Pharmacogenetics May Prevent Psychotropic Adverse Events in Autism Spectrum Disorder: An Observational Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Theoretical Review
2.2. Demographic and Pharmacological Outcomes
2.3. Adverse Events
2.4. Pharmacogenetic Data
3. Discussion
4. Materials and Methods
4.1. Study Design and Ethics
4.2. Participants
4.3. Procedure
4.4. Data Collection
4.4.1. Sociodemographic and Pharmacological Data
4.4.2. Adverse Events
4.4.3. Pharmacogenetics Markers
4.5. Theoretical Review
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, TX, USA, 2013. [Google Scholar]
- Eissa, N.; Al-Houqani, M.; Sadeq, A.; Ojha, S.K.; Sasse, A.; Sadek, B. Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder. Front. Neurosci. 2018, 12, 304. [Google Scholar] [CrossRef] [PubMed]
- DSM. Available online: https://www.psychiatry.org:443/psychiatrists/practice/dsm (accessed on 10 August 2023).
- Yoshida, K.; Koyama, E.; Zai, C.C.; Beitchman, J.H.; Kennedy, J.L.; Lunsky, Y.; Desarkar, P.; Müller, D.J. Pharmacogenomic Studies in Intellectual Disabilities and Autism Spectrum Disorder: A Systematic Review. Can. J. Psychiatry 2021, 66, 1019–1041. [Google Scholar] [CrossRef]
- Espadas, C.; Ballester, P.; Londoño, A.C.; Almenara, S.; Aguilar, V.; Belda, C.; Pérez, E.; Peiró, A.M. Multimorbidity and Psychotropic Polypharmacy among Participants with Autism Spectrum Disorder with Intellectual Disability. Psychiatry Res. 2020, 292, 113321. [Google Scholar] [CrossRef] [PubMed]
- Costello, A.; Hudson, E.; Morrissey, S.; Sharma, D.; Kelly, D.; Doody, O. Management of Psychotropic Medications in Adults with Intellectual Disability: A Scoping Review. Ann. Med. 2022, 54, 2486–2499. [Google Scholar] [CrossRef]
- Croen, L.A.; Zerbo, O.; Qian, Y.; Massolo, M.L.; Rich, S.; Sidney, S.; Kripke, C. The Health Status of Adults on the Autism Spectrum. Autism 2015, 19, 814–823. [Google Scholar] [CrossRef]
- Khanzada, N.S.; Butler, M.G.; Manzardo, A.M. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia. Int. J. Mol. Sci. 2017, 18, 527. [Google Scholar] [CrossRef]
- Puangpetch, A.; Vanwong, N.; Nuntamool, N.; Hongkaew, Y.; Chamnanphon, M.; Sukasem, C. CYP2D6 Polymorphisms and Their Influence on Risperidone Treatment. Pharmgenom. Pers. Med. 2016, 9, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Wink, L.K.; Plawecki, M.H.; Erickson, C.A.; Stigler, K.A.; McDougle, C.J. Emerging Drugs for the Treatment of Symptoms Associated with Autism Spectrum Disorders. Expert Opin. Emerg. Drugs 2010, 15, 481–494. [Google Scholar] [CrossRef]
- Yu, Y.; Chaulagain, A.; Pedersen, S.A.; Lydersen, S.; Leventhal, B.L.; Szatmari, P.; Aleksic, B.; Ozaki, N.; Skokauskas, N. Pharmacotherapy of Restricted/Repetitive Behavior in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. BMC Psychiatry 2020, 20, 121. [Google Scholar] [CrossRef]
- McDougle, C.J.; Price, L.H.; Volkmar, F.R.; Goodman, W.K.; Ward-O’brien, D.; Nielsen, J.; Bregman, J.; Cohen, D.J. Clomipramine in Autism: Preliminary Evidence of Efficacy. J. Am. Acad. Child Adolesc. Psychiatry 1992, 31, 746–750. [Google Scholar] [CrossRef]
- Accordino, R.E.; Kidd, C.; Politte, L.C.; Henry, C.A.; McDougle, C.J. Psychopharmacological Interventions in Autism Spectrum Disorder. Expert Opin. Pharmacother. 2016, 17, 937–952. [Google Scholar] [CrossRef]
- Palacio, J.D. Tratamiento Farmacológico de Conductas Patológicas Asociadas Con El Autismo y Otros Trastornos Relacionados. Rev. Colomb. Psiquiatr. 2007, 36, 221–240. [Google Scholar]
