Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Studies
2.2.1. Antimicrobial Studies
2.2.2. Cytotoxicity Studies
2.3. Computational Studies
2.3.1. QSAR Studies
2.3.2. S. Aureus
2.3.3. B. Subtilis
2.4. Pharmacophoric Modeling
2.4.1. S. Aureus
2.4.2. B. Subtilis
2.4.3. ADMET
3. Materials and Methods
3.1. Chemistry
3.1.1. General Method for Preparation of Compounds 3a–k, 5a–f, 7a–c, and 9a–c
3.1.2. Benzyl (S)-(2-(((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) amino)-2-oxoethyl)carbamate (3a)
3.1.3. Benzyl ((S)-1-((((S)-3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) amino)-1-oxopropan-2-yl)carbamate (3b)
3.1.4. Benzyl ((S)-1-((((S)-3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) amino)-3-methyl-1-oxobutan-2-yl)carbamate (3c)
3.1.5. Benzyl ((S)-1-((((S)-3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) amino)-4-(methylthio)-1-oxobutan-2-yl)carbamate (3d)
3.1.6. Benzyl ((S)-1-((((S)-3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) amino)-1-oxo-3-phenylpropan-2-yl)carbamate (3e)
3.1.7. Tert-butyl (S)-(2-(((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) amino)-2-oxoethyl)carbamate (3f)
3.1.8. Tert-butyl ((S)-1-((((S)-3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl) methyl) amino)-1-oxopropan-2-yl)carbamate (3g)
3.1.9. Tert-butyl ((S)-1-((((S)-3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl) methyl) amino)-3-methyl-1-oxobutan-2-yl)carbamate (3h)
3.1.10. Tert-butyl ((S)-1-((((S)-3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl) methyl) amino)-4-(methyl thio)-1-oxobutan-2-yl)carbamate (3i)
3.1.11. Tert-butyl ((S)-1-((((S)-3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl) methyl) amino)-1-oxo-3-phenylpropan-2-yl)carbamate (3j)
3.1.12. Tert-butyl ((2S,3S)-1-((((S)-3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl) methyl)amino)-3-methyl-1-oxopentan-2-yl)carbamate (3k)
3.1.13. General Method for Synthesis of Compounds 4a–f
3.1.14. (1H-Benzo[d][1,2,3] triazol-1-yl)(4-(methylamino)phenyl)methanone (4e)
3.1.15. (1H-Benzo[d][1,2,3] triazol-1-yl)(2-chloro-3-nitrophenyl)methanone (4f)
3.1.16. (S)-N-((3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)benzamide (5a)
3.1.17. (S)-4-Fluoro-N-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) benzamide (5b)
3.1.18. (S)-4-Chloro-N-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) benzamide (5c)
3.1.19. (S)-N-((3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)-4-nitro benzamide (5d)
3.1.20. (S)-N-((3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)-4-(methyl amino) benzamide (5e)
3.1.21. (S)-2-Chloro-N-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methy-l)-3-nitrobenzamide (5f)
3.1.22. (S)-N-((3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)isonicotin-amide (7a)
3.1.23. (S)-N-((3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)nicotinamide (7b)
3.1.24. (S)-N-((3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)pyrazine-2-carboxamide (7c)
