Updates on Novel Non-Replacement Drugs for Hemophilia
Abstract
:1. Introduction
2. Novel Non-Replacement Drugs
2.1. Fitusiran
2.2. SerpinPC
2.3. Anti-TFPI
2.3.1. Concizumab
2.3.2. Marstacimab
2.3.3. Other Anti-TFPI Antibodies
2.4. Mim8
3. Safety Issues and Effects on Coagulation Assays of Novel Non-Replacement Therapies
4. Discussion
5. Materials and Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolton-Maggs, P.H.; Pasi, K.J. Haemophilias A and B. Lancet 2003, 361, 1801–1809. [Google Scholar] [CrossRef]
- Srivastava, A.; Santagostino, E.; Dougall, A.; Kitchen, S.; Sutherland, M.; Pipe, S.W.; Carcao, M.; Mahlangu, J.; Ragni, M.V.; Windyga, J.; et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia 2020, 26 (Suppl. S6), 1–158. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M. Hemophilia therapy: The future has begun. Haematologica 2020, 105, 545–553. [Google Scholar] [CrossRef]
- Wight, J.; Paisley, S. The epidemiology of inhibitors in haemophilia A: A systematic review. Haemophilia 2003, 9, 418–435. [Google Scholar] [CrossRef] [PubMed]
- Puetz, J.; Soucie, J.M.; Kempton, C.L.; Monahan, P.E.; Hemophilia Treatment Center Network (HTCN) Investigators. Prevalent inhibitors in haemophilia B subjects enrolled in the Universal Data Collection database. Haemophilia 2014, 20, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, J.; Mahlangu, J.N.; Kim, B.; Schmitt, C.; Callaghan, M.U.; Young, G.; Santagostino, E.; Kruse-Jarres, R.; Negrier, C.; Kessler, C.; et al. Emicizumab Prophylaxis in Hemophilia A with Inhibitors. N. Engl. J. Med. 2017, 377, 809–818. [Google Scholar] [CrossRef]
- Kitazawa, T.; Igawa, T.; Sampei, Z.; Muto, A.; Kojima, T.; Soeda, T.; Yoshihashi, K.; Okuyama-Nishida, Y.; Saito, H.; Tsunoda, H.; et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat. Med. 2012, 18, 1570–1574. [Google Scholar] [CrossRef] [PubMed]
- Lenting, P.J.; Denis, C.V.; Christophe, O.D. Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: How does it actually compare to factor VIII? Blood 2017, 130, 2463–2468. [Google Scholar] [CrossRef]
- Chitlur, M.; Warrier, I.; Rajpurkar, M.; Lusher, J.M. Inhibitors in factor IX deficiency a report of the ISTH-SSC international FIX inhibitor registry (1997–2006). Haemophilia 2009, 15, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Kempton, C.L.; Meeks, S.L. Toward optimal therapy for inhibitors in hemophilia. Blood 2014, 124, 3365–3372. [Google Scholar] [CrossRef] [Green Version]
- Lenting, P.J. Laboratory monitoring of hemophilia A treatments: New challenges. Blood Adv. 2020, 4, 2111–2118. [Google Scholar] [CrossRef] [PubMed]
- Ragni, M.V. Thrombosis Complicating Non-Factor Therapy for Hemophilia. Med. Res. Arch. 2021, 9. [Google Scholar] [CrossRef]
- Shetty, S.; Vora, S.; Kulkarni, B.; Mota, L.; Vijapurkar, M.; Quadros, L.; Ghosh, K. Contribution of natural anticoagulant and fibrinolytic factors in modulating the clinical severity of haemophilia patients. Br. J. Haematol. 2007, 138, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Bolliger, D.; Szlam, F.; Suzuki, N.; Matsushita, T.; Tanaka, K.A. Heterozygous antithrombin deficiency improves in vivo haemostasis in factor VIII-deficient mice. Thromb. Haemost. 2010, 103, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Pasi, K.J.; Rangarajan, S.; Georgiev, P.; Mant, T.; Creagh, M.D.; Lissitchkov, T.; Bevan, D.; Austin, S.; Hay, C.R.; Hegemann, I.; et al. Targeting of Antithrombin in Hemophilia A or B with RNAi Therapy. N. Engl. J. Med. 2017, 377, 819–828. [Google Scholar] [CrossRef]
- Pipe, S.W.; Pasi, M.J.; Lissitchkov, T.; Ragni, M.M.V.; Négrier, C.; Yu, Q.; Poloskey, S.; Mei, B.; Andersson, S.R. Long-Term Durability, Safety and Efficacy of Fitusiran Prophylaxis in People with Hemophilia a or B, with or without Inhibitors—Results from the Phase II Study. Blood 2020, 136 (Suppl. S1), 3–4. [Google Scholar] [CrossRef]
- Alnylam. 2018. Available online: http://investors.alnylam.com/releasedetail.cfm?ReleaseID=1032569 (accessed on 15 March 2018).
