- Sarayba, M.A.; Li, L.; Tungsiripat, T.; Liu, N.H.; Sweet, P.M.; Patel, A.J.; Osann, K.E.; Chittiboyina, A.; Benson, S.C.; Pershadsingh, H.A.; et al. Inhibition of Corneal Neovascularization by a Peroxisome Proliferator-Activated Receptor-Gamma Ligand. Exp. Eye Res. 2005, 80, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Fedele, L.; Somigliana, E.; Frontino, G.; Benaglia, L.; Vigano, P. New Drugs in Development for the Treatment of Endometriosis. Expert Opin. Investig. Drugs 2008, 17, 1187–1202. [Google Scholar] [CrossRef]
- Lebovic, D.I.; Kir, M.; Casey, C.L. Peroxisome Proliferator-Activated Receptor-Gamma Induces Regression of Endometrial Explants in a Rat Model of Endometriosis. Fertil. Steril. 2004, 82 (Suppl. 3), 1008–1013. [Google Scholar] [CrossRef]
- Demirturk, F.; Aytan, H.; Caliskan, A.C.; Aytan, P.; Koseoglu, D.R. Effect of Peroxisome Proliferator-Activated Receptor-Gamma Agonist Rosiglitazone on the Induction of Endometriosis in an Experimental Rat Model. J. Soc. Gynecol. Investig. 2006, 13, 58–62. [Google Scholar] [CrossRef]
- Aytan, H.; Caliskan, A.C.; Demirturk, F.; Aytan, P.; Koseoglu, D.R. Peroxisome Proliferator-Activated Receptor-Gamma Agonist Rosiglitazone Reduces the Size of Experimental Endometriosis in the Rat Model. Aust. N. Z. J. Obstet. Gynaecol. 2007, 47, 321–325. [Google Scholar] [CrossRef]
- Olivares, C.; Ricci, A.; Bilotas, M.; Barañao, R.I.; Meresman, G. The Inhibitory Effect of Celecoxib and Rosiglitazone on Experimental Endometriosis. Fertil. Steril. 2011, 96, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Lebovic, D.I.; Mwenda, J.M.; Chai, D.C.; Mueller, M.D.; Santi, A.; Fisseha, S.; D’Hooghe, T. PPAR-Gamma Receptor Ligand Induces Regression of Endometrial Explants in Baboons: A Prospective, Randomized, Placebo- and Drug-Controlled Study. Fertil. Steril. 2007, 88, 1108–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santulli, P.; Marcellin, L.; Noël, J.-C.; Borghese, B.; Fayt, I.; Vaiman, D.; Chapron, C.; Méhats, C. Sphingosine Pathway Deregulation in Endometriotic Tissues. Fertil. Steril. 2012, 97, 904–911. [Google Scholar] [CrossRef]
- Barcz, E.; Milewski, Ł.; Dziunycz, P.; Kamiński, P.; Płoski, R.; Malejczyk, J. Peritoneal Cytokines and Adhesion Formation in Endometriosis: An Inverse Association with Vascular Endothelial Growth Factor Concentration. Fertil. Steril. 2012, 97, 1380–1386.e1. [Google Scholar] [CrossRef]
- Fan, Y.-Y.; Chen, H.-Y.; Chen, W.; Liu, Y.-N.; Fu, Y.; Wang, L.-N. Expression of Inflammatory Cytokines in Serum and Peritoneal Fluid from Patients with Different Stages of Endometriosis. Gynecol. Endocrinol. 2018, 34, 507–512. [Google Scholar] [CrossRef]
- Sikora, J.; Smycz-Kubańska, M.; Mielczarek-Palacz, A.; Kondera-Anasz, Z. Abnormal Peritoneal Regulation of Chemokine Activation-The Role of IL-8 in Pathogenesis of Endometriosis. Am. J. Reprod. Immunol. 2017, 77. [Google Scholar] [CrossRef] [PubMed]
- Lebovic, D.I.; Baldocchi, R.A.; Mueller, M.D.; Taylor, R.N. Altered Expression of a Cell-Cycle Suppressor Gene, Tob-1, in Endometriotic Cells by CDNA Array Analyses. Fertil. Steril. 2002, 78, 849–854. [Google Scholar] [CrossRef]
- Sikora, J.; Mielczarek-Palacz, A.; Kondera-Anasz, Z. Association of the Precursor of Interleukin-1β and Peritoneal Inflammation-Role in Pathogenesis of Endometriosis. J. Clin. Lab. Anal. 2016, 30, 831–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, K.-Y.; Chang, N.; Lin, S.-C.; Li, Y.-H.; Wu, M.-H. Inhibition of Dual Specificity Phosphatase-2 by Hypoxia Promotes Interleukin-8-Mediated Angiogenesis in Endometriosis. Hum. Reprod. 2014, 29, 2747–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arici, A.; Tazuke, S.I.; Attar, E.; Kliman, H.J.; Olive, D.L. Interleukin-8 Concentration in Peritoneal Fluid of Patients with Endometriosis and Modulation of Interleukin-8 Expression in Human Mesothelial Cells. Mol. Hum. Reprod. 1996, 2, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, I.P.; Tseng, J.F.; Schriock, E.D.; Khorram, O.; Landers, D.V.; Taylor, R.N. Interleukin-8 Concentrations Are Elevated in Peritoneal Fluid of Women with Endometriosis. Fertil. Steril. 1995, 63, 929–932. [Google Scholar] [CrossRef]
- Kalu, E.; Sumar, N.; Giannopoulos, T.; Patel, P.; Croucher, C.; Sherriff, E.; Bansal, A. Cytokine Profiles in Serum and Peritoneal Fluid from Infertile Women with and without Endometriosis. J. Obstet. Gynaecol. Res. 2007, 33, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, F.; Harada, T.; Miyakoda, H.; Iwabe, T.; Deura, I.; Tagashira, Y.; Miyamoto, A.; Watanabe, A.; Suou, K.; Uegaki, T.; et al. TAK1 Activation for Cytokine Synthesis and Proliferation of Endometriotic Cells. Mol. Cell. Endocrinol. 2009, 307, 196–204. [Google Scholar] [CrossRef]
