The Influence of Long Carbon Chains on the Antioxidant and Anticancer Properties of N-Substituted Benzisoselenazolones and Corresponding Diselenides
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. General Procedure
3.3. Antioxidant Activity Assays
3.3.1. DTT-Assay
3.3.2. ABTS Method
3.4. MTT Viability Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [PubMed]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018, 63, 68–78. [Google Scholar] [CrossRef]
- Aguilar, T.A.F.; Navarro, B.C.H.; Pérez, J. Endogenous Antioxidants: A Review of their Role in Oxidative Stress. In A Master Regulator of Oxidative Stress—The Transcription Factor Nrf2; InTech.: London, UK, 2016; pp. 3–19. [Google Scholar]
- Bouayed, J.; Bohn, T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev. 2010, 3, 228–237. [Google Scholar] [CrossRef]
- Horton, W.; Török, M. Natural and Nature-Inspired Synthetic Small Molecule Antioxidants in the Context of Green Chemistry. In Green Chemistry: An Inclusive Approach; Elsevier: Amsterdam, The Netherlands, 2018; pp. 963–979. [Google Scholar]
- Nogueira, C.W.; Barbosa, N.V.; Rocha, J.B.T. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol. 2021, 95, 1179–1226. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.Z.; Krahn, N. The selenocysteine toolbox: A guide to studying the 21st amino acid. Arch. Biochem. Biophys. 2022, 730, 109421. [Google Scholar] [CrossRef] [PubMed]
- Lenardão, E.J.; Santi, C.; Sancineto, L. Organoselenium in Nature. In New Frontiers in Organoselenium Compounds; Springer: New York, NY, USA, 2018; pp. 145–156. [Google Scholar]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
- Parnham, M.J.; Sies, H. The early research and development of ebselen. Biochem. Pharmacol. 2013, 86, 1248–1253. [Google Scholar] [CrossRef]
- Orian, L.; Flohé, L. Selenium-Catalyzed Reduction of Hydroperoxides in Chemistry and Biology. Antioxidants 2021, 10, 1560. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Dong, C.; Zhao, Y.; Zhou, J.; Yuan, C.; Zou, L. Mechanisms of ebselen as a therapeutic and its pharmacology applications. Future Med. Chem. 2020, 23, 2141–2160. [Google Scholar] [CrossRef]
- Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 2013, 42, 8870–8894. [Google Scholar] [CrossRef] [PubMed]
- Pacuła, A.J.; Mangiavacchi, F.; Sancineto, L.; Lenardao, E.J.; Ścianowski, J.; Santi, C. An Update on ”Selenium Containing Compounds from Poison to Drug Candidates: A Review on the GPx-like Activity”. Curr. Chem. Biol. 2015, 9, 97–112. [Google Scholar] [CrossRef]
- Singh, F.V.; Wirth, T. Synthesis of Organoselenium Compounds with Potential Biological Activities. In Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Royal Society of Chemistry: London, UK, 2017; pp. 77–121. [Google Scholar]
- Chuai, H.; Zhang, S.Q.; Bai, H.; Li, J.; Wang, Y.; Sun, J.; Wen, E.; Zhang, J.; Xin, M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur. J. Med. Chem. 2021, 223, 113621–113641. [Google Scholar] [CrossRef]
- Laskowska, A.; Pacuła-Miszewska, A.J.; Obieziurska-Fabisiak, M.; Drogosz-Stachowicz, J.; Janecka, A.; Wojtczak, A.; Scianowski, J. Attachment of Chiral Functional Groups to Modify the Activity of New GPx Mimetics. Materials 2011, 15, 2068. [Google Scholar] [CrossRef]
