Speciation Analysis Highlights the Interactions of Auranofin with the Cytoskeleton Proteins of Lung Cancer Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Total Amount of Gold and Its Fractionation
2.2. Confirmation of the Presence of Auranofin’-Protein Adducts by SEC-ICP-MS and CE-ICP-MS
2.3. Au-Tagged Tryptic Map Obtained by CZE/µRPLC-ICP-MS
2.4. Identification of Auranofin Adducts with Peptides by CZE/µRPLC-ESI-MS/MS
- -
- (a) specific for MRC-5 cells (mass spectra for MRC-5 cells subtracted with mass spectra obtained for A-549 cells)
- -
- (b) specific for A-549 cells (obtained with sequence opposite to point (a))
- -
- (c) lost due to auranofin presence in cells (mass spectra of control sample subtracted with mass spectra obtained for appropriate cell line exposed to auranofin)
- -
- (d) arriving due to auranofin presence in cells (obtained with sequence opposite to point (c))
2.5. Changes in Peptide Composition in the Cell Lysate Due to the Presence of Auranofin
3. Material and Methods
3.1. Instruments
3.2. Preparation of Growth Media and Cells
3.3. Preparation of Metallodrugs Solutions
3.4. Cells’ Exposure to Metallo-Drugs
3.5. Collection of Cells toward Metal Determination
3.6. Cells’ Lysis, Mineralization, and Fractionation
3.7. Digestion of Proteins in High-Molecular-Weight-Fraction Obtained by Ultrafiltration
3.8. Separation and Detection Conditions
3.9. Cell Cycle Analysis and Wound Healing Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nobili, S.; Mini, E.; Landini, I.; Gabbiani, C.; Casini, A.; Messori, L. Gold compounds as anticancer agents: Chemistry, cellular pharmacology, and preclinical studies. Med. Res. Rev. 2010, 30, 550–580. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M. Auranofin: Past to Present, and repurposing. Int. Immunopharmacol. 2021, 101, 108272. [Google Scholar] [CrossRef] [PubMed]
- Roder, C.; Thomson, M.J. Auranofin: Repurposing an Old Drug for a Golden New Age. Drugs R. D. 2015, 15, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Pomel, S.; de Late, P.L.; Taravaud, A.; Loiseau, P.M.; Maes, L.; Cho-Ngwa, F.; Bulman, C.A.; Fischer, C.; Sakanari, J.A.; et al. Repurposing Auranofin and Evaluation of a New Gold(I) Compound for the Search of Treatment of Human and Cattle Parasitic Diseases: From Protozoa to Helminth Infections. Molecules 2020, 25, 5075. [Google Scholar] [CrossRef] [PubMed]
- Yeo, C.; Ooi, K.; Tiekink, E. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy? Molecules 2018, 23, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoppi, C.; Messori, L.; Pratesi, A. ESI MS studies highlight the selective interaction of Auranofin with protein free thiols. Dalt. Trans. 2020, 49, 5906–5913. [Google Scholar] [CrossRef]
- Messori, L.; Scaletti, F.; Massai, L.; Cinellu, M.A.; Russo Krauss, I.; di Martino, G.; Vergara, A.; Paduano, L.; Merlino, A. Interactions of gold-based drugs with proteins: Crystal structure of the adduct formed between ribonuclease A and a cytotoxic gold(iii) compound. Metallomics 2014, 6, 233–236. [Google Scholar] [CrossRef]
- Larabee, J.L.; Hocker, J.R.; Hanas, J.S. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite. J. Inorg. Biochem. 2009, 103, 419–426. [Google Scholar] [CrossRef]