3.1.25. N-((S)-1-((((S)-3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) amino) -4-methyl-1-oxopentan-2-yl)pyrazine-2-carboxamide (9a)
3.1.26. N-((S)-1-((((S)-3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) amino) -3-methyl-1-oxobutan-2-yl)pyrazine-2-carboxamide (9b)
3.1.27. N-((S)-1-((((S)-3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) amino) -1-oxo-3-phenylpropan-2-yl)pyrazine-2-carboxamide (9c)
3.1.28. General Method for Preparation of Compounds 11a–f
3.1.29. (S)-3-(3-Fluoro-4-morpholinophenyl)-5-[{(4-fluorobenzyl) amino} methyl] oxazolidin-2-one (11a)
3.1.30. (S)-3-(3-Fluoro-4-morpholinophenyl)-5-[{(4-(methylsulfonyl) benzyl} amino] methyl) oxazolidin-2-one (11b)
3.1.31. (S)-3-(3-Fluoro-4-morpholinophenyl)-5-[{(4-(trifluoromethyl) benzyl} amino] methyl) oxazolidin-2-one (11c)
3.1.32. (S)-5-[{(3-Chlorobenzyl) amino} methyl]-3-(3-fluoro-4-morpholinophenyl) oxazolidin-2-one (11d)
3.1.33. (S)-5-[{(2,4-Difluorobenzyl) amino} methyl]-3-(3-fluoro-4-morpholinophenyl) oxazolid-ine-2-one (11e)
3.1.34. (S)-5-[{(3,5-Dimethoxybenzyl) amino} methyl]-3-(3-fluoro-4-morpholinophenyl) oxazo-lidine-2-one (11f)
3.1.35. General Procedure for Preparation of Compound 13
3.1.36. (S)-3-[{(3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl) methyl} amino] propyl nitrate (13)
3.1.37. General Procedure for Preparation of Compound 15
3.1.38. N-(((S)-3-(3-Fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)-5-((3aS, 4S, 6aR)-2-oxohexahydro-1H-thieno [3,4-d] imidazol-4-yl)pentanamide (15)
3.2. Biological Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present, and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Tomasz, A. Microbiology. Weapons of microbial drug resistance abound in soil flora. Science 2006, 311, 342–343. [Google Scholar] [CrossRef] [Green Version]
- Gaston, M.H.; Verter, J.I.; Woods, G.; Pegelow, C.; Kelleher, J.; Presbury, G.; Zarkowsky, H.; Vichinsky, E.; Iyer, R.; Lobel, J.S.; et al. Prophylaxis with oral penicillin in children with sickle cell anemia. A randomized trial. N. Engl. J. Med. 1986, 314, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care, update; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Alós, J.-I. Antibiotic resistance: A global crisis. Enferm. Infecc. Microbiol. Clin. 2015, 33, 692–699. [Google Scholar] [CrossRef]
- Lepage, P.; Blumental, S. Specialty grand challenge in pediatric infectious diseases. Front. Pediatr. 2017, 5, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pigrau, C.; Almirante, B. Oxazolidinonas, glucopéptidos y lipopéptidos cíclicos. Enferm. Infecc. Microbiol. Clin. 2009, 27, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Zurenko, G.E.; Yagi, B.H.; Schaadt, R.D.; Allison, J.W.; Kilburn, J.O.; Glickman, S.E.; Hutchinson, D.K.; Barbachyn, M.R.; Brickner, S.J. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob. Agents Chemother. 1996, 40, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Batts, D.H. Linezolid-a new option for treating Gram-positive infections. Oncology 2000, 14, 23–29. [Google Scholar] [PubMed]
