Safety of Immunomodulatory Systemic Therapies Used in the Management of Immune-Related Cutaneous Adverse Events
Abstract
:1. Introduction
2. Results and Discussion
2.1. Immunosuppressives
2.1.1. Glucocorticoids
2.1.2. Cyclosporine
2.1.3. Azathioprine
2.1.4. Methotrexate
2.1.5. Mycophenolate Mofetil
2.1.6. IVIG
2.1.7. Hydroxychloroquine
2.1.8. Dapsone
2.1.9. Apremilast
2.1.10. Acitretin
2.2. Biologics
2.2.1. Ustekinumab (Anti-IL12/23)
2.2.2. Dupilumab (Anti-IL4/13)
2.2.3. Omalizumab (Anti-IgE)
2.2.4. Benralizumab (Anti-IL5)
2.2.5. Tocilizumab (Anti-IL6)
2.2.6. Anti-TNFa Agents
2.2.7. Rituximab
2.2.8. Anti-IL17 Agents
2.2.9. Anti-IL23 Agents
2.3. Limitations
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Conflicts of Interest
References
- Geisler, A.N.; Phillips, G.S.; Barrios, D.M.; Wu, J.; Leung, D.Y.M.; Moy, A.P.; Kern, J.A.; Lacouture, M.E. Immune checkpoint inhibitor-related dermatologic adverse events. J. Am. Acad. Dermatol. 2020, 83, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Robesti, D.; Nocera, L.; Belladelli, F.; Schultz, J.G.; Fallara, G.; Marandino, L.; Raggi, D.; Montorsi, F.; Msaouel, P.; Necchi, A.; et al. The immune-related adverse events paradox in locally advanced or metastatic urothelial cancer after atezolizumab immunotherapy: Analysis of individual patient data from IMvigor210 and IMvigor211 trials. BJU Int. 2023. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Management of Immunotherapy-Related Toxicities. Available online: https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf (accessed on 1 April 2023).
- Clore, J.N.; Thurby-Hay, L. Glucocorticoid-induced hyperglycemia. Endocr. Pract. 2009, 15, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Rao Kondapally Seshasai, S.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011, 364, 829–841. [Google Scholar] [CrossRef]
- Dykman, T.R.; Gluck, O.S.; Murphy, W.A.; Hahn, T.J.; Hahn, B.H. Evaluation of factors associated with glucocorticoid-induced osteopenia in patients with rheumatic diseases. Arthritis Rheum. 1985, 28, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, H.S.; Singh, G. Cushing Syndrome. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Husebye, E.S.; Pearce, S.H.; Krone, N.P.; Kämpe, O. Adrenal insufficiency. Lancet 2021, 397, 613–629. [Google Scholar] [CrossRef]
- Oray, M.; Abu Samra, K.; Ebrahimiadib, N.; Meese, H.; Foster, C.S. Long-term side effects of glucocorticoids. Expert Opin. Drug Saf. 2016, 15, 457–465. [Google Scholar] [CrossRef]
- Scott, S.C.; Pennell, N.A. Early Use of Systemic Corticosteroids in Patients with Advanced NSCLC Treated with Nivolumab. J. Thorac. Oncol. 2018, 13, 1771–1775. [Google Scholar] [CrossRef]
- Arbour, K.C.; Mezquita, L.; Long, N.; Rizvi, H.; Auclin, E.; Ni, A.; Martínez-Bernal, G.; Ferrara, R.; Lai, W.V.; Hendriks, L.E.L.; et al. Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 2872–2878. [Google Scholar] [CrossRef]
- Dearden, H.; Au, L.; Wang, D.Y.; Zimmer, L.; Eroglu, Z.; Smith, J.L.; Cuvietto, M.; Khoo, C.; Atkinson, V.; Lo, S.; et al. Hyperacute toxicity with combination ipilimumab and anti-PD1 immunotherapy. Eur. J. Cancer 2021, 153, 168–178. [Google Scholar] [CrossRef]
- van Not, O.J.; Verheijden, R.J.; van den Eertwegh, A.J.M.; Haanen, J.; Aarts, M.J.B.; van den Berkmortel, F.; Blank, C.U.; Boers-Sonderen, M.J.; de Groot, J.B.; Hospers, G.A.P.; et al. Association of Immune-Related Adverse Event Management With Survival in Patients With Advanced Melanoma. JAMA Oncol. 2022, 8, 1794–1801. [Google Scholar] [CrossRef] [PubMed]