- Pratesi, A.; Cirri, D.; Ciofi, L.; Messori, L. Reactions of Auranofin and Its Pseudohalide Derivatives with Serum Albumin Investigated through ESI-Q-TOF MS. Inorg. Chem. 2018, 57, 10507–10510. [Google Scholar] [CrossRef]
- Albert, A.; Brauckmann, C.; Blaske, F.; Sperling, M.; Engelhard, C.; Karst, U. Speciation analysis of the antirheumatic agent Auranofin and its thiol adducts by LC/ESI-MS and LC/ICP-MS. J. Anal. At. Spectrom. 2012, 27, 975–981. [Google Scholar] [CrossRef]
- Christodoulou, J.; Sadler, P.J.; Tucker, A. 1H NMR of albumin in human blood plasma: Drug binding and redox reactions at Cys34. FEBS Lett. 1995, 376, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Lamarche, J.; Bierla, K.; Ouerdane, L.; Szpunar, J.; Ronga, L.; Lobinski, R. Mass spectrometry insights into interactions of selenoprotein P with auranofin and cisplatin. J. Anal. At. Spectrom. 2022, 37, 1010–1022. [Google Scholar] [CrossRef]
- Gabbiani, C.; Mastrobuoni, G.; Sorrentino, F.; Dani, B.; Rigobello, M.P.; Bindoli, A.; Cinellu, M.A.; Pieraccini, G.; Messori, L.; Casini, A. Thioredoxin reductase, an emerging target for anticancer metallodrugs. Enzyme inhibition by cytotoxic gold(iii) compounds studied with combined mass spectrometry and biochemical assays. Med. Chem. Commun. 2011, 2, 50–54. [Google Scholar] [CrossRef]
- Pratesi, A.; Gabbiani, C.; Ginanneschi, M.; Messori, L. Reactions of medicinally relevant gold compounds with the C-terminal motif of thioredoxin reductase elucidated by MS analysis. Chem. Commun. 2010, 46, 7001–7003. [Google Scholar] [CrossRef] [PubMed]
- Kupiec, M.; Ziółkowski, R.; Massai, L.; Messori, L.; Pawlak, K. The electrochemical profiles of Auranofin and Aubipyc, two representative medicinal gold compounds: A comparative study. J. Inorg. Biochem. 2019, 198, 110714. [Google Scholar] [CrossRef]
- Papaliagkas, V.; Anogianaki, A.; Anogianakis, G.; Ilonidis, G. The proteins and the mechanisms of apoptosis: A mini-review of the fundamentals. Hippokratia 2007, 11, 108–113. [Google Scholar]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016, 8, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Radenkovic, F.; Holland, O.; Vanderlelie, J.J.; Perkins, A.V. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation. Biochem. Pharmacol. 2017, 146, 42–52. [Google Scholar] [CrossRef]
- Go, Y.; Roede, J.R.; Walker, D.I.; Duong, D.M.; Seyfried, N.T.; Orr, M.; Liang, Y.; Pennell, K.D.; Jones, D.P.; Trx, T. Selective Targeting of the Cysteine Proteome by Thioredoxin and Glutathione Redox Systems. Mol. Cell. Proteomics 2013, 12, 3285–3296. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.Y.; Park, S.H.; Park, W.H. Anti-Cancer Effects of Auranofin in Human Lung Cancer Cells by Increasing Intracellular ROS Levels and Depleting GSH Levels. Molecules 2022, 27, 5207. [Google Scholar] [CrossRef]
- Soini, Y.; Kahlos, K.; Näpänkangas, U.; Kaarteenaho-Wiik, R.; Säily, M.; Koistinen, P.; Pääakkö, P.; Holmgren, A.; Kinnula, V.L. Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2001, 7, 1750–1757. [Google Scholar]