- Cecchin, E.; Stocco, G. Pharmacogenomics and Personalized Medicine. Genes 2020, 11, 679. [Google Scholar] [CrossRef] [PubMed]
- Mandic-Maravic, V.; Grujicic, R.; Milutinovic, L.; Munjiza-Jovanovic, A.; Pejovic-Milovancevic, M. Dopamine in Autism Spectrum Disorders—Focus on D2/D3 Partial Agonists and Their Possible Use in Treatment. Front. Psychiatry 2022, 12, 787097. [Google Scholar] [CrossRef]
- Esmaiel, N.N.; Ashaat, E.A.; Mosaad, R.; Fayez, A.; Ibrahim, M.; Abdallah, Z.Y.; Issa, M.Y.; Salem, S.; Ramadan, A.; El Wakeel, M.A.; et al. The Potential Impact of COMT Gene Variants on Dopamine Regulation and Phenotypic Traits of ASD Patients. Behav. Brain Res. 2020, 378, 112272. [Google Scholar] [CrossRef] [PubMed]
- Biswas, M.; Vanwong, N.; Sukasem, C. Pharmacogenomics in Clinical Practice to Prevent Risperidone-Induced Hyperprolactinemia in Autism Spectrum Disorder. Pharmacogenomics 2022, 23, 493–503. [Google Scholar] [CrossRef]
- Saiz-Rodríguez, M.; Belmonte, C.; Román, M.; Ochoa, D.; Jiang-Zheng, C.; Koller, D.; Mejía, G.; Zubiaur, P.; Wojnicz, A.; Abad-Santos, F. Effect of ABCB1 C3435T Polymorphism on Pharmacokinetics of Antipsychotics and Antidepressants. Basic Clin. Pharmacol. Toxicol. 2018, 123, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Bernaerts, S.; Boets, B.; Bosmans, G.; Steyaert, J.; Alaerts, K. Behavioral Effects of Multiple-Dose Oxytocin Treatment in Autism: A Randomized, Placebo-Controlled Trial with Long-Term Follow-Up. Mol. Autism 2020, 11, 6. [Google Scholar] [CrossRef]
- Wichers, R.H.; Findon, J.L.; Jelsma, A.; Giampietro, V.; Stoencheva, V.; Robertson, D.M.; Murphy, C.M.; McAlonan, G.; Ecker, C.; Rubia, K.; et al. Modulation of Brain Activation during Executive Functioning in Autism with Citalopram. Transl. Psychiatry 2019, 9, 286. [Google Scholar] [CrossRef] [PubMed]
- Ballester, P.; Martínez, M.J.; Inda, M.-D.-M.; Javaloyes, A.; Richdale, A.L.; Muriel, J.; Belda, C.; Toral, N.; Morales, D.; Fernández, E.; et al. Evaluation of Agomelatine for the Treatment of Sleep Problems in Adults with Autism Spectrum Disorder and Co-Morbid Intellectual Disability. J. Psychopharmacol. 2019, 33, 1395–1406. [Google Scholar] [CrossRef]
- Pretzsch, C.M.; Voinescu, B.; Mendez, M.A.; Wichers, R.; Ajram, L.; Ivin, G.; Heasman, M.; Williams, S.; Murphy, D.G.; Daly, E.; et al. The Effect of Cannabidiol (CBD) on Low-Frequency Activity and Functional Connectivity in the Brain of Adults with and without Autism Spectrum Disorder (ASD). J. Psychopharmacol. 2019, 33, 1141–1148. [Google Scholar] [CrossRef]
- Owada, K.; Okada, T.; Munesue, T.; Kuroda, M.; Fujioka, T.; Uno, Y.; Matsumoto, K.; Kuwabara, H.; Mori, D.; Okamoto, Y.; et al. Quantitative Facial Expression Analysis Revealed the Efficacy and Time Course of Oxytocin in Autism. Brain 2019, 142, 2127–2136. [Google Scholar] [CrossRef] [PubMed]
- Bolognani, F.; Del Valle Rubido, M.; Squassante, L.; Wandel, C.; Derks, M.; Murtagh, L.; Sevigny, J.; Khwaja, O.; Umbricht, D.; Fontoura, P. A Phase 2 Clinical Trial of a Vasopressin V1a Receptor Antagonist Shows Improved Adaptive Behaviors in Men with Autism Spectrum Disorder. Sci. Transl. Med. 2019, 11, eaat7838. [Google Scholar] [CrossRef] [PubMed]
- Chez, M.; Kile, S.; Lepage, C.; Parise, C.; Benabides, B.; Hankins, A. A Randomized, Placebo-Controlled, Blinded, Crossover, Pilot Study of the Effects of Dextromethorphan/Quinidine for the Treatment of Neurobehavioral Symptoms in Adults with Autism. J. Autism Dev. Disord. 2020, 50, 1532–1538. [Google Scholar] [CrossRef] [PubMed]