- Gazvani, R.; Templeton, A. Peritoneal Environment, Cytokines and Angiogenesis in the Pathophysiology of Endometriosis. Reproduction 2002, 123, 217–226. [Google Scholar] [CrossRef]
- Lousse, J.-C.; Van Langendonckt, A.; González-Ramos, R.; Defrère, S.; Renkin, E.; Donnez, J. Increased Activation of Nuclear Factor-Kappa B (NF-KappaB) in Isolated Peritoneal Macrophages of Patients with Endometriosis. Fertil. Steril. 2008, 90, 217–220. [Google Scholar] [CrossRef]
- Ahn, S.H.; Monsanto, S.P.; Miller, C.; Singh, S.S.; Thomas, R.; Tayade, C. Pathophysiology and Immune Dysfunction in Endometriosis. BioMed Res. Int. 2015, 2015, 795976. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.-H.; Shoji, Y.; Wu, M.-C.; Chuang, P.-C.; Lin, C.-C.; Huang, M.-F.; Tsai, S.-J. Suppression of Matrix Metalloproteinase-9 by Prostaglandin E(2) in Peritoneal Macrophage Is Associated with Severity of Endometriosis. Am. J. Pathol. 2005, 167, 1061–1069. [Google Scholar] [CrossRef] [Green Version]
- Lousse, J.-C.; Defrère, S.; Colette, S.; Van Langendonckt, A.; Donnez, J. Expression of Eicosanoid Biosynthetic and Catabolic Enzymes in Peritoneal Endometriosis. Hum. Reprod. 2010, 25, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Bulun, S.E.; Monsavais, D.; Pavone, M.E.; Dyson, M.; Xue, Q.; Attar, E.; Tokunaga, H.; Su, E.J. Role of Estrogen Receptor-β in Endometriosis. Semin. Reprod. Med. 2012, 30, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in Health and Disease. J. Lipid Res. 2009, 50, S423–S428. [Google Scholar] [CrossRef] [Green Version]
- Banu, S.K.; Lee, J.; Speights, V.O.; Starzinski-Powitz, A.; Arosh, J.A. Cyclooxygenase-2 Regulates Survival, Migration, and Invasion of Human Endometriotic Cells through Multiple Mechanisms. Endocrinology 2008, 149, 1180–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, G.Y.; Christman, J.W. Involvement of Cyclooxygenase-2 and Prostaglandins in the Molecular Pathogenesis of Inflammatory Lung Diseases. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L797–L805. [Google Scholar] [CrossRef] [Green Version]
- Maia, H.; Maltez, A.; Studard, E.; Zausner, B.; Athayde, C.; Coutinho, E. Effect of the Menstrual Cycle and Oral Contraceptives on Cyclooxygenase-2 Expression in the Endometrium. Gynecol. Endocrinol. 2005, 21, 57–61. [Google Scholar] [CrossRef]
- Ota, H.; Igarashi, S.; Sasaki, M.; Tanaka, T. Distribution of Cyclooxygenase-2 in Eutopic and Ectopic Endometrium in Endometriosis and Adenomyosis. Hum. Reprod. 2001, 16, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Chishima, F.; Hayakawa, S.; Sugita, K.; Kinukawa, N.; Aleemuzzaman, S.; Nemoto, N.; Yamamoto, T.; Honda, M. Increased Expression of Cyclooxygenase-2 in Local Lesions of Endometriosis Patients. Am. J. Reprod. Immunol. 2002, 48, 50–56. [Google Scholar] [CrossRef]
- Wu, M.-H.; Wang, C.-A.; Lin, C.-C.; Chen, L.-C.; Chang, W.-C.; Tsai, S.-J. Distinct Regulation of Cyclooxygenase-2 by Interleukin-1β in Normal and Endometriotic Stromal Cells. J. Clin. Endocrinol. Metab. 2005, 90, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.-H.; Sun, H.S.; Lin, C.-C.; Hsiao, K.-Y.; Chuang, P.-C.; Pan, H.-A.; Tsai, S.-J. Distinct Mechanisms Regulate Cyclooxygenase-1 and -2 in Peritoneal Macrophages of Women with and without Endometriosis. Mol. Hum. Reprod. 2002, 8, 1103–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.; Park, S.H.; Choi, Y.S.; Seo, S.K.; Kim, H.Y.; Park, K.H.; Cho, D.J.; Lee, B.S. Expression of Cyclooxygenase-2 in Eutopic Endometrium and Ovarian Endometriotic Tissue in Women with Severe Endometriosis. Gynecol. Obstet. Investig. 2010, 69, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-H.; Lin, S.-C.; Hsiao, K.-Y.; Tsai, S.-J. Hypoxia-Inhibited Dual-Specificity Phosphatase-2 Expression in Endometriotic Cells Regulates Cyclooxygenase-2 Expression. J. Pathol. 2011, 225, 390–400. [Google Scholar] [CrossRef]
- Kim, B.G.; Yoo, J.-Y.; Kim, T.H.; Shin, J.-H.; Langenheim, J.F.; Ferguson, S.D.; Fazleabas, A.T.; Young, S.L.; Lessey, B.A.; Jeong, J.-W. Aberrant Activation of Signal Transducer and Activator of Transcription-3 (STAT3) Signaling in Endometriosis. Hum. Reprod. 2015, 30, 1069–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, P.; Zhang, Y.; Huang, Y.; Yang, Y.; Jiang, M. Functions of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Gynecologic Disorders. Clin. Med. Insights Oncol. 2015, 9, CMO.S23527. [Google Scholar] [CrossRef] [Green Version]