- Faje, A.T.; Lawrence, D.; Flaherty, K.; Freedman, C.; Fadden, R.; Rubin, K.; Cohen, J.; Sullivan, R.J. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer 2018, 124, 3706–3714. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Signorelli, D.; Ghidini, M.; Ghidini, A.; Pizzutilo, E.G.; Ruggieri, L.; Cabiddu, M.; Borgonovo, K.; Dognini, G.; Brighenti, M.; et al. Association of Steroids use with Survival in Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Cancers 2020, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Kicinski, M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Khattak, A.; Carlino, M.S.; et al. Association Between Immune-Related Adverse Events and Recurrence-Free Survival Among Patients With Stage III Melanoma Randomized to Receive Pembrolizumab or Placebo: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2020, 6, 519–527. [Google Scholar] [CrossRef]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef]
- Fixsen, E.; Patel, J.; Selim, M.A.; Kheterpal, M. Resolution of Pembrolizumab-Associated Steroid-Refractory Lichenoid Dermatitis with Cyclosporine. Oncologist 2019, 24, e103–e105. [Google Scholar] [CrossRef]
- Randhawa, M.; Archer, C.; Gaughran, G.; Miller, A.; Morey, A.; Dua, D.; Yip, D. Combined immune therapy grade IV dermatitis in metastatic melanoma. Asia Pac. J. Clin. Oncol. 2019, 15, 262–265. [Google Scholar] [CrossRef]
- Chow, K.V.C.; O'Leary, C.; Paxton-Hall, F.; Lambie, D.; O'Byrne, K. Pembrolizumab-induced toxic epidermal necrolysis: Case report. Oxf. Med. Case Rep. 2022, 2022, omac025. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
- Balak, D.M.W.; Gerdes, S.; Parodi, A.; Salgado-Boquete, L. Long-term Safety of Oral Systemic Therapies for Psoriasis: A Comprehensive Review of the Literature. Dermatol. Ther. 2020, 10, 589–613. [Google Scholar] [CrossRef]
- Qin, X.; Chen, Z. Metabolic dependence of cyclosporine A on cell proliferation of human non-small cell lung cancer A549 cells and its implication in post-transplant malignancy. Oncol. Rep. 2019, 41, 2997–3004. [Google Scholar] [CrossRef] [PubMed]
- Hojo, M.; Morimoto, T.; Maluccio, M.; Asano, T.; Morimoto, K.; Lagman, M.; Shimbo, T.; Suthanthiran, M. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999, 397, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Abikhair, M.; Mitsui, H.; Yanofsky, V.; Roudiani, N.; Ovits, C.; Bryan, T.; Oberyszyn, T.M.; Tober, K.L.; Gonzalez, J.; Krueger, J.G.; et al. Cyclosporine A immunosuppression drives catastrophic squamous cell carcinoma through IL-22. JCI Insight 2016, 1, e86434. [Google Scholar] [CrossRef]
- Gao, L.; Dong, J.; Zhang, N.; Le, Z.; Ren, W.; Li, S.; Li, F.; Song, J.; Wang, Q.; Dou, Z.; et al. Cyclosporine A Suppresses the Malignant Progression of Oral Squamous Cell Carcinoma in vitro. Anticancer Agents Med. Chem. 2019, 19, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; He, B.; Lai, L.; Chen, Q.; Liu, Y.; Guo, Q.; Wang, Q. Cyclosporine A inhibits breast cancer cell growth by downregulating the expression of pyruvate kinase subtype M2. Int. J. Mol. Med. 2012, 30, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Paul, C.F.; Ho, V.C.; McGeown, C.; Christophers, E.; Schmidtmann, B.; Guillaume, J.C.; Lamarque, V.; Dubertret, L. Risk of malignancies in psoriasis patients treated with cyclosporine: A 5 y cohort study. J. Investig. Dermatol. 2003, 120, 211–216. [Google Scholar] [CrossRef]