- Quintana, D.S.; Westlye, L.T.; Hope, S.; Nærland, T.; Elvsåshagen, T.; Dørum, E.; Rustan, Ø.; Valstad, M.; Rezvaya, L.; Lishaugen, H.; et al. Dose-Dependent Social-Cognitive Effects of Intranasal Oxytocin Delivered with Novel Breath Powered Device in Adults with Autism Spectrum Disorder: A Randomized Placebo-Controlled Double-Blind Crossover Trial. Transl. Psychiatry 2017, 7, e1136. [Google Scholar] [CrossRef]
- Kanat, M.; Spenthof, I.; Riedel, A.; van Elst, L.T.; Heinrichs, M.; Domes, G. Restoring Effects of Oxytocin on the Attentional Preference for Faces in Autism. Transl. Psychiatry 2017, 7, e1097. [Google Scholar] [CrossRef]
- Zamzow, R.M.; Ferguson, B.J.; Ragsdale, A.S.; Lewis, M.L.; Beversdorf, D.Q. Effects of Acute Beta-Adrenergic Antagonism on Verbal Problem Solving in Autism Spectrum Disorder and Exploration of Treatment Response Markers. J. Clin. Exp. Neuropsychol. 2017, 39, 596–606. [Google Scholar] [CrossRef]
- Umbricht, D.; Del Valle Rubido, M.; Hollander, E.; McCracken, J.T.; Shic, F.; Scahill, L.; Noeldeke, J.; Boak, L.; Khwaja, O.; Squassante, L.; et al. A Single Dose, Randomized, Controlled Proof-Of-Mechanism Study of a Novel Vasopressin 1a Receptor Antagonist (RG7713) in High-Functioning Adults with Autism Spectrum Disorder. Neuropsychopharmacology 2017, 42, 1914–1923. [Google Scholar] [CrossRef]
- Althaus, M.; Groen, Y.; Wijers, A.A.; Noltes, H.; Tucha, O.; Sweep, F.C.; Calcagnoli, F.; Hoekstra, P.J. Do Blood Plasma Levels of Oxytocin Moderate the Effect of Nasally Administered Oxytocin on Social Orienting in High-Functioning Male Adults with Autism Spectrum Disorder? Psychopharmacology 2016, 233, 2737–2751. [Google Scholar] [CrossRef] [PubMed]
- Zamzow, R.M.; Ferguson, B.J.; Stichter, J.P.; Porges, E.C.; Ragsdale, A.S.; Lewis, M.L.; Beversdorf, D.Q. Effects of Propranolol on Conversational Reciprocity in Autism Spectrum Disorder: A Pilot, Double-Blind, Single-Dose Psychopharmacological Challenge Study. Psychopharmacology 2016, 233, 1171–1178. [Google Scholar] [CrossRef]
- Althaus, M.; Groen, Y.; Wijers, A.A.; Noltes, H.; Tucha, O.; Hoekstra, P.J. Oxytocin Enhances Orienting to Social Information in a Selective Group of High-Functioning Male Adults with Autism Spectrum Disorder. Neuropsychologia 2015, 79, 53–69. [Google Scholar] [CrossRef]
- Watanabe, T.; Kuroda, M.; Kuwabara, H.; Aoki, Y.; Iwashiro, N.; Tatsunobu, N.; Takao, H.; Nippashi, Y.; Kawakubo, Y.; Kunimatsu, A.; et al. Clinical and Neural Effects of Six-Week Administration of Oxytocin on Core Symptoms of Autism. Brain 2015, 138, 3400–3412. [Google Scholar] [CrossRef]
- Auyeung, B.; Lombardo, M.V.; Heinrichs, M.; Chakrabarti, B.; Sule, A.; Deakin, J.B.; Bethlehem, R.a.I.; Dickens, L.; Mooney, N.; Sipple, J.a.N.; et al. Oxytocin Increases Eye Contact during a Real-Time, Naturalistic Social Interaction in Males with and without Autism. Transl. Psychiatry 2015, 5, e507. [Google Scholar] [CrossRef]
- McDougle, C.J.; Naylor, S.T.; Cohen, D.J.; Volkmar, F.R.; Heninger, G.R.; Price, L.H. A Double-Blind, Placebo-Controlled Study of Fluvoxamine in Adults with Autistic Disorder. Arch. Gen. Psychiatry 1996, 53, 1001–1008. [Google Scholar] [CrossRef]
- Hollander, E.; Soorya, L.; Chaplin, W.; Anagnostou, E.; Taylor, B.P.; Ferretti, C.J.; Wasserman, S.; Swanson, E.; Settipani, C. A Double-Blind Placebo-Controlled Trial of Fluoxetine for Repetitive Behaviors and Global Severity in Adult Autism Spectrum Disorders. Am. J. Psychiatry 2012, 169, 292–299. [Google Scholar] [CrossRef]