- Alnylam. 2017. Available online: http://investors.alnylam.com/releasedetail.cfm?ReleaseID=1039464 (accessed on 21 September 2017).
- Young, G.; Srivastava, A.; Kavakli, K.; Ross, C.; Sathar, J.; Tran, H.; Wu, R.; Sun, J.; Poloskey, S.; Qui, Z.; et al. Efficacy and Safety of Fitusiran Prophylaxis, an siRNA Therapeutic, in a Multicenter Phase 3 Study (ATLAS-INH) in People with Hemophilia A or B, with Inhibitors (PwHI). Blood 2021, 138, 4. [Google Scholar] [CrossRef]
- Srivastava, A.; Rangarajan, S.; Kavakli, K.; Klamroth, R.; Kenet, G.; Khoo, L.; You, C.; Xu, W.; Malan, N.; Frenzel, L.; et al. Fitusiran, an Investigational siRNA Therapeutic Targeting Antithrombin for the Treatment of Hemophilia: First Results from a Phase 3 Study to Evaluate Efficacy and Safety in People with Hemophilia a or B without Inhibitors (ATLAS-A/B). Blood 2021, 138 (Suppl. S2), LBA-3. [Google Scholar] [CrossRef]
- Esmon, C.T. The protein C pathway. Chest 2003, 124 (Suppl. S3), 26S–32S. [Google Scholar] [CrossRef]
- ApcinteX. ApcinteX Begins Dosing Hemophilia Patients in Part 1B of Its Clinical Trial AP-0101. 2020. Available online: https://www.ipgroupplc.com/media/portfolio-news/2020/2020-03-18a (accessed on 18 March 2020).