- Pacuła, A.J.; Kaczor, K.B.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Wojtczak, A.; Ścianowski, J. New Chiral Ebselen Analogues with Antioxidant and Cytotoxic Potential. Molecules 2017, 22, 492. [Google Scholar] [CrossRef] [PubMed]
- Pacuła, A.J.; Ścianowski, J.; Aleksandrzak, K.B. Highly efficient synthesis and antioxidant capacity of N-substituted benzisoselenazol-3(2H)-ones. RSC Adv. 2014, 4, 48959–48962. [Google Scholar] [CrossRef]
- Pacuła, A.J.; Kaczor, K.B.; Wojtowicz, A.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Ścianowski, J. New glutathione peroxidase mimetics-Insights into antioxidant and cytotoxic activity. Bioorg. Med. Chem. 2017, 25, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Xia, J.; Xu, H. Dynamic Chemistry of Selenium: Se−N and Se−Se Dynamic Covalent Bonds in Polymeric Systems. ACS Macro Lett. 2016, 5, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Xu, H.; Wang, L.; Cao, W.; Zhang, X. A New Dynamic Covalent Bond of SeN: Towards Controlled Self-Assemblyand Disassembly. Chem. Eur. J. 2013, 19, 9506–9510. [Google Scholar] [CrossRef] [PubMed]
- Macegoniuk, K.; Grela, E.; Palus, J.; Rudzińska-Szostak, E.; Grabowiecka, A.; Biernat, M.; Berlicki, Ł. 1,2-Benzisoselenazol-3(2H)-one Derivatives As a New Class of Bacterial Urease Inhibitors. J. Med. Chem. 2016, 59, 8125–8133. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Golin, A.; Tinkov, A.A.; Aschner, M.; Farina, M.; Rocha, J.B.T. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J. Trace Elem. Med. Biol. 2023, 75, 127099–127118. [Google Scholar] [CrossRef] [PubMed]
- Drąg-Zalesińska, M.; Drąg, M.; Poręba, M.; Borska, S.; Kulbacka, J.; Saczko, J. Anticancer properties of ester derivatives of betulin in human metastatic melanoma cells (Me-45). Cancer Cell Int. 2017, 17, 4–10. [Google Scholar] [CrossRef]
- Snoch, W.; Wnuk, D.; Witko, T.; Staroń, J.; Bojarski, A.J.; Jarek, E.; Plou, F.J.; Guzik, M. In Search of Effective Anticancer Agents—Novel Sugar Esters Based on Polyhydroxyalkanoate Monomers. Int. J. Mol. Sci. 2021, 22, 7238. [Google Scholar] [CrossRef] [PubMed]
- Kumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A Water-Soluble Cyclic Selenide with Enhanced Glutathione Peroxidase-Like Catalytic Activities. Eur. J. Org. Chem. 2010, 3, 440–444. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macro. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH% and ABTS% assays: Estimation methods for EC 50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Welter, A.; Etschenberg, E.; Kuhl, P.; Graf, E.; Dereu, N.; Wendel, A.; Fischer, H.; Christiaens, L. Diselenobis-Benzoic Acid Amides of Primary and Secondary Amines and Processes for the Treatment of Diseases in Humans Caused by a Cell Injury. US4873350, 10 October 1989. [Google Scholar]
- Mlochowski, J.; Kloc, K.; Syper, L.I.; Anna, D.; Piasecki, E. Aromatic and Azaaromatic Diselenides, Benzisoselenazolones and Related Compounds as Immunomodulators Active in Humans: Synthesis and Properties. Liebigs Ann. Der Chem. 1993, 12, 1239–1244. [Google Scholar] [CrossRef]
Remaining DTTred [%] | ||||
---|---|---|---|---|
Se-Catalyst [0.1 eq.] | 5 min | 15 min | 30 min | 60 min |