- Willemsen-Swinkels, S.H.; Buitelaar, J.K.; Nijhof, G.J.; van England, H. Failure of Naltrexone Hydrochloride to Reduce Self-Injurious and Autistic Behavior in Mentally Retarded Adults. Double-Blind Placebo-Controlled Studies. Arch. Gen. Psychiatry 1995, 52, 766–773. [Google Scholar] [CrossRef]
- Al Dera, H. Cellular and Molecular Mechanisms Underlying Autism Spectrum Disorders and Associated Comorbidities: A Pathophysiological Review. Biomed. Pharmacother. 2022, 148, 112688. [Google Scholar] [CrossRef]
- Brown, J.T.; Eum, S.; Cook, E.H.; Bishop, J.R. Pharmacogenomics of Autism Spectrum Disorder. Pharmacogenomics 2017, 18, 403–414. [Google Scholar] [CrossRef]
- Correia, C.T.; Almeida, J.P.; Santos, P.E.; Sequeira, A.F.; Marques, C.E.; Miguel, T.S.; Abreu, R.L.; Oliveira, G.G.; Vicente, A.M. Pharmacogenetics of Risperidone Therapy in Autism: Association Analysis of Eight Candidate Genes with Drug Efficacy and Adverse Drug Reactions. Pharmacogenom. J. 2010, 10, 418–430. [Google Scholar] [CrossRef]
- Alenius, M.; Wadelius, M.; Dahl, M.-L.; Hartvig, P.; Lindström, L.; Hammarlund-Udenaes, M. Gene Polymorphism Influencing Treatment Response in Psychotic Patients in a Naturalistic Setting. J. Psychiatr. Res. 2008, 42, 884–893. [Google Scholar] [CrossRef]
- Breitenstein, B.; Scheuer, S.; Brückl, T.M.; Meyer, J.; Ising, M.; Uhr, M.; Holsboer, F. Association of ABCB1 Gene Variants, Plasma Antidepressant Concentration, and Treatment Response: Results from a Randomized Clinical Study. J. Psychiatr. Res. 2016, 73, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Kalla, P.; Namerow, L.B.; Walker, S.A.; Ruaño, G.; Malik, S. Contrasting ABCB1 Pharmacogenetics and Psychotropic Responses in Child and Adolescent Psychiatry: A Case Comparison. Pharmacogenomics 2023, 24, 131–139. [Google Scholar] [CrossRef]
- Effect of CYP2D6, CYP2C9 and ABCB1 Genotypes on Fluoxetine Plasma Concentrations and Clinical Improvement in Children and Adolescent Patients. Available online: https://www.pharmgkb.org/literature/15072877 (accessed on 22 September 2023).
- Gene-Wide Tagging Study of Association between ABCB1 Polymorphisms and Multidrug Resistance in Epilepsy in Han Chinese. Available online: https://www.pharmgkb.org/literature/6653900 (accessed on 22 September 2023).
- Antipsychotic Drug Dosage and Therapeutic Response in Schizophrenia Is Influenced by ABCB1 Genotypes: A Study from a South Indian Perspective. Available online: https://www.pharmgkb.org/literature/15020208 (accessed on 22 September 2023).
- Planelles, B.; Margarit, C.; Inda, M.-D.-M.; Ballester, P.; Muriel, J.; Barrachina, J.; Ajo, R.; Esteban, M.-D.; Peiró, A.M. Gender Based Differences, Pharmacogenetics and Adverse Events in Chronic Pain Management. Pharmacogenom. J. 2020, 20, 320–328. [Google Scholar] [CrossRef]
- Gadow, K.D.; Roohi, J.; DeVincent, C.J.; Kirsch, S.; Hatchwell, E. Association of COMT (Val158Met) and BDNF (Val66Met) Gene Polymorphisms with Anxiety, ADHD and Tics in Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2009, 39, 1542–1551. [Google Scholar] [CrossRef]
- The Influence of Metabolic Syndrome, Physical Activity and Genotype on Catechol-O-Methyl Transferase Promoter-Region Methylation in Schizophrenia. Available online: https://www.pharmgkb.org/literature/14964583 (accessed on 22 September 2023).