- Ament, P.W.; Jamshed, N.; Horne, J.P. Linezolid: Its role in the treatment of Gram-positive, drug-resistant bacterial infections. Am. Fam. Phys. 2002, 65, 663–670. [Google Scholar]
- Zurenko, G.E.; Gibson, J.K.; Shinabarger, D.L.; Aristoff, P.A.; Ford, C.W.; Tarpley, W.G. Oxazolidinones: A new class of antibacterials. Curr. Opin. Pharmacol. 2001, 1, 470–476. [Google Scholar] [CrossRef]
- Brickner, S.J.; Barbachyn, M.R.; Hutchinson, D.K.; Manninen, P.R. Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections. J. Med. Chem. 2008, 51, 1981–1990. [Google Scholar] [CrossRef]
- Perry, C.M.; Jarvis, B. Linezolid: A review of its use in the management of serious Gram-positive infections. Drugs 2001, 61, 525–551. [Google Scholar] [CrossRef] [PubMed]
- Locke, J.B.; Finn, J.; Hilgers, M.; Morales, G.; Rahawi, S.; Kedar, G.C.; Picazo, J.J.; Lm, W.; Shaw, K.J.; Stein, J.L. Structure-activity relationships of diverse oxazolidinones for linezolid-resistant Staphylococcus aureus strains possessing the cfr methyltransferase gene or ribosomal mutations. Antimicrob. Agents Chemother. 2010, 54, 5337–5343. [Google Scholar] [CrossRef] [Green Version]
- Faidallah, H.M.; Girgis, A.S.; Tiwari, A.D.; Honkanadavar, H.H.; Thomas, S.J.; Samir, A.; Panda, S.S. Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. Eur. J. Med. Chem. 2018, 143, 1524–1534. [Google Scholar] [CrossRef]
- Panda, S.S.; Girgis, A.S.; Honkanadavar, H.H.; George, R.F.; Srour, A.M. Synthesis of new ibuprofen hybrid conjugates as potential anti-inflammatory and analgesic agents. Future Med. Chem. 2020, 12, 1369–1386. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Girgis, A.S.; Thomas, S.J.; Capito, J.E.; George, R.F.; Salman, A.; El-Manawaty, M.A.; Samir, A. Synthesis, pharmacological profile and 2D-QSAR studies of curcumin-amino acid conjugates as potential drug candidates. Eur. J. Med. Chem. 2020, 196, 112293. [Google Scholar] [CrossRef]
- Seliem, I.A.; Panda, S.S.; Girgis, A.S.; Nagy, Y.I.; George, R.F.; Fayad, W.; Fawzy, N.G.; Ibrahim, T.S.; Al-Mahmoudy, A.M.M.; Sakhuja, R.; et al. Design, synthesis, antimicrobial, and DNA gyrase inhibitory properties of fluoroquinolone-dichloroacetic acid hybrids. Chem. Biol. Drug Des. 2020, 95, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Girgis, A.S.; Mishra, B.B.; Elagawany, M.; Devarapalli, V.; Littlefield, W.F.; Samir, A.; Fawzy, N.G.; Srour, A.M.; Bokhtia, R.M. Novel pyrazinoic acid-isoniazid conjugates with amino acid linker: Microwave assisted synthesis, anti-infective properties, and molecular modeling studies. RSC Adv. 2019, 9, 20450–20462. [Google Scholar] [CrossRef] [Green Version]
- Bokhtia, R.M.; Panda, S.S.; Girgis, A.S.; Honkanadavar, H.H.; Ibrahim, T.S.; Al-Mahmoudy, A.M.M.; George, R.F.; Kashef, M.T.; Fayad, W.; Sakhuja, R.; et al. Fluoroquinolone-3-carboxamide amino acid conjugates: Synthesis, antibacterial properties and molecular modeling studies. Med. Chem. 2021, 17, 71–84. [Google Scholar] [CrossRef]