- Polderdijk, S.G.I.; Adams, T.E.; Ivanciu, L.; Camire, R.M.; Baglin, T.P.; Huntington, J.A. Design and characterization of an APC-specific serpin for the treatment of hemophilia. Blood 2017, 129, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.R.; Lee, C.A.; Kessler, C.M.; Varon, D.; Martinowitz, U.; Heim, M.; Monroe, D.M.; Oliver, J.A.; Chang, J.-Y.; Hoffman, M. Newer concepts of blood coagulation. Haemophilia 1998, 4, 331–334. [Google Scholar]
- Wood, J.P.; Ellery, P.E.R.; Maroney, S.A.; Mast, A.E. Biology of tissue factor pathway inhibitor. Blood 2014, 123, 2934–2943. [Google Scholar] [CrossRef] [PubMed]
- Broze, G.J., Jr.; Girard, T.J. Tissue factor pathway inhibitor: Structure-function. Front. Biosci. 2012, 17, 262–280. [Google Scholar] [CrossRef] [PubMed]
- Wun, T.C.; Kretzmer, K.K.; Girard, T.J.; Miletich, J.P.; Broze, G.J. Cloning and characterization of a cDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of three tandem Kunitz-type inhibitory domains. J. Biol. Chem. 1988, 263, 6001–6004. [Google Scholar] [CrossRef]
- Waters, E.K.; Genga, R.M.; Schwartz, M.C.; Nelson, J.A.; Schaub, R.G.; Olson, K.A.; Kurz, J.C.; McGinness, K.E. Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood 2011, 117, 5514–5522. [Google Scholar] [CrossRef] [PubMed]
- Korte, W.; Graf, L. The Potential Close Future of Hemophilia Treatment—Gene Therapy, TFPI Inhibition, Antithrombin Silencing, and Mimicking Factor VIII with an Engineered Antibody. Transfus. Med. Hemother. 2018, 45, 92–96. [Google Scholar] [CrossRef]
- Petersen, L.C. Hemostatic properties of a TFPI antibody. Thromb. Res. 2012, 129 (Suppl. S2), S44–S45. [Google Scholar] [CrossRef]
- Chowdary, P. Anti-tissue factor pathway inhibitor (TFPI) therapy: A novel approach to the treatment of haemophilia. Int. J. Hematol. 2020, 111, 42–50. [Google Scholar] [CrossRef]
- Sidonio, R.F.; Zimowski, K.L. TFPI blockade: Removing coagulation’s brakes. Blood 2019, 134, 1885–1887. [Google Scholar] [CrossRef] [PubMed]
- Mahlangu, J.N. Progress in the Development of Anti-tissue Factor Pathway Inhibitors for Haemophilia Management. Front. Med. 2021, 8, 670526. [Google Scholar] [CrossRef]
- Chowdary, P.; Lethagen, S.; Friedrich, U.; Brand, B.; Hay, C.; Abdul Karim, F.; Klamroth, R.; Knoebl, P.; Laffan, M.; Mahlangu, J.; et al. Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia: A randomized first human dose trial. J. Thromb. Haemost. 2015, 13, 743–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdary, P. Inhibition of Tissue Factor Pathway Inhibitor (TFPI) as a Treatment for Haemophilia: Rationale with Focus on Concizumab. Drugs 2018, 78, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Eichler, H.; Angchaisuksiri, P.; Kavakli, K.; Knoebl, P.; Windyga, J.; Jiménez-Yuste, V.; Hyseni, A.; Friedrich, U.; Chowdary, P. A randomized trial of safety, pharmacokinetics and pharmacodynamics of concizumab in people with hemophilia A. J. Thromb. Haemost. 2018, 16, 2184–2195. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.D.; Angchaisuksiri, P.; Astermark, J.; Benson, G.; Castaman, G.; Chowdary, P.; Eichler, H.; Jiménez-Yuste, V.; Kavakli, K.; Matsushita, T.; et al. Subcutaneous concizumab prophylaxis in hemophilia A and hemophilia A/B with inhibitors: Phase 2 trial results. Blood 2019, 134, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.D. Concizumab: A novel anti-TFPI therapeutic for hemophilia. Blood Adv. 2021, 5, 279. [Google Scholar] [CrossRef]