- Harper, M.T. Auranofin, a thioredoxin reductase inhibitor, causes platelet death through calcium overload. Platelets 2019, 30, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Jakubczak, W.; Haczyk-Więcek, M.; Pawlak, K. Attomole-per Cell Atomic Mass Spectrometry Measurement of Platinum and Gold Drugs in Cultured Lung Cancer Cells. Molecules 2021, 26, 7627. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hao, S.; Han, A.; Yang, Y.; Fang, G.; Liu, J.; Wang, S. Intracellular Fenton reaction based on mitochondria-targeted copper(ii)–peptide complex for induced apoptosis. J. Mater. Chem. B 2019, 7, 4008–4016. [Google Scholar] [CrossRef]
- Beretta, G.L.; Corno, C.; Zaffaroni, N.; Perego, P. Role of FoxO proteins in cellular response to antitumor agents. Cancers 2019, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Abdalbari, F.H.; Telleria, C.M. Discover Oncology The gold complex auranofin: New perspectives for cancer therapy. Discov. Oncol. 2021, 12, 42. [Google Scholar] [CrossRef]
- Sutton, B.M.; McGusty, E.; Walz, D.T.; DiMartino, M.J. Oral gold. Antiarthritic properties of alkylphosphinegold coordination complexes. J. Med. Chem. 1972, 15, 1095–1098. [Google Scholar] [CrossRef]
- Crooke, S.T.; Snyder, R.M.; Butt, T.R.; Ecker, D.J.; Allaudeen, H.S.; Monia, B.; Mirabelli, C.K. Cellular and molecular pharmacology of auranofin and related gold complexes. Biochem. Pharmacol. 1986, 35, 3423–3431. [Google Scholar] [CrossRef]
- Zou, P.; Chen, M.; Ji, J.; Chen, W.; Chen, X.; Ying, S.; Zhang, J.; Zhang, Z.; Liu, Z.; Yang, S.; et al. Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer. Oncotarget 2015, 6, 36505–36521. [Google Scholar] [CrossRef] [Green Version]
- Rigobello, M.P.; Scutari, G.; Boscolo, R.; Bindoli, A. Induction of mitochondrial permeability transition by auranofin, a Gold(I)-phosphine derivative. Br. J. Pharmacol. 2002, 136, 1162–1168. [Google Scholar] [CrossRef] [Green Version]
- Jeon, K.-I.; Byun, M.-S.; Jue, D.-M. Gold compound auranofin inhibits IkappaB kinase (IKK) by modifying Cys-179 of IKKbeta subunit. Exp. Mol. Med. 2003, 35, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jatoi, A.; Grudem, M.E.; Dockter, T.J.; Block, M.S.; Villasboas, J.C.; Tan, A.; Deering, E.; Kasi, P.M.; Mansfield, A.S.; Botero, J.P.; et al. A proof-of-concept trial of protein kinase C iota inhibition with auranofin for the paclitaxel-induced acute pain syndrome. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2017, 25, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, P.; Zhang, Y.; Lu, W.; Ding, W.; Luo, Y.; Wen, S.; Xu, R.; Liu, P.; Huang, P. Synergy between Auranofin and Celecoxib against Colon Cancer In Vitro and In Vivo through a Novel Redox-Mediated Mechanism. Cancers 2019, 11, 931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Li, X.; Huang, H.; Zhao, C.; Liao, S.; Yang, C.; Liu, S.; Song, W.; Lu, X.; Lan, X.; et al. Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget 2014, 5, 5453–5471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saei, A.A.; Gullberg, H.; Sabatier, P.; Beusch, C.M.; Johansson, K.; Lundgren, B.; Arvidsson, P.I.; Arnér, E.S.J.; Zubarev, R.A. Comprehensive chemical proteomics for target deconvolution of the redox active drug auranofin. Redox Biol. 2020, 32, 101491. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.A.; Oster, C.G.; Mayer, M.M.; Avery, M.L.; Audus, K.L. Characterization of the A549 Cell Line as a Type II Pulmonary Epithelial Cell Model for Drug Metabolism. Exp. Cell Res. 1998, 243, 359–366. [Google Scholar] [CrossRef]