- Matsingos, C.; Al-Adhami, T.; Jamshidi, S.; Hind, C.; Clifford, M.; Sutton, J.M.; Rahman, K.M. Synthesis, microbiological evaluation and structure activity relationship analysis of linezolid analogues with different C5-acylamino substituents. Bioorg. Med. Chem. 2021, 49, 116397. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Hall, C.D.; Scriven, E.; Katritzky, A.R. Aminoacyl benzotriazolides: Versatile reagents for the preparation of peptides, their mimetics and conjugates. Aldrichimica Acta 2013, 46, 43–55. [Google Scholar]
- Panda, S.S.; Naumov, R.N.; Asiri, A.M.; Katritzky, A.R. Microwave-assisted synthesis of biotin conjugates with quinolone antibiotics via amino acids. Synthesis 2014, 46, 1511–1517. [Google Scholar] [CrossRef]
- Panda, S.S.; Detistov, O.S.; Girgis, A.S.; Mohapatra, P.P.; Samir, A.; Katritzky, A.R. Synthesis and molecular modeling of antimicrobial active fluoroquinolone-pyrazine conjugates with amino acid linkers. Bioorg. Med. Chem. Lett. 2016, 26, 2198–2205. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Panda, S.S.; Birs, A.S.; Juan, C.; Serrano, J.C.; Gonzalez, C.F.; Katritzky, A.R. Synthesis and antibacterial evaluation of amino acid-antibiotic conjugates. Bioorg. Med. Chem. Lett. 2014, 24, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Liaqat, S.; Girgis, A.S.; Samir, A.; Hall, C.D.; Katritzky, A.R. Novel antibacterial active quinolone-fluoroquinolone conjugates and 2D-QSAR studies. Bioorg. Med. Chem. Lett. 2015, 25, 3816–3821. [Google Scholar] [CrossRef]
- Fang, F.C. Perspectives series: Host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Investig. 1997, 99, 2818–2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, P.K.; Mukkanti, K.; Rao, D.M. Synthesis of antibiotic linezolid analogues. Asian J. Chem. 2012, 24, 3479–3482. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed.; CLSI Document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Seliem, I.A.; Panda, S.S.; Girgis, A.S.; Moatasim, Y.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Nossier, E.S.; Rasslan, F.; Srour, A.M.; et al. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorg. Chem. 2021, 114, 105117. [Google Scholar] [CrossRef]
- Girgis, A.S.; Tala, S.R.; Oliferenko, P.V.; Oliferenko, A.A.; Katritzky, A.R. Computer-assisted rational design, synthesis, and bioassay of nonsteroidal anti-inflammatory agents. Eur. J. Med. Chem. 2012, 50, 1–8. [Google Scholar] [CrossRef]
- Ghanim, A.M.; Girgis, A.S.; Kariuki, B.M.; Samir, N.; Said, M.F.; Abdelnaser, A.; Nasr, S.; Bekheit, M.S.; Abdelhameed, M.F.; Almalki, A.J.; et al. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem. 2022, 119, 105557. [Google Scholar] [CrossRef]
- CodessaPRO, User’s Manual. Available online: http://www.codessa-pro.com/manuals/manual.htm (accessed on 27 December 2021).
- Youssef, M.A.; Panda, S.S.; El-Shiekh, R.A.; Shalaby, E.M.; Aboshouk, D.R.; Fayad, W.; Fawzy, N.G.; Girgis, A.S. Synthesis and molecular modeling studies of cholinesterase inhibitor dispiro[indoline-3,2′-pyrrolidine-3′,3′′-pyrrolidines]. RSC Adv. 2020, 10, 21830–21838. [Google Scholar] [CrossRef]