- Shapiro, A.D.; Angchaisuksiri, P.; Astermark, J.; Benson, G.; Castaman, G.; Eichler, H.; Jiménez-Yuste, V.; Kavakli, K.; Matsushita, T.; Poulsen, L.H.; et al. Long-term efficacy and safety of subcutaneous concizumab prophylaxis in hemophilia A and hemophilia A/B with inhibitors. Blood Adv. 2022, 6, 3422–3432. [Google Scholar] [CrossRef]
- Chowdary, P.; Lethagen, S.; Friedrich, U.; Brand, B.; Hay, C.; Abdul Karim, F.; Klamroth, R.; Knoebl, P.; Laffan, M.; Mahlangu, J.; et al. Dose optimisation and risk mitigation during concizumab prophylaxis in patients with haemophilia A/B with and without inhibitors in phase 3 clinical trials. In Haemophilia; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Astermark, J.; Angchaisuksiri, P.; Kavakli, K.; Zak, M.; Seremetis, S. Management of breakthrough bleeds during concizumab prophylaxis in patients with haemophilia A/B with and without inhibitors in phase 3 clinical trials. In Haemophilia; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Cardinal, M.; Kantaridis, C.; Zhu, T.; Sun, P.; Pittman, D.D.; Murphy, J.E.; Arkin, S. A first-in-human study of the safety, tolerability, pharmacokinetics and pharmacodynamics of PF-06741086, an anti-tissue factor pathway inhibitor mAb, in healthy volunteers. J. Thromb. Haemost. 2018, 16, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Mahlangu, J.; Lamas, J.; Morales, J.; Malan, D.; Zupancic-Salek, S.; Wang, M.; Boggio, L.N.; Hegemann, I.; Mital, A.; Cardinal, M.; et al. A phase 1b/2 study of the safety, tolerability, pharmacokinetics, pharmacodynamics, and efficacy of PF-06741086, an anti-TFPI monoclonal antibody, in patients with severe hemophilia A or B. Res. Pract. Thromb. Haemost. 2019, 3 (Suppl. S1), 85–86. [Google Scholar]
- Mahlangu, J.; Lamas, J.; Morales, J. Long-term Safety and Efficacy of the Anti-TFPI Monoclonal Antibody Marstacimab in Patients with Severe Hemophilia A or B: Results from a Phase 2 Long-term Treatment Study. Res. Pract. Thromb. Haemost. 2021, 5 (Suppl. S2), 82. [Google Scholar]
- Chowdary, P.; Lissitchkov, T.J.; Willmann, S.; Schwers, S.; Michaels, L.A.; Shah, A. Pharmacodynamics, Pharmacokinetics and Safety of Bay 1093884, an Antibody Directed Against Human TFPI, in Patients with Factor VIII or IX Deficiency (with and without Inhibitors): A Phase 1 Study. Blood 2018, 132 (Suppl. S1), 1176. [Google Scholar] [CrossRef]
- Ferrante, F.; Ingham, S.; Kunze, M.; Michaels, L.A. Anti-TFPI antibody BAY 1093884: Early termination of phase II dose escalation study due to thrombosis. In Haemophilia; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Kwak, H.; Lee, S.; Jo, S.; Kwon, Y.E.; Kang, H.; Choi, G.; Jung, M.E.; Kwak, M.; Kim, S.; Oh, B.; et al. MG1113, a specific anti-tissue factor pathway inhibitor antibody, rebalances the coagulation system and promotes hemostasis in hemophilia. Res. Pract. Thromb. Haemost. 