- JACOBS, J.P.; JONES, C.M.; BAILLE, J.P. Characteristics of a Human Diploid Cell Designated MRC-5. Nature 1970, 227, 168–170. [Google Scholar] [CrossRef]
- Matczuk, M.; Kupiec, M.; Legat, J.; Pawlak, K.; Timerbaev, A.R.; Jarosz, M. A shotgun metalloproteomic approach enables identification of proteins involved in the speciation of a ruthenium anticancer drug in the cytosol of cancer cells. Analyst 2015, 140, 3492–3499. [Google Scholar] [CrossRef]
- Matczuk, M.; Kupiec, M.; Legat, J.; Pawlak, K.; Timerbaev, A.R.; Jarosz, M. Use of high-performance liquid chromatography–tandem electrospray ionization mass spectrometry to assess the speciation of a ruthenium(III) anticancer drug in the cytosol of cancer cells. Anal. Bioanal. Chem. 2015, 407, 4857–4862. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: Twenty-something years on. Nat. Protoc. 2006, 1, 581–585. [Google Scholar] [CrossRef]
- Gąsior-Głogowska, M.; Malek, K.; Zajac, G.; Baranska, M. A new insight into the interaction of cisplatin with DNA: ROA spectroscopic studies on the therapeutic effect of the drug. Analyst 2016, 141, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Messori, L.; Merlino, A. Cisplatin binding to proteins: A structural perspective. Coord. Chem. Rev. 2016, 315, 67–89. [Google Scholar] [CrossRef]
- Wang, J.; Tao, J.; Jia, S.; Wang, M.; Jiang, H.; Du, Z. The protein-binding behavior of platinum anticancer drugs in blood revealed by mass spectrometry. Pharmaceuticals 2021, 14, 104. [Google Scholar] [CrossRef] [PubMed]
- Martinho, N.; Santos, T.C.B.; Florindo, H.F.; Silva, L.C. Cisplatin-Membrane Interactions and Their Influence on Platinum Complexes Activity and Toxicity. Front. Physiol. 2019, 9, 1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nierzwicki, L.; Wieczor, M.; Censi, V.; Baginski, M.; Calucci, L.; Samaritani, S.; Czub, J.; Forte, C. Interaction of cisplatin and two potential antitumoral platinum(ii) complexes with a model lipid membrane: A combined NMR and MD study. Phys. Chem. Chem. Phys. 2015, 17, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Matczuk, M.; Prządka, M.; Aleksenko, S.S.; Czarnocki, Z.; Pawlak, K.; Timerbaev, A.R.; Jarosz, M. Metallomics for drug development: A further insight into intracellular activation chemistry of a ruthenium(iii)-based anticancer drug gained using a multidimensional analytical approach. Metallomics 2014, 6, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Sugár, S.; Bugyi, F.; Tóth, G.; Pápay, J.; Kovalszky, I.; Tornóczky, T.; Drahos, L.; Turiák, L. Proteomic Analysis of Lung Cancer Types—A Pilot Study. Cancers 2022, 14, 2629. [Google Scholar] [CrossRef]
- Mehan, M.R.; Ayers, D.; Thirstrup, D.; Xiong, W.; Ostroff, R.M.; Brody, E.N.; Walker, J.J.; Gold, L.; Jarvis, T.C.; Janjic, N.; et al. Protein Signature of Lung Cancer Tissues. PLoS ONE 2012, 7, e35157. [Google Scholar] [CrossRef]
- Saei, A.A.; Chernobrovkin, A.; Sabatier, P.; Zhang, B.; Beusch, C.; Tokat, Ü.G.; Gaetani, M.; Végvári, Á.; Zubarev, R.A. ProTargetMiner: A proteome signature library of anticancer molecules for functional discovery. bioRxiv 2018, 421115. [Google Scholar] [CrossRef] [Green Version]