- Moravek, M.B.; Ward, E.A.; Lebovic, D.I. Thiazolidinediones as Therapy for Endometriosis: A Case Series. Gynecol. Obstet. Investig. 2009, 68, 167–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, I.; Dhawan, V.; Saha, S.C.; Dhaliwal, L.K. In Vitro Effects of Peroxisome Proliferator-Activated Receptor-γ Ligands on Gene Expression in Lipopolysaccharide-Induced Endometrial and Endometriotic Stromal Cells. Fertil. Steril. 2011, 95, 829–831.e5. [Google Scholar] [CrossRef]
- Lebovic, D.I.; Mwenda, J.M.; Chai, D.C.; Santi, A.; Xu, X.; D’Hooghe, T. Peroxisome Proliferator-Activated Receptor-(Gamma) Receptor Ligand Partially Prevents the Development of Endometrial Explants in Baboons: A Prospective, Randomized, Placebo-Controlled Study. Endocrinology 2010, 151, 1846–1852. [Google Scholar] [CrossRef]
- Nenicu, A.; Körbel, C.; Gu, Y.; Menger, M.D.; Laschke, M.W. Combined Blockade of Angiotensin II Type 1 Receptor and Activation of Peroxisome Proliferator-Activated Receptor-γ by Telmisartan Effectively Inhibits Vascularization and Growth of Murine Endometriosis-like Lesions. Hum. Reprod. 2014, 29, 1011–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheu, W.H.-H.; Ou, H.-C.; Chou, F.-P.; Lin, T.-M.; Yang, C.-H. Rosiglitazone Inhibits Endothelial Proliferation and Angiogenesis. Life Sci. 2006, 78, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Aljada, A.; O’Connor, L.; Fu, Y.-Y.; Mousa, S.A. PPAR Gamma Ligands, Rosiglitazone and Pioglitazone, Inhibit BFGF- and VEGF-Mediated Angiogenesis. Angiogenesis 2008, 11, 361–367. [Google Scholar] [CrossRef]
- Kavoussi, S.K.; Witz, C.A.; Binkley, P.A.; Nair, A.S.; Lebovic, D.I. Peroxisome-Proliferator Activator Receptor-Gamma Activation Decreases Attachment of Endometrial Cells to Peritoneal Mesothelial Cells in an in Vitro Model of the Early Endometriotic Lesion. Mol. Hum. Reprod. 2009, 15, 687–692. [Google Scholar] [CrossRef]
- Imamoto, E.; Yoshida, N.; Uchiyama, K.; Kuroda, M.; Kokura, S.; Ichikawa, H.; Naito, Y.; Tanigawa, T.; Yoshikawa, T. Inhibitory Effect of Pioglitazone on Expression of Adhesion Molecules on Neutrophils and Endothelial Cells. Biofactors 2004, 20, 37–47. [Google Scholar] [CrossRef]
- Arnold, R.; Neumann, M.; König, W. Peroxisome Proliferator-Activated Receptor-Gamma Agonists Inhibit Respiratory Syncytial Virus-Induced Expression of Intercellular Adhesion Molecule-1 in Human Lung Epithelial Cells. Immunology 2007, 121, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhuang, L.; Liu, Q.; Yu, X.; Min, Q.; Chen, M.; Chen, Q. PPARγ Induces the Paroxysm of Endometriosis by Regulating the Transcription of MAT2A Gene. Am. J. Transl. Res. 2021, 13, 1377–1388. [Google Scholar]
- Herington, J.L.; Crispens, M.A.; Carvalho-Macedo, A.C.; Camargos, A.F.; Lebovic, D.I.; Bruner-Tran, K.L.; Osteen, K.G. Development and Prevention of Postsurgical Adhesions in a Chimeric Mouse Model of Experimental Endometriosis. Fertil. Steril. 2011, 95, 1295–1301.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folkman, J.; Shing, Y. Angiogenesis. J. Biol. Chem. 1992, 267, 10931–10934. [Google Scholar] [CrossRef]
- Risau, W. Mechanisms of Angiogenesis. Nature 1997, 386, 671–674. [Google Scholar] [CrossRef]
- Rooprai, H.K.; McCormick, D. Proteases and Their Inhibitors in Human Brain Tumours: A Review. Anticancer. Res. 1997, 17, 4151–4162. [Google Scholar]
- Lakka, S.S.; Gondi, C.S.; Rao, J.S. Proteases and Glioma Angiogenesis. Brain Pathol. 2005, 15, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Laschke, M.W.; Menger, M.D. Basic Mechanisms of Vascularization in Endometriosis and Their Clinical Implications. Hum. Reprod. Update 2018, 24, 207–224. [Google Scholar] [CrossRef]
- Anastasiu, C.V.; Moga, M.A.; Elena Neculau, A.; Bălan, A.; Scârneciu, I.; Dragomir, R.M.; Dull, A.-M.; Chicea, L.-M. Biomarkers for the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, A.L.L.; Reis, F.M.; Taylor, R.N. Angiogenesis and Endometriosis. Obstet. Gynecol. Int. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Zimna, A.; Kurpisz, M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res. Int. 2015, 2015, 549412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, A.S.; Lee, J.; Ferrara, N. Targeting the Tumour Vasculature: Insights from Physiological Angiogenesis. Nat. Rev. Cancer 2010, 10, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Kerbel, R.S. Angiogenesis as a Therapeutic Target. Nature 2005, 438, 967–974. [Google Scholar] [CrossRef]