2020, 4, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Kwak, E.; Kim, M.J.; Park, J.H.; Jung, H.W.; Jung, M.E. Target-mediated drug disposition modeling of an anti-TFPI antibody (MG1113) in cynomolgus monkeys to predict human pharmacokinetics and pharmacodynamics. J. Thromb. Haemost. 2021, 19, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Labrijn, A.F.; Meesters, J.I.; de Goeij, B.E.C.G.; van den Bremer, E.T.; Neijssen, J.; van Kampen, M.D.; Strumane, K.; Verploegen, S.; Kundu, A.; Gramer, M.J.; et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 5145–5150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjellev, S.L.; Østergaard, H.; Greisen, P.J.; Hermit, M.B.; Thorn, K.; Hansen, B.G.; Zhou, R.; Bjelke, J.R.; Kjalke, M.; Lund, J.; et al. Mim8—A next-generation FVIII mimetic bi-specific antibody—potently restores the hemostatic capacity in hemophilia A settings in vitro and in vivo. Blood 2019, 134, 96. [Google Scholar] [CrossRef]
- Østergaard, H.; Lund, J.; Greisen, P.J.; Kjellev, S.; Henriksen, A.; Lorenzen, N.; Johansson, E.; Røder, G.; Rasch, M.G.; Johnsen, L.B.; et al. A factor VIIIa-mimetic bispecific antibody, Mim8, ameliorates bleeding upon severe vascular challenge in hemophilia A mice. Blood 2021, 138, 1258–1268. [Google Scholar] [CrossRef]
- Lauritzen, B.; Bjelke, M.; Björkdahl, O.; Bloem, E.; Keane, K.; Kjalke, M.; Rossen, M.; Lippert, S.L.; Weldingh, K.N.; Skydsgaard, M.; et al. A novel next-generation FVIIIa mimetic, Mim8, has a favorable safety profile and displays potent pharmacodynamic effects: Results from safety studies in cynomolgus monkeys. J. Thromb. Haemost. 2022, 20, 1312–1324. [Google Scholar] [CrossRef]
- Tripodi, A. Thrombin Generation Assay and Its Application in the Clinical Laboratory. Clin. Chem. 2016, 62, 699–707. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Sørensen, B.; Bjørnsen, S.; Pripp, A.H.; Tjønnfjord, G.E.; Holme, P.A. Monitoring bypassing agent therapy—A prospective crossover study comparing thromboelastometry and thrombin generation assay. Haemophilia 2015, 21, 275–283. [Google Scholar] [CrossRef]
- Jackson, G.N.; Ashpole, K.J.; Yentis, S.M. The TEG vs. the ROTEM thromboelastography/thromboelastometry systems. Anaesthesia 2009, 64, 212–215. [Google Scholar] [CrossRef]
- Tyler, P.D.; Yang, L.M.; Snider, S.B.; Lerner, A.B.; Aird, W.C.; Shapiro, N.I. New Uses for Thromboelastography and Other Forms of Viscoelastic Monitoring in the Emergency Department: A Narrative Review. Ann. Emerg. Med. 2021, 77, 357–366. [Google Scholar] [CrossRef]
- Theusinger, O.M.; Nürnberg, J.; Asmis, L.M.; Seifert, B.; Spahn, D.R. Rotation thromboelastometry (ROTEM®) stability and reproducibility over time. Eur. J. Cardio-Thorac. Surg. 2010, 37, 677–683. [Google Scholar] [CrossRef]
- Qian, K.; Huang, S.; Akinc, A.; Liu, J. Thrombin generation response with the addition of bypassing agents in plasma of patients treated with fitusiran, an investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia. In Haemophilia; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Négrier, C.; Ragni, M.V.; Pasi, J.; Pipe, S.W.; Kenet, G.; Rangarajan, S.; Kichou, S.; Mei, B.; Andersson, S.R. Longitudinal assessment of thrombin generation in patients with hemophilia receiving fitusiran prophylaxis: Phase II study results. Blood 2020, 136, 36–37. [Google Scholar] [CrossRef]