- Väkevä, L.; Reitamo, S.; Pukkala, E.; Sarna, S.; Ranki, A. Long-term follow-up of cancer risk in patients treated with short-term cyclosporine. Acta Derm.-Venereol. 2008, 88, 117–120. [Google Scholar] [CrossRef]
- Geller, S.; Xu, H.; Lebwohl, M.; Nardone, B.; Lacouture, M.E.; Kheterpal, M. Malignancy Risk and Recurrence with Psoriasis and its Treatments: A Concise Update. Am. J. Clin. Dermatol. 2018, 19, 363–375. [Google Scholar] [CrossRef]
- Remash, D.; Prince, D.S.; McKenzie, C.; Strasser, S.I.; Kao, S.; Liu, K. Immune checkpoint inhibitor-related hepatotoxicity: A review. World J. Gastroenterol. 2021, 27, 5376–5391. [Google Scholar] [CrossRef]
- Mohammadi, O.; Kassim, T.A. Azathioprine. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Jiyad, Z.; Olsen, C.M.; Burke, M.T.; Isbel, N.M.; Green, A.C. Azathioprine and Risk of Skin Cancer in Organ Transplant Recipients: Systematic Review and Meta-Analysis. Am. J. Transpl. 2016, 16, 3490–3503. [Google Scholar] [CrossRef]
- Fraser, A.G.; Orchard, T.R.; Robinson, E.M.; Jewell, D.P. Long-term risk of malignancy after treatment of inflammatory bowel disease with azathioprine. Aliment. Pharmacol. Ther. 2002, 16, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, B.; Svanström, H.; Schmiegelow, K.; Jess, T.; Hviid, A. Use of azathioprine and the risk of cancer in inflammatory bowel disease. Am. J. Epidemiol. 2013, 177, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.G.; Kuo, K.Y.; Xiao, K.; Batra, P.; Li, S.; Tang, J.Y.; Sarin, K.Y. Azathioprine and risk of multiple keratinocyte cancers. J. Am. Acad. Dermatol. 2018, 78, 27–28.e21. [Google Scholar] [CrossRef]
- Nazerai, L.; Willis, S.C.; Yankilevich, P.; Di Leo, L.; Bosisio, F.M.; Frias, A.; Bertolotto, C.; Nersting, J.; Thastrup, M.; Buus, S.; et al. Thiopurine 6TG treatment increases tumor immunogenicity and response to immune checkpoint blockade. Oncoimmunology 2023, 12, 2158610. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, V.; Sibaud, V.; Fattore, D.; Sollena, P.; Ortiz-Brugués, A.; Giacchero, D.; Romano, M.C.; Riganti, J.; Lallas, K.; Peris, K.; et al. Immune checkpoint-mediated psoriasis: A multicenter European study of 115 patients from the European Network for Cutaneous Adverse Event to Oncologic Drugs (ENCADO) group. J. Am. Acad. Dermatol. 2021, 84, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.R.; Otto, T.S.; Thompson, L.L.; Chang, M.S.; Reynolds, K.L.; Chen, S.T. Methotrexate in the treatment of immune checkpoint blocker-induced bullous pemphigoid. Eur. J. Cancer 2021, 159, 34–37. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Jiang, W.; Zhou, W.; Tang, M.; Wu, C.; Liu, W.; Zuo, X. Analysis of the clinical characteristics of pembrolizumab-induced bullous pemphigoid. Front. Oncol. 2023, 13, 1095694. [Google Scholar] [CrossRef]
- Apalla, Z.; Rapoport, B.; Sibaud, V. Dermatologic immune-related adverse events: The toxicity spectrum and recommendations for management. Int. J. Womens Dermatol. 2021, 7, 625–635. [Google Scholar] [CrossRef]
- HIGHLIGHTS OF PRESCRIBING INFORMATION. These Highlights Do Not Include All the Information Needed to Use METHOTREXATE TABLETS Safely and Effectively. See Full Prescribing Information for METHOTREXATE TABLETS. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/040054s015,s016,s017.pdf (accessed on 1 April 2023).