- Kerbel, R.S. Tumor Angiogenesis. N. Engl. J. Med. 2008, 358, 2039–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safran, M.; Kaelin, W.G. HIF Hydroxylation and the Mammalian Oxygen-Sensing Pathway. J. Clin. Investig. 2003, 111, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Onishi, M.; Ichikawa, T.; Kurozumi, K.; Date, I. Angiogenesis and Invasion in Glioma. Brain Tumor Pathol. 2011, 28, 13–24. [Google Scholar] [CrossRef]
- Bergers, G.; Song, S. The Role of Pericytes in Blood-Vessel Formation and Maintenance. Neuro-Oncology 2005, 7, 452–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiss, Y.; Machein, M.R.; Plate, K.H. The Role of Angiopoietins during Angiogenesis in Gliomas. Brain Pathol. 2005, 15, 311–317. [Google Scholar] [CrossRef]
- Jones, N.; Iljin, K.; Dumont, D.J.; Alitalo, K. Tie Receptors: New Modulators of Angiogenic and Lymphangiogenic Responses. Nat. Rev. Mol. Cell Biol. 2001, 2, 257–267. [Google Scholar] [CrossRef]
- Maisonpierre, P.C.; Suri, C.; Jones, P.F.; Bartunkova, S.; Wiegand, S.J.; Radziejewski, C.; Compton, D.; McClain, J.; Aldrich, T.H.; Papadopoulos, N.; et al. Angiopoietin-2, a Natural Antagonist for Tie2 That Disrupts in Vivo Angiogenesis. Science 1997, 277, 55–60. [Google Scholar] [CrossRef]
- Dumont, D.J.; Gradwohl, G.; Fong, G.H.; Puri, M.C.; Gertsenstein, M.; Auerbach, A.; Breitman, M.L. Dominant-Negative and Targeted Null Mutations in the Endothelial Receptor Tyrosine Kinase, Tek, Reveal a Critical Role in Vasculogenesis of the Embryo. Genes Dev. 1994, 8, 1897–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagzag, D.; Amirnovin, R.; Greco, M.A.; Yee, H.; Holash, J.; Wiegand, S.J.; Zabski, S.; Yancopoulos, G.D.; Grumet, M. Vascular Apoptosis and Involution in Gliomas Precede Neovascularization: A Novel Concept for Glioma Growth and Angiogenesis. Lab. Investig. 2000, 80, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Hardee, M.E.; Zagzag, D. Mechanisms of Glioma-Associated Neovascularization. Am. J. Pathol. 2012, 181, 1126–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbajo-Lozoya, J.; Lutz, S.; Feng, Y.; Kroll, J.; Hammes, H.-P.; Wieland, T. Angiotensin II Modulates VEGF-Driven Angiogenesis by Opposing Effects of Type 1 and Type 2 Receptor Stimulation in the Microvascular Endothelium. Cell Signal 2012, 24, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, A. Endothelium-Derived Vasoactive Agents, AT1 Receptors and Inflammation. Pharmacol. Ther. 2011, 131, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xin, X.; Hua, T.; Shi, R.; Chi, S.; Jin, Z.; Wang, H. Efficacy of Anti-VEGF/VEGFR Agents on Animal Models of Endometriosis: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0166658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallée, A.; Lecarpentier, Y.; Vallée, J.-N. Curcumin: A Therapeutic Strategy in Cancers by Inhibiting the Canonical WNT/β-Catenin Pathway. J. Exp. Clin. Cancer Res. 2019, 38, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallée, A.; Guillevin, R.; Vallée, J.-N. Vasculogenesis and Angiogenesis Initiation under Normoxic Conditions through Wnt/β-Catenin Pathway in Gliomas. Rev. Neurosci. 2018, 29, 71–91. [Google Scholar] [CrossRef]
- Mayerhofer, M.; Valent, P.; Sperr, W.R.; Griffin, J.D.; Sillaber, C. BCR/ABL Induces Expression of Vascular Endothelial Growth Factor and Its Transcriptional Activator, Hypoxia Inducible Factor-1alpha, through a Pathway Involving Phosphoinositide 3-Kinase and the Mammalian Target of Rapamycin. Blood 2002, 100, 3767–3775. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.-K.; Liu, L.-B.; Jin, L.-P.; Meng, Y.-H.; Shao, J.; Wang, Y.; Mei, J.; Li, M.-Q.; Li, D.-J. NME1 Suppression of Endometrial Stromal Cells Promotes Angiogenesis in the Endometriotic Milieu via Stimulating the Secretion of IL-8 and VEGF. Int. J. Clin. Exp. Pathol. 2013, 6, 2030–2038. [Google Scholar] [PubMed]
- Yeo, S.G.; Won, Y.S.; Lee, H.Y.; Kim, Y.I.; Lee, J.-W.; Park, D.C. Increased Expression of Pattern Recognition Receptors and Nitric Oxide Synthase in Patients with Endometriosis. Int. J. Med. Sci. 2013, 10, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, S.; Darcha, C. Co-Operation between the AKT and ERK Signaling Pathways May Support Growth of Deep Endometriosis in a Fibrotic Microenvironment in Vitro. Hum. Reprod. 2015, 30, 1606–1616. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhao, X.; Liu, S.; Li, J.; Wen, Z.; Li, M. 17betaE2 Promotes Cell Proliferation in Endometriosis by Decreasing PTEN via NFkappaB-Dependent Pathway. Mol. Cell. Endocrinol. 2010, 317, 31–43. [Google Scholar] [CrossRef]