Benzisoselenazol-3(2H)-ones | ||||
17a | 86 | 79 | 71 | 61 |
18a | 84 | 77 | 68 | 54 |
19a | 83 | 78 | 74 | 71 |
20a | 83 | 78 | 75 | 72 |
21a | 88 | 88 | 87 | 87 |
22a | 91 | 90 | 90 | 90 |
23a | 38 | 10 | 0 | 0 |
24a | 39 | 23 | 14 | 8 |
Diphenyl diselenides | ||||
17b | 0 | 0 | 0 | 0 |
18b | 9 | 0 | 0 | 0 |
19b | 79 | 57 | 38 | 25 |
20b | 85 | 83 | 82 | 81 |
21b | 93 | 93 | 92 | 90 |
22b | 51 | 50 | 50 | 48 |
23b | 0 | 0 | 0 | 0 |
24b | 0 | 0 | 0 | 0 |
Ebselen | 75 | 64 | 58 | 52 |
Compound | EC50 [µM] ± SEM 1 |
---|---|
Benzisoselenazol-3(2H)-ones | |
17a | 255.5 C ± 7.1 |
18a | 322.1 D ± 11.8 |
19a | 264.0 C ± 4.4 |
20a | 378.0 E ± 12.5 |
21a | 539.2 F ± 8.2 |
22a | 807.7 G ± 3.7 |
23a | 153.2 A ± 6.1 |
24a | 172.1 B ± 9.5 |
Diphenyl diselenides | |
17b | 18.9 B ± 1.2 |
18b | 44.7 C ± 2.1 |
19b | 14.7 A ± 1.6 |
21b | 470.1 G ± 7.5 |
22b | 79.5 F ± 2.3 |
23b | 51.5 E ± 1.9 |
24b | 46.9 D ± 2.1 |
Ebselen | 87.5 ± 0.8 |
IC50 [µM] ± SEM | |||
---|---|---|---|
Compound | MCF-7 | HL-60 | HUVEC |
Benzisoselenazol-3(2H)-ones | |||
17a | 89.2 ± 6.7 | 52.2 ± 1.9 | - |
18a | 66.8 ± 5.3 | 79.0 ± 0.9 | - |
19a | 19.8 ± 2.1 | 11.5 ± 0.7 | - |
20a | 10.0 ± 1.9 | 5.4 ± 0.3 | 11.2 ± 1.1 |
21a | 250.0 ± 8.0 | 48.0 ± 0.8 | - |
22a | 15.2 ± 1.2 | 32.7 ± 0.3 | - |
23a | 28.5 ± 2.1 | 52.2 ± 1.9 | - |
24a | 28.7 ± 2.2 | 118.7 ± 5.1 | - |
Diphenyl diselenides | |||
17b | 156.0 ± 11.0 | 158.0 ± 1.0 | - |
18b | 153.0 ± 14.2 | 121.0 ± 8.2 | - |
19b | 238.0 ± 16.5 | 154.0 ± 4.5 | - |
20b | 200.0 ± 16.4 | 23.4 ± 0.4 | - |
21b | 38.9 ± 4.2 | 70.6 ± 4.0 | - |
22b | 308.0 ± 24.0 | 237.0 ± 21 | - |
23b | >400.0 | >400.0 | - |
24b | 152.0 ± 2.4 | 12.8 ± 1.1 | - |
Cisplatin | 23.6 ± 1.3 | 4.9 ± 0.1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacuła-Miszewska, A.J.; Obieziurska-Fabisiak, M.; Jastrzębska, A.; Długosz-Pokorska, A.; Gach-Janczak, K.; Ścianowski, J. The Influence of Long Carbon Chains on the Antioxidant and Anticancer Properties of N-Substituted Benzisoselenazolones and Corresponding Diselenides. Pharmaceuticals 2023, 16, 1560. https://doi.org/10.3390/ph16111560
Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Jastrzębska A, Długosz-Pokorska A, Gach-Janczak K, Ścianowski J. The Influence of Long Carbon Chains on the Antioxidant and Anticancer Properties of N-Substituted Benzisoselenazolones and Corresponding Diselenides. Pharmaceuticals. 2023; 16(11):1560. https://doi.org/10.3390/ph16111560
Chicago/Turabian StylePacuła-Miszewska, Agata J., Magdalena Obieziurska-Fabisiak, Aneta Jastrzębska, Angelika Długosz-Pokorska, Katarzyna Gach-Janczak, and Jacek Ścianowski. 2023. "The Influence of Long Carbon Chains on the Antioxidant and Anticancer Properties of N-Substituted Benzisoselenazolones and Corresponding Diselenides" Pharmaceuticals 16, no. 11: 1560. https://doi.org/10.3390/ph16111560
APA StylePacuła-Miszewska, A. J., Obieziurska-Fabisiak, M., Jastrzębska, A., Długosz-Pokorska, A., Gach-Janczak, K., & Ścianowski, J. (2023). The Influence of Long Carbon Chains on the Antioxidant and Anticancer Properties of N-Substituted Benzisoselenazolones and Corresponding Diselenides. Pharmaceuticals, 16(11), 1560. https://doi.org/10.3390/ph16111560