- Aziz, M.N.; Panda, S.S.; Shalaby, E.M.; Fawzy, N.G.; Girgis, A.S. Facile synthetic approach towards vasorelaxant active 4-hydroxyquinazoline-4-carboxamides. RSC Adv. 2019, 9, 28534–28540. [Google Scholar] [CrossRef] [Green Version]
- Shan, R.; Velazquez, C.; Knaus, E.E. Syntheses, Calcium Channel Agonist–Antagonist Modulation Activities, and Nitric Oxide Release Studies of Nitrooxyalkyl 1,4- Dihydro-2,6-dimethyl-3-nitro-4-(2,1,3-benzoxadiazol-4-yl)pyridine-5-carboxylate Racemates, Enantiomers, and Diastereomers. J. Med. Chem. 2004, 4, 254–261. [Google Scholar] [CrossRef] [PubMed]
Entry | Compd. | MIC, μg/mL ± SE (μmol) | |||
---|---|---|---|---|---|
S. Aureus (ATCC 6538) | B. Subtilis (ATCC 6633) | P. Aeruginosa (ATCC 15692) | E. Coli (ATCC 47076) | ||
1 | 3a | 16 ± 2.1 (32.888) | 4 ± 0.3 (8.222) | 64 ± 1.4 (131.552) | 32 ± 1.0 (65.776) |
2 | 3b | 32 ± 1.5 (63.932) | 32 ± 2.1 (63.932) | 64 ± 1.9 (127.864) | 32 ± 2.5 (63.932) |
3 | 3c | 32 ± 1.1 (60.540) | 32 ± 2.7 (60.540) | 64 ± 2.9 (121.079) | 32 ± 1.6 (60.540) |
4 | 3d | 32 ± 1.6 (57.078) | 32 ± 2. 4 (57.078) | 64 ± 3.1(114.155) | 32 ± 2.0 (57.078) |
5 | 3e | 32 ± 2.2 (55.495) | 32 ± 1.9 (55.495) | 64 ± 2.1 (110.990) | 32 ± 1.0 (55.495) |
6 | 3f | 32 ± 1.4 (70.721) | 8 ± 0.4 (17.680) | 32 ± 1.6 (70.721) | 32 ± 2.8 (70.721) |
7 | 3g | 32 ± 1.5 (68.594) | 32 ± 2.4 (68.594) | 32 ± 1.2 (68.594) | 32 ± 2.7 (68.594) |
8 | 3h | 32 ± 1.3 (64.704) | 32 ± 0.7 (64.704) | 32 ± 0.5 (64.704) | 32 ± 1.1 (64.704) |
9 | 3i | 32 ± 2.1 (60.765) | 32 ± 1.4 (60.765) | 32 ± 0.8 (60.765) | 32 ± 0.5 (60.765) |
10 | 3j | 64 ± 2.5 (117.948) | 32 ± 1.3 (58.974) | 64 ± 1.8 (117.948) | 32 ± 0.9 (58.974) |
11 | 3k | 32 ± 2.1 (62.919) | 32 ± 1.3 (62.919) | 32 ± 1.3 (62.919) | 32 ± 2.1 (62.919) |
12 | 5a | 4 ± 0.2 (10.015) | 1 ± 0.1 (2.504) | 32 ± 0.8 (80.116) | 32 ± 1.6 (80.116) |
13 | 5b | 4 ± 0.1 (9.583) | 1 ± 0.1 (2.396) | 32 ± 1.2 (76.663) | 32 ± 2.4 (76.663) |
14 | 5c | 8 ± 0.3 (18.439) | 2 ± 0.1 (4.610) | 32 ± 1.9 (73.757 | 32 ± 0.7 (73.757) |
15 | 5d | 2 ± 0.1 (4.500) | 1 ± 0.1 (2.250) | 32 ± 1.6 (72.004) | 32 ± 2.2 (72.004) |
16 | 5e | 4 ± 0.2 (9.336) | 1 ± 0.1 (2.334) | 32 ± 2.2 (74.686) | 32 ± 1.6 (74.686) |
17 | 5f | 8 ± 0.2 (16.706) | 4 ± 0.3 (8.353) | 32 ± 1.4 (66.825) | 32 ± 0.6 (66.825) |
18 | 7a | 8 ± 0.3 (19.980) | 2 ± 0.2 (4.995) | 8 ± 0.1 (19.980) | 32 ± 0.9 (79.918) |
19 | 7b | 8 ± 0.2 (19.980) | 2 ± 0.1 (4.995) | 32 ± 1.2 (79.918) | 32 ± 1.0 (79.918) |
20 | 7c | 8 ± 0.1 (19.930) | 2 ± 0.1 (4.983) | 32 ± 1.1 (79.721) | 32 ± 0.7 (79.721) |
21 | 9a | 32 ± 0.4 (62.189) | 32 ± 2.0 (62.189) | 32 ± 1.3 (62.189) | 32 ± 1.6 (62.189) |
22 | 9b | 32 ± 1.7 (63.932) | 32 ± 1.3 (63.932) | 32 ± 2.5 (63.932) | 32 ± 3.4 (63.932) |
23 | 9c | 32 ± 0.9 (58.332) | 32 ± 0.5 (58.332) | 32 ± 0.8 (58.332) | 32 ± 1.0 (58.332) |
24 | 11a | 32 ± 2.7 (79.320) | 32 ± 1.2 (79.320) | 32 ± 2.2 (79.320) | 32 ± 2.5 (79.320) |