- Peeters, L.L.H.; Vigne, J.-L.; Tee, M.K.; Zhao, D.; Waite, L.L.; Taylor, R.N. PPAR Gamma Represses VEGF Expression in Human Endometrial Cells: Implications for Uterine Angiogenesis. Angiogenesis 2005, 8, 373–379. [Google Scholar] [CrossRef]
- Streuli, I.; de Ziegler, D.; Borghese, B.; Santulli, P.; Batteux, F.; Chapron, C. New Treatment Strategies and Emerging Drugs in Endometriosis. Expert Opin. Emerg. Drugs 2012. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Oike, Y.; Izumi-Nagai, K.; Urano, T.; Kubota, Y.; Noda, K.; Ozawa, Y.; Inoue, M.; Tsubota, K.; Suda, T.; et al. Angiotensin II Type 1 Receptor-Mediated Inflammation Is Required for Choroidal Neovascularization. Arter. Thromb. Vasc. Biol. 2006, 26, 2252–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaki, Y.; Nakade, Y.; Yamauchi, T.; Makino, Y.; Yokohama, S.; Okada, M.; Aso, K.; Kanamori, H.; Ohashi, T.; Sato, K.; et al. Angiotensin II Type 1 Receptor Antagonist Prevents Hepatic Carcinoma in Rats with Nonalcoholic Steatohepatitis. J. Gastroenterol. 2013, 48, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Desouza, C.V.; Rentschler, L.; Fonseca, V. Peroxisome Proliferator-Activated Receptors as Stimulants of Angiogenesis in Cardiovascular Disease and Diabetes. Diabetes Metab. Syndr. Obes. 2009, 2, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyama, C.M.; Overbergh, L.; Mihalyi, A.; Meuleman, C.; Mwenda, J.M.; Mathieu, C.; D’Hooghe, T.M. Endometrial and Peritoneal Expression of Aromatase, Cytokines, and Adhesion Factors in Women with Endometriosis. Fertil. Steril. 2008, 89, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Borghese, B.; Mondon, F.; Noël, J.-C.; Fayt, I.; Mignot, T.-M.; Vaiman, D.; Chapron, C. Gene Expression Profile for Ectopic versus Eutopic Endometrium Provides New Insights into Endometriosis Oncogenic Potential. Mol. Endocrinol. 2008, 22, 2557–2562. [Google Scholar] [CrossRef]
- Hadler-Olsen, E.; Winberg, J.-O.; Uhlin-Hansen, L. Matrix Metalloproteinases in Cancer: Their Value as Diagnostic and Prognostic Markers and Therapeutic Targets. Tumour Biol. 2013, 34, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Rudra, D.S.; Paul, S.; Snehasikta, S. Curcumin Delays Endometriosis Development by Inhibiting MMP-2 Activity. Indian J. Biochem. Biophys. 2012, 49, 342–348. [Google Scholar] [PubMed]
- Marbaix, E.; Kokorine, I.; Henriet, P.; Donnez, J.; Courtoy, P.J.; Eeckhout, Y. The Expression of Interstitial Collagenase in Human Endometrium Is Controlled by Progesterone and by Oestradiol and Is Related to Menstruation. Biochem. J. 1995, 305 Pt 3, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Hulboy, D.L.; Rudolph, L.A.; Matrisian, L.M. Matrix Metalloproteinases as Mediators of Reproductive Function. Mol. Hum. Reprod. 1997, 3, 27–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodgers, W.H.; Matrisian, L.M.; Giudice, L.C.; Dsupin, B.; Cannon, P.; Svitek, C.; Gorstein, F.; Osteen, K.G. Patterns of Matrix Metalloproteinase Expression in Cycling Endometrium Imply Differential Functions and Regulation by Steroid Hormones. J. Clin. Investig. 1994, 94, 946–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruner, K.L.; Eisenberg, E.; Gorstein, F.; Osteen, K.G. Progesterone and Transforming Growth Factor-Beta Coordinately Regulate Suppression of Endometrial Matrix Metalloproteinases in a Model of Experimental Endometriosis. Steroids 1999, 64, 648–653. [Google Scholar] [CrossRef]
- Spuijbroek, M.D.; Dunselman, G.A.; Menheere, P.P.; Evers, J.L. Early Endometriosis Invades the Extracellular Matrix. Fertil. Steril. 1992, 58, 929–933. [Google Scholar] [CrossRef]
- Stamenkovic, I. Extracellular Matrix Remodelling: The Role of Matrix Metalloproteinases. J. Pathol. 2003, 200, 448–464. [Google Scholar] [CrossRef]