- Salliot, C.; van der Heijde, D. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: A systematic literature research. Ann. Rheum. Dis. 2009, 68, 1100–1104. [Google Scholar] [CrossRef]
- Chou, Y.J.; Wu, C.Y.; Pan, T.Y.; Wu, C.Y.; Chang, Y.T. Risk of malignancy in patients with psoriasis receiving systemic medications: A nested case-control study. Dermatol. Ther. 2022, 35, e15804. [Google Scholar] [CrossRef]
- Polesie, S.; Gillstedt, M.; Schmidt, S.A.J.; Egeberg, A.; Pottegård, A.; Kristensen, K. Use of methotrexate and risk of skin cancer: A nationwide case-control study. Br. J. Cancer 2023, 128, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, D.; Ho, V.; Lebwohl, M.G.; Leite, L.; Hopkins, L.; Galindo, C.; Goyal, K.; Langholff, W.; Fakharzadeh, S.; Srivastava, B.; et al. Risk of malignancy with systemic psoriasis treatment in the Psoriasis Longitudinal Assessment Registry. J. Am. Acad. Dermatol. 2017, 77, 845–854.e845. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.K.; Wang, C.; Wolfe, R.; Mar, V.J.; Wluka, A.E. Association Between Low-Dose Methotrexate Exposure and Melanoma: A Systematic Review and Meta-analysis. JAMA Dermatol. 2022, 158, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Polesie, S.; Gillstedt, M.; Sönnergren, H.H.; Osmancevic, A.; Paoli, J. Methotrexate treatment and risk for cutaneous malignant melanoma: A retrospective comparative registry-based cohort study. Br. J. Dermatol. 2017, 176, 1492–1499. [Google Scholar] [CrossRef]
- Bass, A.R.; Abdel-Wahab, N.; Reid, P.D.; Sparks, J.A.; Calabrese, C.; Jannat-Khah, D.P.; Ghosh, N.; Rajesh, D.; Aude, C.A.; Gedmintas, L.; et al. Comparative safety and effectiveness of TNF inhibitors, IL6 inhibitors and methotrexate for the treatment of immune checkpoint inhibitor-associated arthritis. Ann. Rheum. Dis. 2023, 82, 920–926. [Google Scholar] [CrossRef]
- CellCept®(Mycophenolate Mofetil Capsules) (Mycophenolate Mofetil Tablets). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/050722s021,050723s019,050758s019,050759s024lbl.pdf (accessed on 15 April 2023).
- Takeuchi, T.; Hashimoto, H.; Matsumoto, M. Long-term safety and effectiveness of mycophenolate mofetil in adults with lupus nephritis: A real-world study in Japan. Mod. Rheumatol. 2022, 32, 746–754. [Google Scholar] [CrossRef]
- Neff, R.T.; Hurst, F.P.; Falta, E.M.; Bohen, E.M.; Lentine, K.L.; Dharnidharka, V.R.; Agodoa, L.Y.; Jindal, R.M.; Yuan, C.M.; Abbott, K.C. Progressive multifocal leukoencephalopathy and use of mycophenolate mofetil after kidney transplantation. Transplantation 2008, 86, 1474–1478. [Google Scholar] [CrossRef]
- O'Neill, J.O.; Edwards, L.B.; Taylor, D.O. Mycophenolate mofetil and risk of developing malignancy after orthotopic heart transplantation: Analysis of the transplant registry of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2006, 25, 1186–1191. [Google Scholar] [CrossRef]
- Lok, S.D.; Wong, A.W.; Khor, Y.H.; Ryerson, C.J.; Johannson, K.A. Malignancy Risk Associated With Mycophenolate Mofetil or Azathioprine in Patients With Fibrotic Interstitial Lung Disease. Chest 2022, 161, 1594–1597. [Google Scholar] [CrossRef]
- Hirunsatitpron, P.; Hanprasertpong, N.; Noppakun, K.; Pruksakorn, D.; Teekachunhatean, S.; Koonrungsesomboon, N. Mycophenolic acid and cancer risk in solid organ transplant recipients: Systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2022, 88, 476–489. [Google Scholar] [CrossRef]
- Hoffmann, J.H.O.; Enk, A.H. High-Dose Intravenous Immunoglobulin in Skin Autoimmune Disease. Front. Immunol. 2019, 10, 1090. [Google Scholar] [CrossRef] [PubMed]
- HIGHLIGHTS OF PRESCRIBING INFORMATION. These Highlights Do Not Include All the Information Needed to Use Privigen Safely and Effectively. See Full Prescribing Information for Privigen. Available online: https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Package-Insert---Privigen.pdf (accessed on 1 April 2023).