- Walker, E.J.; Bettinger, J.Q.; Welle, K.A.; Hryhorenko, J.R.; Ghaemmaghami, S. Global analysis of methionine oxidation provides a census of folding stabilities for the human proteome. Proc. Natl. Acad. Sci. USA 2019, 116, 6081–6090. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Pu, Y.; Fu, X.; Xie, Y.; Bian, X.; Yang, S.; Yang, Y.; Cui, L.; Wang, X.; Wang, H.; et al. Changes in the cellular proteins of A549 infected with Hepatitis E virus by proteomics analysis. BMC Vet. Res. 2014, 10, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schilling, B.; Rardin, M.J.; MacLean, B.X.; Zawadzka, A.M.; Frewen, B.E.; Cusack, M.P.; Sorensen, D.J.; Bereman, M.S.; Jing, E.; Wu, C.C.; et al. Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline. Mol. Cell. Proteomics 2012, 11, 202–214. [Google Scholar] [CrossRef]
- Szeverenyi, I.; Cassidy, A.J.; Chung, C.W.; Lee, B.T.K.; Common, J.E.A.; Ogg, S.C.; Chen, H.; Sim, S.Y.; Goh, W.L.P.; Ng, K.W.; et al. The Human Intermediate Filament Database: Comprehensive information on a gene family involved in many human diseases. Hum. Mutat. 2008, 29, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Sieprath, T.; Corne, T.D.J.; Nooteboom, M.; Grootaert, C.; Rajkovic, A.; Buysschaert, B.; Robijns, J.; Broers, J.L.V.; Ramaekers, F.C.S.; Koopman, W.J.H.; et al. Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates. Nucleus 2015, 6, 236–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruppa, A.J.; Buss, F. Motor proteins at the mitochondria–cytoskeleton interface. J. Cell Sci. 2021, 134, jcs226084. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cheong, J.H. Role of Mitochondria-Cytoskeleton Interactions in the Regulation of Mitochondrial Structure and Function in Cancer Stem Cells. Cells 2020, 9, 1691. [Google Scholar] [CrossRef] [PubMed]
- Rodat-Despoix, L.; Chamlali, M.; Ouadid-Ahidouch, H. Ion channels as key partners of cytoskeleton in cancer disease. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188627. [Google Scholar] [CrossRef]
- Kula, M.-R.; Kroner, K.H.; Hustedt, H. Purification of enzymes by liquid-liquid extraction. In Reaction Engineering; Springer: Berlin/Heidelberg, Germany, 1982; pp. 73–118. [Google Scholar]
- Mann, M.; Hendrickson, R.C.; Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 2001, 70, 437–473. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford Method for Protein Quantitation. In The Protein Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 17–24. ISBN 978-1-59745-198-7. [Google Scholar]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Jonkman, J.E.N.; Cathcart, J.A.; Xu, F.; Bartolini, M.E.; Amon, J.E.; Stevens, K.M.; Colarusso, P. An introduction to the wound healing assay using live-cell microscopy. Cell Adh. Migr. 2014, 8, 440–451. [Google Scholar] [CrossRef]
Protein | Monoisotopic Mass, Da | No Cys | No of RPLC-ESI-MS/MS Peptides | No of CZE-ESI-MS/MS Peptides | COVERAGE [%] |
---|---|---|---|---|---|
1433Z_HUMAN (P63104) | 27,728 | 3 | 2 | 1 | 6.6 |
ANXA1_HUMAN (P04083) | 38,559 | 4 | 3 | 1 | 4.0 |
ANXA4_HUMAN (P09525) | 35,729 | 4 | 2 | 2 | 5.3 |
B2L11_HUMAN (O43521) | 22,157 | 4 | 2 | 1 | 6.8 |
CH60_HUMAN (P10809) | 57,927 | 3 | 2 | 1 | 2.5 |
G3P_HUMAN (P04406) | 35,899 | 3 | 3 | 3 | 7.5 |
H2B1C_HUMAN (P62807) | 13,766 | 0 | 4 | 3 | 20.5 |