- Zhang, J.-P.; Lencz, T.; Malhotra, A.K. D2 Receptor Genetic Variation and Clinical Response to Antipsychotic Drug Treatment: A Meta-Analysis. Am. J. Psychiatry 2010, 167, 763–772. [Google Scholar] [CrossRef]
- Systematic Analysis of Dopamine Receptor Genes (DRD1-DRD5) in Antipsychotic-Induced Weight Gain. Available online: https://www.pharmgkb.org/literature/6360963 (accessed on 22 September 2023).
- de Leon, J.; Spina, E. What Is Needed to Incorporate Clinical Pharmacogenetic Tests into the Practice of Psychopharmacotherapy? Expert Rev. Clin. Pharmacol. 2016, 9, 351–354. [Google Scholar] [CrossRef]
- Staddon, S.; Arranz, M.J.; Mancama, D.; Mata, I.; Kerwin, R.W. Clinical Applications of Pharmacogenetics in Psychiatry. Psychopharmacology 2002, 162, 18–23. [Google Scholar] [CrossRef]
- Filaković, P.; Petek, A. Personalized Pharmacotherapy in Psychiatry. Psychiatr. Danub. 2009, 21, 341–346. [Google Scholar]
- Claudio-Campos, K.; Padrón, A.; Jerkins, G.; Nainaparampil, J.; Nelson, R.; Martin, A.; Wiisanen, K.; Smith, D.M.; Strekalova, Y.; Marsiske, M.; et al. Acceptability, Feasibility, and Utility of Integrating Pharmacogenetic Testing into a Child Psychiatry Clinic. Clin. Transl. Sci. 2021, 14, 589–598. [Google Scholar] [CrossRef]
- Operto, F.F.; Smirni, D.; Scuoppo, C.; Padovano, C.; Vivenzio, V.; Quatrosi, G.; Carotenuto, M.; Precenzano, F.; Pastorino, G.M.G. Neuropsychological Profile, Emotional/Behavioral Problems, and Parental Stress in Children with Neurodevelopmental Disorders. Brain Sci. 2021, 11, 584. [Google Scholar] [CrossRef]
- Lingjaerde, O.; Ahlfors, U.G.; Bech, P.; Dencker, S.J.; Elgen, K. The UKU Side Effect Rating Scale. A New Comprehensive Rating Scale for Psychotropic Drugs and a Cross-Sectional Study of Side Effects in Neuroleptic-Treated Patients. Acta Psychiatr. Scand. 1987, 76, 100. [Google Scholar] [CrossRef]
- Tveter, A.; Bakken, T.; Bramness, J.; Rossberg, J. Adjustment of the UKU Side Effect Rating Scale for Adults with Intellectual Disabilities. A Pilot Study. Adv. Ment. Health Intellect. Disabil. 2014, 8, 260–267. [Google Scholar] [CrossRef]
- Chopko, T.C.; Lindsley, C.W. Classics in Chemical Neuroscience: Risperidone. ACS Chem. Neurosci. 2018, 9, 1520–1529. [Google Scholar] [CrossRef]
- Osuna-Luque, J.; Rodríguez-Ramos, Á.; Gámez-Del-Estal, M.D.M.; Ruiz-Rubio, M. Behavioral Mechanisms That Depend on Dopamine and Serotonin in Caenorhabditis Elegans Interact With the Antipsychotics Risperidone and Aripiprazole. J. Exp. Neurosci. 2018, 12, 1179069518798628. [Google Scholar] [CrossRef]
- Hong, S.-B.; Zalesky, A.; Park, S.; Yang, Y.-H.; Park, M.-H.; Kim, B.; Song, I.-C.; Sohn, C.-H.; Shin, M.-S.; Kim, B.-N.; et al. COMT Genotype Affects Brain White Matter Pathways in Attention-Deficit/Hyperactivity Disorder. Hum. Brain Mapp. 2015, 36, 367–377. [Google Scholar] [CrossRef]
- Lee, Y.H.; Song, G.G. BDNF 196 G/A and COMT Val158Met Polymorphisms and Susceptibility to ADHD: A Meta-Analysis. J. Atten. Disord. 2018, 22, 872–877. [Google Scholar] [CrossRef]
- Jovanović, N.; Božina, N.; Lovrić, M.; Medved, V.; Jakovljević, M.; Peleš, A.M. The Role of CYP2D6 and ABCB1 Pharmacogenetics in Drug-Naïve Patients with First-Episode Schizophrenia Treated with Risperidone. Eur. J. Clin. Pharmacol. 2010, 66, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