- Guo, Y.; Tian, X.; Wang, X.; Xiao, Z. Adverse Effects of Immunoglobulin Therapy. Front. Immunol. 2018, 9, 1299. [Google Scholar] [CrossRef] [PubMed]
- Shoenfeld, Y.; Fishman, P. Gamma-globulin inhibits tumor spread in mice. Int. Immunol. 1999, 11, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Yasuma, R.; Cicatiello, V.; Mizutani, T.; Tudisco, L.; Kim, Y.; Tarallo, V.; Bogdanovich, S.; Hirano, Y.; Kerur, N.; Li, S.; et al. Intravenous immune globulin suppresses angiogenesis in mice and humans. Signal Transduct. Target. Ther. 2016, 1, 15002. [Google Scholar] [CrossRef]
- Sapir, T.; Shoenfeld, Y. Uncovering the hidden potential of intravenous immunoglobulin as an anticancer therapy. Clin. Rev. Allergy Immunol. 2005, 29, 307–310. [Google Scholar] [CrossRef]
- Carmi, Y.; Spitzer, M.H.; Linde, I.L.; Burt, B.M.; Prestwood, T.R.; Perlman, N.; Davidson, M.G.; Kenkel, J.A.; Segal, E.; Pusapati, G.V.; et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature 2015, 521, 99–104. [Google Scholar] [CrossRef]
- Liu, R.C.; Sebaratnam, D.F.; Jackett, L.; Kao, S.; Lowe, P.M. Subacute cutaneous lupus erythematosus induced by nivolumab. Australas. J. Dermatol. 2018, 59, e152–e154. [Google Scholar] [CrossRef]
- Zitouni, N.B.; Arnault, J.P.; Dadban, A.; Attencourt, C.; Lok, C.C.; Chaby, G. Subacute cutaneous lupus erythematosus induced by nivolumab: Two case reports and a literature review. Melanoma Res. 2019, 29, 212–215. [Google Scholar] [CrossRef]
- Marano, A.L.; Clarke, J.M.; Morse, M.A.; Shah, A.; Barrow, W.; Selim, M.A.; Hall, R.P., 3rd; Cardones, A.R. Subacute cutaneous lupus erythematosus and dermatomyositis associated with anti-programmed cell death 1 therapy. Br. J. Dermatol. 2019, 181, 580–583. [Google Scholar] [CrossRef]
- Gisondi, P.; Piaserico, S.; Bordin, C.; Bellinato, F.; Tozzi, F.; Alaibac, M.; Girolomoni, G.; Naldi, L. The safety profile of hydroxychloroquine: Major cutaneous and extracutaneous adverse events. Clin. Exp. Rheumatol. 2021, 39, 1099–1107. [Google Scholar] [CrossRef]
- Mao, I.C.; Lin, C.Y.; Wu, C.L.; Kor, C.T.; Chang, C.C. Hydroxychloroquine and risk of development of cancers: A nationwide population-based cohort study. Ther. Clin. Risk Manag. 2018, 14, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.; Gomez-Casal, R.; Cruz-Rangel, S.; Villanueva, H.; Sikora, A.G.; Rajagopalan, P.; Basu, D.; Pacheco, J.; Hammond, G.R.V.; Kiselyov, K.; et al. Lysosomal inhibition sensitizes TMEM16A-expressing cancer cells to chemotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2100670119. [Google Scholar] [CrossRef]
- Fardet, L.; Nazareth, I.; Petersen, I. Effects of chronic exposure of hydroxychloroquine/chloroquine on the risk of cancer, metastasis, and death: A population-based cohort study on patients with connective tissue diseases. Clin. Epidemiol. 2017, 9, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing Drugs in Oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience 2017, 11, 781. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.F.; Chen, Y.F.; Chung, T.T.; See, L.C.; Yu, K.H.; Luo, S.F.; Kuo, C.F.; Lai, J.H. Hydroxychloroquine and risk of cancer in patients with primary Sjögren syndrome: Propensity score matched landmark analysis. Oncotarget 2017, 8, 80461–80471. [Google Scholar] [CrossRef]