25 | 11b | 32 ± 1.2 (69.037) | 32 ± 1.4 (69.037) | 64 ± 2.8 (138.074) | 32 ± 1.1 (69.037) |
26 | 11c | 32 ± 0.8 (70.572) | 16 ± 0.4 (35.286) | 64 ± 1.5 (141.143) | 32 ± 0.9 (70.572) |
27 | 11d | 32 ± 1.0 (76.212) | 32 ± 1.2 (76.212) | 32 ± 1.7 (76.212) | 32 ± 2.1 (76.212) |
28 | 11e | 32 ± 0.2 (75.934) | 32 ± 1.3 (75.934) | 32 ± 0.5 (75.934) | 32 ± 0.3 (75.934) |
29 | 11f | 32 ± 1.7 (71.831) | 32 ± 0.3 (71.831) | 32 ± 1.9 (71.831) | 32 ± 0.8 (71.831) |
30 | 13 | 32 ± 1.0 (80.323) | 32 ± 0.9 (80.323) | 32 ± 1.5 (80.323) | 32 ± 0.6 (80.323) |
31 | 15 | 32 ± 0.4 (61.349) | 32 ± 0.2 (61.349) | 32 ± 0.3 (61.349) | 32 ± 0.7 (61.349) |
32 | Linezolid | 2 ± 0.1 (5.929) | 0.25 ± 0.01 (0.741) | 32 ± 0.7 (94.857) | 8 ± 0.2 (23.714) |
33 | Ciprofloxacin [24] | 1250.0 ± 9.6 (3772.4) | NT | 4.8 ± 0.5 (14.5) | NT |
34 | Norfloxacin [24] | 1250.0 ± 14.2 (3914.3) | NT | 4.8 ± 0.2 (15.0) | NT |
Entry | Compd. | Aqueous Solubility | Intestinal Absorption | PPB | Hepatotoxicity |
---|---|---|---|---|---|
1 | 3a | 3 | 0 | 0 | 0 |
2 | 3b | 3 | 0 | 0 | 0 |
3 | 3c | 2 | 0 | 0 | 0 |
4 | 3d | 3 | 0 | 0 | 0 |
5 | 3e | 2 | 1 | 1 | 0 |
5 | 3f | 3 | 0 | 0 | 0 |
7 | 3g | 3 | 0 | 0 | 0 |
8 | 3h | 3 | 0 | 0 | 0 |
9 | 3i | 3 | 0 | 0 | 0 |
10 | 3j | 2 | 0 | 0 | 0 |
11 | 3k | 2 | 0 | 0 | 0 |
12 | 5a | 3 | 0 | 2 | 0 |
13 | 5b | 2 | 0 | 2 | 0 |
14 | 5c | 2 | 0 | 2 | 0 |
15 | 5d | 3 | 0 | 2 | 0 |
16 | 5e | 3 | 0 | 2 | 0 |
17 | 5f | 2 | 0 | 2 | 0 |
18 | 7a | 3 | 0 | 2 | 0 |
19 | 7b | 3 | 0 | 2 | 0 |
20 | 7c | 3 | 0 | 2 | 0 |
21 | 9a | 3 | 0 | 0 | 0 |
22 | 9b | 3 | 0 | 0 | 0 |
23 | 9c | 3 | 0 | 0 | 0 |
24 | 11a | 2 | 0 | 2 | 0 |
25 | 11b | 3 | 0 | 2 | 0 |
26 | 11c | 2 | 0 | 2 | 0 |
27 | 11d | 2 | 0 | 2 | 0 |
28 | 11e | 2 | 0 | 2 | 0 |
29 | 11f | 2 | 0 | 2 | 0 |
30 | 13 | 3 | 0 | 0 | 1 |
31 | 15 | 3 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bokhtia, R.M.; Girgis, A.S.; Ibrahim, T.S.; Rasslan, F.; Nossier, E.S.; Barghash, R.F.; Sakhuja, R.; Abdel-Aal, E.H.; Panda, S.S.; Al-Mahmoudy, A.M.M. Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates. Pharmaceuticals 2022, 15, 191. https://doi.org/10.3390/ph15020191
Bokhtia RM, Girgis AS, Ibrahim TS, Rasslan F, Nossier ES, Barghash RF, Sakhuja R, Abdel-Aal EH, Panda SS, Al-Mahmoudy AMM. Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates. Pharmaceuticals. 2022; 15(2):191. https://doi.org/10.3390/ph15020191
Chicago/Turabian StyleBokhtia, Riham M., Adel S. Girgis, Tarek S. Ibrahim, Fatma Rasslan, Eman S. Nossier, Reham F. Barghash, Rajeev Sakhuja, Eatedal H. Abdel-Aal, Siva S. Panda, and Amany M. M. Al-Mahmoudy. 2022. "Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates" Pharmaceuticals 15, no. 2: 191. https://doi.org/10.3390/ph15020191
APA StyleBokhtia, R. M., Girgis, A. S., Ibrahim, T. S., Rasslan, F., Nossier, E. S., Barghash, R. F., Sakhuja, R., Abdel-Aal, E. H., Panda, S. S., & Al-Mahmoudy, A. M. M. (2022). Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates. Pharmaceuticals, 15(2), 191. https://doi.org/10.3390/ph15020191