Variables (n = 72 Participants) | ||
---|---|---|
Sex (n, %) | Male | 54 (75%) |
Female | 18 (25%) | |
Age (mean ± standard dev) | 39.1 ± 13.2 | |
Cardiovascular risk factors (n, %) | Dyslipidemia | 15 (21%) |
Obesity | 14 (19%) | |
Diabetes | 4 (5%) | |
Hypertension | 4 (5%) | |
Comorbidities (n, %) | Without | 4 (5%) |
1 | 8 (11%) | |
2 | 9 (12%) | |
3 | 16 (22%) | |
4 | 14 (19%) | |
5 or more | 21 (29%) | |
Drug group (n, %) | Antipsychotics | 81 (69%) |
Antidepressant | 19 (14%) | |
Anticonvulsants | 41 (31%) | |
Anxiolytics | 19 (9%) | |
Without | 15 (13%) | |
Number of simultaneous medications (n, %) | 2 | 27 (23%) |
3 | 25 (21%) | |
4 | 13 (11%) | |
5 or more | 16 (14%) |
Number of AEs | 0 | 10 (29%) |
1 | 6 (18%) | |
2 | 6 (18%) | |
3 | 5 (15%) | |
>4 | 7 (21%) | |
Number of AEs by AE group | Psychiatric | 14 (41%) |
Neurological | 14 (41%) | |
Autonomic | 12 (35%) | |
Other | 12 (35%) |
Polymorphisms n = 100 | n | % Study | |
---|---|---|---|
DOP2 rs6277 | WT(GG) | 37 | 40% |
MUT (AA) | 16 | 17% | |
HTZ (AG) | 39 | 43% | |
W/O data | 8 | NA | |
Alleles | G | 113 | 61% |
A | 71 | 39% | |
COMT rs4680 | WT(GG) | 21 | 41% |
MUT (AA) | 25 | 49% | |
HTZ (GA) | 5 | 10% | |
W/O data | 49 | NA | |
Alleles | G | 47 | 46% |
A | 55 | 54% | |
ABCB1.1 rs2032582 | WT(AA) | 79 | 98% |
MUT(CC) | 0 | 0% | |
HTZ(AC) | 2 | 2% | |
W/O data | 19 | NA | |
Alleles | A | 160 | 99% |
C | 2 | 1% | |
ABCB1.2 rs1045642 | WT(AA) | 20 | 24% |
MUT(GG) | 20 | 24% | |
HTZ(AG) | 42 | 52% | |
W/O data | 18 | 18% | |
Alleles | A | 82 | 50% |
G | 82 | 50% |
(A) | DOP2 | COMT | ABCB1.1 | ABCB1.2 |
---|---|---|---|---|
p-value | ||||
Psychiatric AE | 1 | 0.3 | 1 | 0.4 |
Neurological AE | 0.01 | 0.06 | 1 | 0.8 |
Autonomic AE | 0.3 | 0.3 | 1 | 1 |
Other AE | 0.8 | 0.3 | 1 | 0.8 |
(B) Alleles of DOP2 | ||||
GA | AA | GG | ||
p-value | ||||
Neurological AE | 1.00 | 0.02 | 0.04 |
Author, Year | Medication (Daily Dose) | Participants (N; % Male; Age ± SD) | Method (Design, Duration Months) | Diagnosis Tool | Results | Pharmacogenetic Markers |
---|---|---|---|---|---|---|
Bernaerts et al., 2020 [20] | Oxytocin (24 IU/day) vs. placebo | N = 40 (100%M) 27 ± 9 | Parallel, double-blind, randomized, and placebo-controlled, 4 weeks | DSM-IV-TR and ADOS | Decreased social avoidance, repetitive behaviors, and mood improvements. | NA |
Wichers et al., 2019 [21] | Citalopram (20 mg/day) vs. placebo | N = 38 (100%M, 19 controls and 19 ASD); 27 ± 9 and 30 ± 11 | Crossover, double-blind, randomized, and placebo-controlled | ADI-R and ADOS | Activity normalization of the inferior frontal cortex, and functional differences in the brain were abolished. | CYP2C19, CYP2D6 |
Ballester et al., 2019 [22] | Agomelatine (25 mg/day) vs. placebo | N = 23 (83%M) 35 ± 12 | Crossover, triple-blind, randomized, and placebo-controlled, 6 months | DSM-5-TR criteria | Improves sleep quality, and total sleep time increased by an average of 83 min. | ABCB1 |
Pretzsch et al., 2019 [23] | CBD (600 mg/day) vs. placebo | N = 34 (100%M; 17 controls and 17 ASD) 28 ± 7 and 31 ± 10 | Crossover, double-blind, randomized, and placebo-controlled | ADOS and ADI-R | Changes in low-frequency brain fluctuations in the cerebellar vermis and in the right fusiform gyrus in individuals with ASD. | AOC1, ABCC5, SLC15A1 |