- Waters, E.K.; Sigh, J.; Friedrich, U.; Hilden, I.; Sørensen, B.B. Concizumab, an anti-tissue factor pathway inhibitor antibody, induces increased thrombin generation in plasma from haemophilia patients and healthy subjects measured by the thrombin generation assay. Haemophilia 2017, 23, 769–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichler, H.; Angchaisuksiri, P.; Kavakli, K.; Knoebl, P.; Windyga, J.; Jiménez-Yuste, V.; Delff, P.H.; Chowdary, P. Concizumab restores thrombin generation potential in patients with haemophilia: Pharmacokinetic/pharmacodynamic modelling results of concizumab phase 1/1b data. Haemophilia 2019, 25, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Kjalke, M.; Kjelgaard-Hansen, M.; Andersen, S.; Hilden, I. Thrombin generation potential in the presence of concizumab and rFVIIa, APCC, rFVIII, or rFIX: In vitro and ex vivo analyses. J. Thromb. Haemost. 2021, 19, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Augustsson, C.; Riddell, A.; Fernandez-Bello, I.; Butta, N.; Kjalke, M.; Astermark, J.; Eichler, H.; Jiménez-Yuste, V.; Chowdary, P. Rotem Assay Conditions Sensitive To Concizumab. In Haemophilia; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Pittman, D.D.; Rakhe, S.; Bowley, S.R.; Jasuja, R.; Barakat, A.; Murphy, J.E. Hemostatic efficacy of marstacimab alone or in combination with bypassing agents in hemophilia plasmas and a mouse bleeding model. Res. Pract. Thromb. Haemost. 2022, 6, e12679. [Google Scholar] [CrossRef]
- Patel-Hett, S.; Martin, E.J.; Mohammed, B.M.; Rakhe, S.; Sun, P.; Barrett, J.C.; Nolte, M.E.; Kuhn, J.; Pittman, D.D.; Murphy, J.E.; et al. Marstacimab, a tissue factor pathway inhibitor neutralizing antibody, improves coagulation parameters of ex vivo dosed haemophilic blood and plasmas. Haemophilia 2019, 25, 797–806. [Google Scholar] [CrossRef]
- Ezban, M.; Jensen, K.; Lund, J. The Effect of rFVIIa and Mim8 Combination in Hemophilia A-like Blood [abstract]. Res. Pract. Thromb. Haemost. 2021, 5 (Suppl. S2). Available online: https://abstracts.isth.org/abstract/the-effect-of-rfviia-and-mim8-combination-in-hemophilia-a-like-blood/ (accessed on 7 August 2022).
- Peyvandi, F.; Kenet, G.; Pekrul, I.; Pruthi, R.K.; Ramge, P.; Spannagl, M. Laboratory testing in hemophilia: Impact of factor and non-factor replacement therapy on coagulation assays. J. Thromb. Haemost. 2020, 18, 1242–1255. [Google Scholar] [CrossRef]
- Nogami, K.; Shima, M. New therapies using nonfactor products for patients with hemophilia and inhibitors. Blood 2019, 133, 399–406. [Google Scholar] [CrossRef]
- Bowyer, A.; Ezban, M.; Kitchen, S. Measuring the Chromogenic FVIII Mimetic Activity of the New Bispecific Antibody, Mim8, in Artificially Spiked Severe Haemophilia A Plasma [abstract]. Res. Pract. Thromb. Haemost. 2021, 5 (Suppl. S2). Available online: https://abstracts.isth.org/abstract/measuring-the-chromogenic-fviii-mimetic-activity-of-the-new-bispecific-antibody-mim8-in-artificially-spiked-severe-haemophilia-a-plasma/ (accessed on 7 August 2022).