- Vyas, A.; Cruz-Rangel, S.; Khan, N.; Bisignani, M.; Arantes, L.; Schmitt, N.; Kiselyov, K.; Ferris, R.; Duvvuri, U. Hydroxychloroquine synergizes with anti-PD-1 immune checkpoint blockade in squamous carcinoma of the head and neck. J. ImmunoTherapy Cancer 2022, 10. [Google Scholar] [CrossRef]
- Krueger, J.; Santinon, F.; Kazanova, A.; Issa, M.E.; Larrivee, B.; Kremer, R.; Milhalcioiu, C.; Rudd, C.E. Hydroxychloroquine (HCQ) decreases the benefit of anti-PD-1 immune checkpoint blockade in tumor immunotherapy. PLoS ONE 2021, 16, e0251731. [Google Scholar] [CrossRef]
- Wabitsch, S.; McVey, J.C.; Ma, C.; Ruf, B.; Kamenyeva, O.; McCallen, J.D.; Diggs, L.P.; Heinrich, B.; Greten, T.F. Hydroxychloroquine can impair tumor response to anti-PD1 in subcutaneous mouse models. iScience 2021, 24, 101990. [Google Scholar] [CrossRef]
- Iriarte, C.; Young, J.H.; Rabin, M.S.; LeBoeuf, N.R. Osimertinib-Induced Cutaneous Vasculitis Responsive to Low-Dose Dapsone Without Interruption of Anticancer Therapy: A Case Report and Review of the Literature. JTO Clin. Res. Rep. 2022, 3, 100415. [Google Scholar] [CrossRef]
- Asdourian, M.S.; Shah, N.; Jacoby, T.V.; Reynolds, K.L.; Chen, S.T. Association of Bullous Pemphigoid With Immune Checkpoint Inhibitor Therapy in Patients With Cancer: A Systematic Review. JAMA Dermatol. 2022, 158, 933–941. [Google Scholar] [CrossRef]
- Nazzaro, G.; Buffon, S.; Giacalone, S.; Maronese, C.A.; Marzano, A.V. Skin manifestations associated with checkpoint inhibitors. JEADV Clin. Pract. 2022, 1, 73–87. [Google Scholar] [CrossRef]
- Chen, C.H.; Yu, H.S.; Yu, S. Cutaneous Adverse Events Associated with Immune Checkpoint Inhibitors: A Review Article. Curr. Oncol. 2022, 29, 2871–2886. [Google Scholar] [CrossRef] [PubMed]
- PRESCRIBING INFORMATION INCLUDING PATIENT MEDICATION INFORMATION Pr MAR-DAPSONE. Available online: https://pdf.hres.ca/dpd_pm/00047474.PDF (accessed on 1 May 2023).
- Zhao, Q.; Sun, L.; Sun, Y.; Naisbitt, D.; Liu, H.; Zhang, F. Dapsone hypersensitivity syndrome. Chin. Med. J. (Engl.) 2023, 136, 1560–1562. [Google Scholar] [CrossRef] [PubMed]
- Mayor Ibarguren, A.; Enrique, E.A.; Diana, P.L.; Ana, C.; Pedro, H.P. Apremilast for immune checkpoint inhibitor-induced psoriasis: A case series. JAAD Case Rep. 2021, 11, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Halle, B.R.; Betof Warner, A.; Zaman, F.Y.; Haydon, A.; Bhave, P.; Dewan, A.K.; Ye, F.; Irlmeier, R.; Mehta, P.; Kurtansky, N.R.; et al. Immune checkpoint inhibitors in patients with pre-existing psoriasis: Safety and efficacy. J. Immunother. Cancer 2021, 9, e003066. [Google Scholar] [CrossRef]
- Persson, R.; Cordey, M.; Paris, M.; Jick, S. Safety of Apremilast in Patients with Psoriasis and Psoriatic Arthritis: Findings from the UK Clinical Practice Research Datalink. Drug Saf. 2022, 45, 1403–1411. [Google Scholar] [CrossRef]
- Kavanaugh, A.; Gladman, D.D.; Edwards, C.J.; Schett, G.; Guerette, B.; Delev, N.; Teng, L.; Paris, M.; Mease, P.J. Long-term experience with apremilast in patients with psoriatic arthritis: 5-year results from a PALACE 1-3 pooled analysis. Arthritis Res. Ther. 2019, 21, 118. [Google Scholar] [CrossRef]