Owada et al., 2019 [24] | Oxytocin (24 IU/every 12 h) vs. placebo | N = 18 (100%M, N = 9 and N = 9) 35 ± 7 and 29 ± 6–N = 103 (100%M, N = 51 and N = 52) 27 ± 7 and 26 ± 7 | Crossover, double-blind, randomized, placebo-controlled, multicenter, parallel, double-blind, and placebo-controlled, 6 weeks | DSM-IV-TR | Decreases the likelihood of neutral facial expression during social interaction. | NA |
Bolognani et al., 2019 [25] | Balovaptan (1.5, 4, or 10 mg/day) vs. placebo | N = 223.(100%M) 24 ± 2 | Phase 2, parallel-group, multicenter, double-blind, randomized, and placebo-controlled. Stage 1: 1.5 mg balovaptan vs. placebo (2:1), Stage 2: 4 mg vs. placebo (2:1), Stage 3: 10 mg vs. placebo (2:1), and Stage 4: 1.5 or 10 mg vs. placebo (1:1:1), 12 weeks each | DSM-5-TR and ADOS-2 | Dose-dependent improvement of balovaptan compared to placebo was observed in standard scores in the socialization and communication domains. | NA |
Chez et al., 2018 [26] | Dextromethorphan (20 mg)/quinidine (10 mg) vs. placebo every 24 h the first week and every 12 h the second week | N = 15 (78%M) 39 ± 21 | Crossover, double-blind, randomized, and placebo-controlled, 24 weeks | DSM-IV-TR and ADOS scale | Decreased irritability and aggression; associated with significant behavioral improvements in individuals with autism. | CYP2D6 |
Quintana et al., 2017 [27] | Oxytocin (8 IU or 24 IU/day) vs. placebo | N = 17 (100%M) 27 ± 8 | Crossover, double-blind, randomized, and placebo-controlled | DSM-IV | Breath-powered administration increases bioavailability and improves perception of emotion sensitivity significantly at an 8 IU dose. There were no significant changes in facial expression grading speed. | NA |
Kanat et al., 2017 [28] | Oxytocin (24 IU/day) vs. Placebo | N = 59 (100%M, N = 29 ASD and N = 30 controls) 38 ± 11 and 32 ± 12 | Crossover, double-blind, randomized (in blocks of 10), and placebo-controlled | DSM-IV | Oxytocin increased attention to faces in the face in ASD individuals. The effects of oxytocin were greater in ASD participants with high levels of social anxiety, who were characterized by avoidance of attention to faces under placebo. | NA |
Zamzow et al., 2017 [29] | Propranolol (40 mg) vs. placebo | N = 20 (95%M) 21 ± 5 | Crossover, double-blind, randomized, and placebo-controlled | ADI-R and DSM-IV | Participants resolved more easily in the propranolol arm. No effects on anxiety were found. | CYP2D6 |
Umbricht et al., 2017 [30] | Vasopressin receptor antagonist RG7713 (20 mg intravenous) vs. placebo | N = 19 (100%M) 23 ± 5 | Multicenter, crossover, double-blind, randomized, and placebo-controlled | ADOS and DSM-IV | Statistically significant effects were limited to improved attention to relevant biological information and social cognition. | NA |
Althaus et al., 2016 [31] | Oxytocin (24 IU/day intranasal) vs. placebo | N = 61 (100%M, N = 31 ASD and N = 30 controls) 23 ± 4 | Crossover, double-blind, randomized, and placebo-controlled | (DSM)-IV and ADOS | There were no significant differences between oxytocin plasma levels and improvements in behavior or anxiety. | NA |
Zamzow et al., 2016 [32] | Propranolol (40 mg) vs. placebo | N = 20 (95%M) 21 ± 3 | Crossover, double-blind, randomized, and placebo-controlled | ADI-R and DSM-IV | Propranolol improved reciprocity and non-verbal communication. However, no differences were found in anxiety. | CYP2D6 |