- Sun, H.S.; Hsiao, K.-Y.; Hsu, C.-C.; Wu, M.-H.; Tsai, S.-J. Transactivation of Steroidogenic Acute Regulatory Protein in Human Endometriotic Stromalcells Is Mediated by the Prostaglandin EP2 Receptor. Endocrinology 2003, 144, 3934–3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchanan, F.G.; Wang, D.; Bargiacchi, F.; DuBois, R.N. Prostaglandin E2 Regulates Cell Migration via the Intracellular Activation of the Epidermal Growth Factor Receptor. J. Biol. Chem. 2003, 278, 35451–35457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; DuBois, R.N. The Role of Prostaglandin E(2) in Tumor-Associated Immunosuppression. Trends Mol. Med. 2016, 22, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Lucidi, R.S.; Witz, C.A.; Chrisco, M.; Binkley, P.A.; Shain, S.A.; Schenken, R.S. A Novel in Vitro Model of the Early Endometriotic Lesion Demonstrates That Attachment of Endometrial Cells to Mesothelial Cells Is Dependent on the Source of Endometrial Cells. Fertil. Steril. 2005, 84, 16–21. [Google Scholar] [CrossRef]
- Laschke, M.W.; Elitzsch, A.; Scheuer, C.; Vollmar, B.; Menger, M.D. Selective Cyclo-Oxygenase-2 Inhibition Induces Regression of Autologous Endometrial Grafts by down-Regulation of Vascular Endothelial Growth Factor-Mediated Angiogenesis and Stimulation of Caspase-3-Dependent Apoptosis. Fertil. Steril. 2007, 87, 163–171. [Google Scholar] [CrossRef]
- Yao, M.; Kargman, S.; Lam, E.C.; Kelly, C.R.; Zheng, Y.; Luk, P.; Kwong, E.; Evans, J.F.; Wolfe, M.M. Inhibition of Cyclooxygenase-2 by Rofecoxib Attenuates the Growth and Metastatic Potential of Colorectal Carcinoma in Mice. Cancer Res. 2003, 63, 586–592. [Google Scholar]
- Kokawa, K.; Shikone, T.; Nakano, R. Apoptosis in the Human Uterine Endometrium during the Menstrual Cycle. J. Clin. Endocrinol. Metab. 1996, 81, 4144–4147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikone, T.; Yamoto, M.; Kokawa, K.; Yamashita, K.; Nishimori, K.; Nakano, R. Apoptosis of Human Corpora Lutea during Cyclic Luteal Regression and Early Pregnancy. J. Clin. Endocrinol. Metab. 1996, 81, 2376–2380. [Google Scholar] [CrossRef] [PubMed]
- Gebel, H.M.; Braun, D.P.; Tambur, A.; Frame, D.; Rana, N.; Dmowski, W.P. Spontaneous Apoptosis of Endometrial Tissue Is Impaired in Women with Endometriosis. Fertil. Steril. 1998, 69, 1042–1047. [Google Scholar] [CrossRef]
- Harada, A.; Kimura, Y.; Kojima, C.; Kono, K. Effective Tolerance to Serum Proteins of Head-Tail Type Polycation Vectors by PEGylation at the Periphery of the Head Block. Biomacromolecules 2010, 11, 1036–1042. [Google Scholar] [CrossRef]
- Vaskivuo, T.E.; Stenbäck, F.; Karhumaa, P.; Risteli, J.; Dunkel, L.; Tapanainen, J.S. Apoptosis and Apoptosis-Related Proteins in Human Endometrium. Mol. Cell. Endocrinol. 2000, 165, 75–83. [Google Scholar] [CrossRef]
- Iba, Y.; Harada, T.; Horie, S.; Deura, I.; Iwabe, T.; Terakawa, N. Lipopolysaccharide-Promoted Proliferation of Endometriotic Stromal Cells via Induction of Tumor Necrosis Factor Alpha and Interleukin-8 Expression. Fertil. Steril. 2004, 82 (Suppl. 3), 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.N.; Masuzaki, H.; Fujishita, A.; Kitajima, M.; Hiraki, K.; Sekine, I.; Matsuyama, T.; Ishimaru, T. Interleukin-6- and Tumour Necrosis Factor Alpha-Mediated Expression of Hepatocyte Growth Factor by Stromal Cells and Its Involvement in the Growth of Endometriosis. Hum. Reprod. 2005, 20, 2715–2723. [Google Scholar] [CrossRef] [Green Version]
- Cinar, O.; Seval, Y.; Uz, Y.H.; Cakmak, H.; Ulukus, M.; Kayisli, U.A.; Arici, A. Differential Regulation of Akt Phosphorylation in Endometriosis. Reprod. BioMed Online 2009, 19, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Brazil, D.P.; Yang, Z.-Z.; Hemmings, B.A. Advances in Protein Kinase B Signalling: AKTion on Multiple Fronts. Trends Biochem. Sci. 2004, 29, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Liu, L.; Chin, P.C.; D’Mello, S.R. Akt Is a Downstream Target of NF-Kappa B. J. Biol. Chem. 2002, 277, 29674–29680. [Google Scholar] [CrossRef] [Green Version]
- Romashkova, J.A.; Makarov, S.S. NF-KappaB Is a Target of AKT in Anti-Apoptotic PDGF Signalling. Nature 1999, 401, 86–90. [Google Scholar] [CrossRef]
- Deveraux, Q.L.; Roy, N.; Stennicke, H.R.; Van Arsdale, T.; Zhou, Q.; Srinivasula, S.M.; Alnemri, E.S.; Salvesen, G.S.; Reed, J.C. IAPs Block Apoptotic Events Induced by Caspase-8 and Cytochrome c by Direct Inhibition of Distinct Caspases. EMBO J. 1998, 17, 2215–2223. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.G.; Parsons, M.; Bonnard, M.; Chan, V.S.; Yeh, W.C.; Woodgett, J.R.; Ohashi, P.S. Protein Kinase B Regulates T Lymphocyte Survival, Nuclear Factor KappaB Activation, and Bcl-X(L) Levels in Vivo. J. Exp. Med. 2000, 191, 1721–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, W.X.; Edelstein, L.C.; Chen, C.; Bash, J.; Gélinas, C. The Prosurvival Bcl-2 Homolog Bfl-1/A1 Is a Direct Transcriptional Target of NF-KappaB That Blocks TNFalpha-Induced Apoptosis. Genes Dev. 1999, 13, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Unsicker, K. ERK and Cell Death: ERK1/2 in Neuronal Death. FEBS J. 2010, 277, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Mourtzikou, A.; Kosmas, K.; Marouga, A.; Stamouli, M.; Pouliakis, A.; Karakitsos, P. The Use of an Immunocytochemical Double-Labeling Staining Can Display the Distribution of Bcl-2/Ki-67 Cells in Endometrial Adenocarcinomas as Well as in Normal Endometrium. Clin. Lab. 2012, 58, 133–144. [Google Scholar]