- Cooper, P.C.; Coath, F.; Daly, M.E.; Makris, M. The phenotypic and genetic assessment of antithrombin deficiency. Int. J. Lab. Hematol. 2011, 33, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Dahm, A.E.A.; Andersen, T.O.; Rosendaal, F.; Sandset, P.M. A novel anticoagulant activity assay of tissue factor pathway inhibitor I (TFPI). J. Thromb. Haemost. 2005, 3, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Berrettini, M.; Malaspina, M.; Parise, P.; Lucarelli, G.; Kisiel, W.; Nenci, G.G. A simple chromogenic substrate assay of tissue factor pathway inhibitor activity in plasma and serum. Am. J. Clin. Pathol. 1995, 103, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Maroney, S.A.; Mast, A.E. New insights into the biology of tissue factor pathway inhibitor. J. Thromb. Haemost. 2015, 13 (Suppl. S1), S200–S207. [Google Scholar] [CrossRef] [Green Version]
- Tandel, G.S.; Biswas, M.; Kakde, O.G.; Tiwari, A.; Suri, H.S.; Turk, M.; Laird, J.R.; Asare, C.K.; Ankrah, A.A.; Khanna, N.N.; et al. A Review on a Deep Learning Perspective in Brain Cancer Classification. Cancers 2019, 11, 111. [Google Scholar] [CrossRef]
- Peng, J.; Jury, E.C.; Dönnes, P.; Ciurtin, C. Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Applications and Challenges. Front. Pharmacol. 2021, 12, 720694. [Google Scholar] [CrossRef]
- Manco-Johnson, M.J.; Warren, B.B.; Buckner, T.W.; Funk, S.M.; Wang, M. Outcome measures in Haemophilia: Beyond ABR (Annualized Bleeding Rate). Haemophilia 2021, 27 (Suppl. S3), 87–95. [Google Scholar] [CrossRef]
- Martinoli, C.; Alberighi, O.D.C.; Di Minno, G.; Graziano, E.; Molinari, A.C.; Pasta, G.; Russo, G.; Santagostino, E.; Tagliaferri, A.; Tagliafico, A.; et al. Development and definition of a simplified scanning procedure and scoring method for Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US). Thromb. Haemost. 2013, 109, 1170–1179. [Google Scholar] [CrossRef]
- Peyvandi, F.; Garagiola, I.; Mannucci, P.M. Post-authorization pharmacovigilance for hemophilia in Europe and the USA: Independence and transparency are keys. Blood Rev. 2021, 49, 100828. [Google Scholar] [CrossRef]
Agent | Thromboembolism | Possible Cause and Associated Factor |
---|---|---|
Fitusiran | 5 events: 1 cerebral sinus thrombosis 1 atrial thrombosis 1 cerebral infarct 1 cerebrovascular accident 1 spinal artery thrombosis | AT 10–20%, concomitant repeated FVIII, tobacco use AT 10–20%, concomitant repeated FVIIa AT < 10%, recent prostate cancer AT < 10%, story of DVT, diabetes, active smoker AT < 10%, spinal injury, vascular disorder |
Anti-TFPI | 3 events (befovacimab): 1 ischemic stroke 1 retinal artery thrombosis 1 CNS venous thrombosis 5 events (concizumab): 2 arterial thrombosis 3 venous thrombosis | Dose escalation for all patients, mechanism of action (inhibition of Kunitz-type 1 and 2 domains of TFPI) Presence of baseline thrombotic risk factors, concomitant by-passing agents on the day of the event onset in all patients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gualtierotti, R.; Pasca, S.; Ciavarella, A.; Arcudi, S.; Giachi, A.; Garagiola, I.; Suffritti, C.; Siboni, S.M.; Peyvandi, F. Updates on Novel Non-Replacement Drugs for Hemophilia. Pharmaceuticals 2022, 15, 1183. https://doi.org/10.3390/ph15101183
Gualtierotti R, Pasca S, Ciavarella A, Arcudi S, Giachi A, Garagiola I, Suffritti C, Siboni SM, Peyvandi F. Updates on Novel Non-Replacement Drugs for Hemophilia. Pharmaceuticals. 2022; 15(10):1183. https://doi.org/10.3390/ph15101183
Chicago/Turabian StyleGualtierotti, Roberta, Samantha Pasca, Alessandro Ciavarella, Sara Arcudi, Andrea Giachi, Isabella Garagiola, Chiara Suffritti, Simona Maria Siboni, and Flora Peyvandi. 2022. "Updates on Novel Non-Replacement Drugs for Hemophilia" Pharmaceuticals 15, no. 10: 1183. https://doi.org/10.3390/ph15101183
APA StyleGualtierotti, R., Pasca, S., Ciavarella, A., Arcudi, S., Giachi, A., Garagiola, I., Suffritti, C., Siboni, S. M., & Peyvandi, F. (2022). Updates on Novel Non-Replacement Drugs for Hemophilia. Pharmaceuticals, 15(10), 1183. https://doi.org/10.3390/ph15101183