Althaus et al., 2015 [33] | Oxytocin (24 UI/day) vs. placebo | N = 62 (100%M 30 control and 32 ASD) 23 ± 3 and 23 ± 5 | Crossover, double-blind, randomized, and placebo-controlled | DSM-IV, ADOS, SRS-A, and AQ | No significant differences were found between groups, either social response or anxiety. | NA |
Watanabe et al., 2015 [34] | Oxytocin (48 UI/day) vs. placebo | N = 20 (100%M 10 control and 10 ASD) 36 ± 19 and 36 ± 19 | Crossover, double-blind, randomized, and placebo-controlled (duration: 6 weeks) | DSM-IV and ADOS-2 | Improvement in social reciprocity. | NA |
Auyeung et al., 2015 [35] | Oxytocin (24 UI/day) vs. placebo | N = 74 (100%M; 37 control and 37 ASD) 34 ± 9 | Intraindividual, Crossover, double-blind, randomized, and placebo-controlled (duration: 2 weeks) | DSM-IV | Oxytocin significantly increases participants’ social eye looking in both groups. | NA |
McDougle et al., 1996 [36] | Fluvoxamine (50–300 mg/day) vs. placebo | N = 30 (90%M) 30 ± 8 | Crossover, double-blind, randomized, and placebo-controlled (duration: 12 weeks) | DSM-III-R, IQ with WASI, and overall status with CGI | A reduction in repetitive and aggressive behaviors was measured. | CYP2C19, CYP2D6 |
Hollander et al., 2012 [37] | Fluoxetine (10 mg–20 mg–80 mg/day) vs. placebo | N = 37 (69%M) 30 ± 3 | Double-blinded and placebo-controlled trial (duration: 12 weeks) | CGI, Yale-Brown Obsessive Compulsive Scale, and DSM-IV | This drug was found to improve repetitive b behaviors and overall core symptoms with large effect sizes. | CYP2D6 |
Willemsen-Swinkels et al., 1995 [38] | Naltrexone (50–150 mg/day) vs. placebo | N= 33 (81%M) 29 ± 6 | Crossover, double-blind, randomized, and placebo-controlled (duration: 4 weeks) | DSM-III-R | Increase in stereotyped behavior, no positive effects, and side effects that prompted losses of follow up. | COMT , OPRM1 |
Gene Name | rs ID | Reference Allele | Alternate Allele | MAF |
---|---|---|---|---|
DOP2-DRD2 | rs6277 | G | A | G = 0.4471 A = 0.5529 * |
COMT | rs4680 | G | A | G = 0.491334 A = 0.508666 * |
ABCB1.1 | rs2032582 | A | C/T | A = 0.446826 C = 0.552030 T = 0.001144 * |
ABCB1.2 | rs1045642 | A | G | A = 0.519742 G = 0.480258 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Miguel, L.; Ballester, P.; Egoavil, C.; Sánchez-Ocaña, M.L.; García-Muñoz, A.M.; Cerdá, B.; Zafrilla, P.; Ramos, E.; Peiró, A.M. Pharmacogenetics May Prevent Psychotropic Adverse Events in Autism Spectrum Disorder: An Observational Pilot Study. Pharmaceuticals 2023, 16, 1496. https://doi.org/10.3390/ph16101496
de Miguel L, Ballester P, Egoavil C, Sánchez-Ocaña ML, García-Muñoz AM, Cerdá B, Zafrilla P, Ramos E, Peiró AM. Pharmacogenetics May Prevent Psychotropic Adverse Events in Autism Spectrum Disorder: An Observational Pilot Study. Pharmaceuticals. 2023; 16(10):1496. https://doi.org/10.3390/ph16101496
Chicago/Turabian Stylede Miguel, Laura, Pura Ballester, Cecilia Egoavil, María Luisa Sánchez-Ocaña, Ana María García-Muñoz, Begoña Cerdá, Pilar Zafrilla, Enrique Ramos, and Ana M. Peiró. 2023. "Pharmacogenetics May Prevent Psychotropic Adverse Events in Autism Spectrum Disorder: An Observational Pilot Study" Pharmaceuticals 16, no. 10: 1496. https://doi.org/10.3390/ph16101496