- Andradas, C.; Caffarel, M.M.; Pérez-Gómez, E.; Salazar, M.; Lorente, M.; Velasco, G.; Guzmán, M.; Sánchez, C. The Orphan G Protein-Coupled Receptor GPR55 Promotes Cancer Cell Proliferation via ERK. Oncogene 2011, 30, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.-J.; Wang, M.-J.; Ju, L.-H.; Wang, C.; Zhu, Y.-C. Hydrogen Sulfide Induces Human Colon Cancer Cell Proliferation: Role of Akt, ERK and P21. Cell Biol. Int. 2010, 34, 565–572. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, L.; Tashiro, S.; Onodera, S.; Ikejima, T. Phosphorylated Extracellular Signal-Regulated Kinase up-Regulated P53 Expression in Shikonin-Induced HeLa Cell Apoptosis. Chin. Med. J. 2005, 118, 671–677. [Google Scholar]
- Yin, X.; Pavone, M.E.; Lu, Z.; Wei, J.; Kim, J.J. Increased Activation of the PI3K/AKT Pathway Compromises Decidualization of Stromal Cells from Endometriosis. J. Clin. Endocrinol. Metab. 2012, 97, E35–E43. [Google Scholar] [CrossRef] [Green Version]
- Saini, K.S.; Loi, S.; de Azambuja, E.; Metzger-Filho, O.; Saini, M.L.; Ignatiadis, M.; Dancey, J.E.; Piccart-Gebhart, M.J. Targeting the PI3K/AKT/MTOR and Raf/MEK/ERK Pathways in the Treatment of Breast Cancer. Cancer Treat. Rev. 2013, 39, 935–946. [Google Scholar] [CrossRef]
- De Luca, A.; Maiello, M.R.; D’Alessio, A.; Pergameno, M.; Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT Signalling Pathways: Role in Cancer Pathogenesis and Implications for Therapeutic Approaches. Expert Opin. Ther. Targets 2012, 16 (Suppl. 2), S17–S27. [Google Scholar] [CrossRef]
- Serra, V.; Scaltriti, M.; Prudkin, L.; Eichhorn, P.J.A.; Ibrahim, Y.H.; Chandarlapaty, S.; Markman, B.; Rodriguez, O.; Guzman, M.; Rodriguez, S.; et al. PI3K Inhibition Results in Enhanced HER Signaling and Acquired ERK Dependency in HER2-Overexpressing Breast Cancer. Oncogene 2011, 30, 2547–2557. [Google Scholar] [CrossRef] [PubMed]
- Hoeflich, K.P.; O’Brien, C.; Boyd, Z.; Cavet, G.; Guerrero, S.; Jung, K.; Januario, T.; Savage, H.; Punnoose, E.; Truong, T.; et al. In Vivo Antitumor Activity of MEK and Phosphatidylinositol 3-Kinase Inhibitors in Basal-like Breast Cancer Models. Clin. Cancer Res. 2009, 15, 4649–4664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngô, C.; Chéreau, C.; Nicco, C.; Weill, B.; Chapron, C.; Batteux, F. Reactive Oxygen Species Controls Endometriosis Progression. Am. J. Pathol. 2009, 175, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Banu, S.K.; Lee, J.; Speights, V.O.; Starzinski-Powitz, A.; Arosh, J.A. Selective Inhibition of Prostaglandin E2 Receptors EP2 and EP4 Induces Apoptosis of Human Endometriotic Cells through Suppression of ERK1/2, AKT, NFkappaB, and Beta-Catenin Pathways and Activation of Intrinsic Apoptotic Mechanisms. Mol. Endocrinol. 2009, 23, 1291–1305. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Banu, S.K.; Subbarao, T.; Starzinski-Powitz, A.; Arosh, J.A. Selective Inhibition of Prostaglandin E2 Receptors EP2 and EP4 Inhibits Invasion of Human Immortalized Endometriotic Epithelial and Stromal Cells through Suppression of Metalloproteinases. Mol. Cell Endocrinol. 2011, 332, 306–313. [Google Scholar] [CrossRef]
- Bulun, S.E.; Yang, S.; Fang, Z.; Gurates, B.; Tamura, M.; Sebastian, S. Estrogen Production and Metabolism in Endometriosis. Ann. N. Y. Acad. Sci. 2002, 955, 75–85, discussion 86–88, 396–406. [Google Scholar] [CrossRef]
- Bulun, S.E.; Fang, Z.; Imir, G.; Gurates, B.; Tamura, M.; Yilmaz, B.; Langoi, D.; Amin, S.; Yang, S.; Deb, S. Aromatase and Endometriosis. Semin. Reprod. Med. 2004, 22, 45–50. [Google Scholar] [CrossRef]
- Bulun, S.E.; Yilmaz, B.D.; Sison, C.; Miyazaki, K.; Bernardi, L.; Liu, S.; Kohlmeier, A.; Yin, P.; Milad, M.; Wei, J. Endometriosis. Endocr. Rev. 2019, 40, 1048–1079. [Google Scholar] [CrossRef] [PubMed]