K1C18_HUMAN (P05783) | 47,897 | 0 | 3 | 3 | 5.0 |
K2C8_HUMAN (P05787) | 53,671 | 0 | 3 | 3 | 5.2 |
LMNA_HUMAN (P02545) | 73,764 | 5 | 3 | 3 | 4.0 |
M3K5_HUMAN (Q99683) | 154,440 | 23 | 2 | 2 | 0.8 |
MYH9_HUMAN (P35579) | 226,261 | 22 | 2 | 2 | 0.9 |
PFKAP_HUMAN (Q01813) | 85,542 | 16 | 2 | 1 | 2.2 |
PGK1_HUMAN (P00558) | 44,455 | 7 | 2 | 1 | 3.3 |
PLEC_HUMAN (Q15149) | 531,466 | 35 | 5 | 3 | 1.1 |
SPTB2_HUMAN (Q01082) | 274,308 | 14 | 3 | 2 | 1.4 |
SPTN1_HUMAN (Q13813) | 284,364 | 14 | 4 | 3 | 1.3 |
TLN1_HUMAN (Q9Y490) | 269,599 | 38 | 4 | 3 | 1.5 |
TRXR1_HUMAN (Q16881) | 70,862 | 17 | 3 | 3 | 2.9 |
VIME_HUMAN (P08670) | 53,488 | 1 | 2 | 2 | 5.4 |
Detection Conditions | |||
---|---|---|---|
ICP-MS Detection | ESI-MS Detection | ||
Parameter | HP7500a | Parameter | 6460 3Q Jet Stream |
Plasma power | 1310 W | Nebulization voltage | 2500 V |
Double charged | 0.1% | Nozzle voltage | 500 V |
Nebulizer gas flow | 1.1 L min−1 | Flow, pressure, and temperature of nebulizing gas | 7 L min−1, 30 psi, 300 °C |
Nebulizer | Cross-flow, CFN | Flow and temperature of the sheath gas | 5 L min−1, 250 °C |
Mobile phase flow Sample size (FIA and SEC) | 0.4 mL min−1 50 µL | Fragmentor voltage | 120 V |
Monitored isotopes | 181Ta, 197Au | Scanning range, m/z | 50–1000 |
Internal standard | 103Rh | Scanning step | 0.1 amu |
Integration time | 0.1 s | Dwell time | 0.2 s |
Separation conditions | |||
Reversed-phase liquid chromatography (RPLC) | Capillary zone electrophoresis (CZE) | ||
Parameter | 1200 Capillary HPLC | Parameter | G1600AX 3D CE System |
Column type | PFP (Phenomenex), 150 × 1 mm, 3 µm | Capillary type, length, and ID | Fused silica, 100 cm, 75 µm |
Flow | 5 µL·min−1 | Voltage | 20 kV |
Sample volume | 1–8 µL | Sample volume | 50 mbar × 12 s (100 nL) |
Mobile phase composition | A: 10 mM ammonium acetate, pH = 7.0 B: MeOH | Background electrolyte, BGE | 20 mM ammonium acetate, pH = 6.9 |
Elution method | Gradient: 5 min—0% B 20 min—90% B 25 min—90% B | Capillary conditioning and washing according to previous protocols [6] Each step took 5 min | Flash with 1M NaOH Flash with H2O Wait Flash with H2O Flash with BGE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupiec, M.; Tomaszewska, A.; Jakubczak, W.; Haczyk-Więcek, M.; Pawlak, K. Speciation Analysis Highlights the Interactions of Auranofin with the Cytoskeleton Proteins of Lung Cancer Cells. Pharmaceuticals 2022, 15, 1285. https://doi.org/10.3390/ph15101285
Kupiec M, Tomaszewska A, Jakubczak W, Haczyk-Więcek M, Pawlak K. Speciation Analysis Highlights the Interactions of Auranofin with the Cytoskeleton Proteins of Lung Cancer Cells. Pharmaceuticals. 2022; 15(10):1285. https://doi.org/10.3390/ph15101285
Chicago/Turabian StyleKupiec, Monika, Agnieszka Tomaszewska, Wioletta Jakubczak, Maja Haczyk-Więcek, and Katarzyna Pawlak. 2022. "Speciation Analysis Highlights the Interactions of Auranofin with the Cytoskeleton Proteins of Lung Cancer Cells" Pharmaceuticals 15, no. 10: 1285. https://doi.org/10.3390/ph15101285
APA StyleKupiec, M., Tomaszewska, A., Jakubczak, W., Haczyk-Więcek, M., & Pawlak, K. (2022). Speciation Analysis Highlights the Interactions of Auranofin with the Cytoskeleton Proteins of Lung Cancer Cells. Pharmaceuticals, 15(10), 1285. https://doi.org/10.3390/ph15101285