- Attar, E.; Tokunaga, H.; Imir, G.; Yilmaz, M.B.; Redwine, D.; Putman, M.; Gurates, B.; Attar, R.; Yaegashi, N.; Hales, D.B.; et al. Prostaglandin E2 via Steroidogenic Factor-1 Coordinately Regulates Transcription of Steroidogenic Genes Necessary for Estrogen Synthesis in Endometriosis. J. Clin. Endocrinol. Metab. 2009, 94, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, G.L.; Zhao, Y.; Kalus, A.M.; Simpson, E.R. Peroxisome Proliferator-Activated Receptor Gamma Ligands Inhibit Estrogen Biosynthesis in Human Breast Adipose Tissue: Possible Implications for Breast Cancer Therapy. Cancer Res. 2000, 60, 1604–1608. [Google Scholar] [PubMed]
- Subbaramaiah, K.; Howe, L.R.; Zhou, X.K.; Yang, P.; Hudis, C.A.; Kopelovich, L.; Dannenberg, A.J. Pioglitazone, a PPARγ Agonist, Suppresses CYP19 Transcription: Evidence for Involvement of 15-Hydroxyprostaglandin Dehydrogenase and BRCA1. Cancer Prev. Res. 2012, 5, 1183–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, W.; Yanase, T.; Morinaga, H.; Mu, Y.-M.; Nomura, M.; Okabe, T.; Goto, K.; Harada, N.; Nawata, H. Activation of Peroxisome Proliferator-Activated Receptor-Gamma and Retinoid X Receptor Inhibits Aromatase Transcription via Nuclear Factor-KappaB. Endocrinology 2005, 146, 85–92. [Google Scholar] [CrossRef]
- Banu, S.K.; Lee, J.; Satterfield, M.C.; Spencer, T.E.; Bazer, F.W.; Arosh, J.A. Molecular Cloning and Characterization of Prostaglandin (PG) Transporter in Ovine Endometrium: Role for Multiple Cell Signaling Pathways in Transport of PGF2alpha. Endocrinology 2008, 149, 219–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | PPARγ agonist | Target | Actions | Model | References |
---|---|---|---|---|---|
Inflammation | Rosiglitazone | - | Decreased symptom severity scale and pain | Women | [75] |
Rosiglitazone | - | Diminution of implant volume, cell proliferation, apoptosis, and inflammation | Female BALB/c mice | [44] | |
Rosiglitazone | - | Diminution of inflammation | Endometriotic stromal cells | [76] | |
Angiogenesis | Ciglitazone | Decrease VEGF | Decreased the size of ectopic uterine tissues and the mean explant wet weight | Rat model of endometriosis | [41] |
Rosiglitazone | Decrease VEGF | Endometriotic lesions were statistically significantly lower in rosiglitazone-treated baboons when compared with the placebo group | Female baboons | [45] | |
Pioglitazone | Decrease VEGF | The surface area and volume of endometriotic lesions were significantly lower in pioglitazone-treated baboons than the placebo group | Female baboons | [77] | |
Ciglitazone | Decrease PGE2 Decrease P450 aromatase | Inhibition growth cells and cell proliferation | Endometriotic epithelial cells | [21] | |
Pioglitazone | reduction of AT1R proteins | Decrease in density of CD31-positive micro-vessels | Murine endometriosis-like lesions | [78] | |
Rosiglitazone | Decrease VEGF | Reduction of endothelial cell proliferation and migration | Human umbilical vein endothelial cells | [79] | |
Pioglitazone and rosiglitazone | Decrease bFGF and VEGF | Reduction in blood vessel formation | Chorioallantois membrane model | [80] | |
Adhesion and Invasion | Ciglitazone | Decrease CAM | Reduction of invasion | LP9 cells | [81] |
Pioglitazone | Decrease VCAM-1 | Inhibition of vascular cell adhesion | Endothelial cells | [82] | |
15d-PGJ2, Ciglitazone, Troglitazone | Decrease ICAM-1 | b2-integrin-mediated adhesion | Lung epithelial human cells | [83] | |
Rosiglitazone | Modulation promoters of MAT2A gene | Reduction of proliferation, apoptosis, and invasion | In vitro endometrial lesions | [84] | |
Apoptosis | Rosiglitazone | - | Endometriotic implant growth | Female BALB/c mice | [44] |
Rosiglitazone | - | Endometriotic implant growth | Rat model | [42] | |
Rosiglitazone | - | Decrease in height and spherical volumes | Rat model | [43] | |
Pioglitazone | - | Diminution of postsurgical adhesions | Chimeric mouse model | [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallée, A.; Vallée, J.-N.; Le Blanche, A.; Lecarpentier, Y. PPARγ Agonists: Emergent Therapy in Endometriosis. Pharmaceuticals 2021, 14, 543. https://doi.org/10.3390/ph14060543
Vallée A, Vallée J-N, Le Blanche A, Lecarpentier Y. PPARγ Agonists: Emergent Therapy in Endometriosis. Pharmaceuticals. 2021; 14(6):543. https://doi.org/10.3390/ph14060543
Chicago/Turabian StyleVallée, Alexandre, Jean-Noël Vallée, Alain Le Blanche, and Yves Lecarpentier. 2021. "PPARγ Agonists: Emergent Therapy in Endometriosis" Pharmaceuticals 14, no. 6: 543. https://doi.org/10.3390/ph14060543
APA StyleVallée, A., Vallée, J. -N., Le Blanche, A., & Lecarpentier, Y. (2021). PPARγ Agonists: Emergent Therapy in Endometriosis. Pharmaceuticals, 14(6), 543. https://doi.org/10.3390/ph14060543