- Bernardini, N.; Skroza, N.; Marchesiello, A.; Mambrin, A.; Proietti, I.; Tolino, E.; Maddalena, P.; Marraffa, F.; Rossi, G.; Volpe, S.; et al. Psoriatic patients with a history of cancer: A real-life experience with Apremilast treatment for 104 weeks. Dermatol. Ther. 2022, 35, e15306. [Google Scholar] [CrossRef]
- Peng, T.; Gong, J.; Jin, Y.; Zhou, Y.; Tong, R.; Wei, X.; Bai, L.; Shi, J. Inhibitors of phosphodiesterase as cancer therapeutics. Eur. J. Med. Chem. 2018, 150, 742–756. [Google Scholar] [CrossRef]
- Killion, L.; Beatty, P.; Byrne, N.; Mahon, J.M.; Salim, A.; Connolly, M.; Tobin, A.M. Nivolumab Induced Psoriasis Successfully Treated With Acitretin. J. Drugs Dermatol. 2021, 20, 911. [Google Scholar] [CrossRef]
- Masterson, W.M.; Brown, A.M.; Al Ameri, M.A.; Patel, A.B. A retrospective chart review of management strategies for lichenoid eruptions associated with immune-checkpoint inhibitor therapy from a single institution. Cancer Treat. Res. Commun. 2022, 30, 100506. [Google Scholar] [CrossRef] [PubMed]
- Said, J.T.; Elman, S.A.; Perez-Chada, L.M.; Mita, C.; Merola, J.F.; LeBoeuf, N.R. Treatment of immune checkpoint inhibitor-mediated psoriasis: A systematic review. J. Am. Acad. Dermatol. 2022, 87, 399–400. [Google Scholar] [CrossRef] [PubMed]
- Zito, P.M.; Mazzoni, T. Acitretin. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chularojanamontri, L.; Silpa-Archa, N.; Wongpraparut, C.; Limphoka, P. Long-term safety and drug survival of acitretin in psoriasis: A retrospective observational study. Int. J. Dermatol. 2019, 58, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Hugh, J.; Van Voorhees, A.S.; Nijhawan, R.I.; Bagel, J.; Lebwohl, M.; Blauvelt, A.; Hsu, S.; Weinberg, J.M. From the Medical Board of the National Psoriasis Foundation: The risk of cardiovascular disease in individuals with psoriasis and the potential impact of current therapies. J. Am. Acad. Dermatol. 2014, 70, 168–177. [Google Scholar] [CrossRef]
- Allnutt, K.J.; Vogrin, S.; Li, J.; Goh, M.S.; Brennand, S.; Davenport, R.; Chong, A.H. A long-term cohort study of acitretin for prevention of keratinocyte carcinoma in solid organ transplant recipients. Australas J. Dermatol. 2022, 63, e121–e126. [Google Scholar] [CrossRef] [PubMed]
- HIGHLIGHTS OF PRESCRIBING INFORMATION. These Highlights Do Not Include All the Information Needed to Use STELARA® Safely and Effectively. See Full Prescribing Information for STELARA®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125261s147lbl.pdf (accessed on 2 May 2023).
- Sandborn, W.J.; Rebuck, R.; Wang, Y.; Zou, B.; Adedokun, O.J.; Gasink, C.; Sands, B.E.; Hanauer, S.B.; Targan, S.; Ghosh, S.; et al. Five-Year Efficacy and Safety of Ustekinumab Treatment in Crohn's Disease: The IM-UNITI Trial. Clin. Gastroenterol. Hepatol. 2022, 20, 578–590.e574. [Google Scholar] [CrossRef]
- Daudén, E.; Carretero, G.; Rivera, R.; Ferrándiz, C.; Llamas-Velasco, M.; de la Cueva, P.; Belinchón, I.; Gómez-García, F.J.; Herrera-Acosta, E.; Ruiz-Genao, D.P.; et al. Long-term safety of nine systemic medications for psoriasis: A cohort study using the Spanish Registry of Adverse Events for Biological Therapy in Dermatological Diseases (BIOBADADERM) Registry. J. Am. Acad. Dermatol. 2020, 83, 139–150. [Google Scholar] [CrossRef]
- Jin, Y.; Lee, H.; Lee, M.P.; Landon, J.E.; Merola, J.F.; Desai, R.J.; Kim, S.C. Risk of Hospitalization for Serious Infection After Initiation of Ustekinumab or Other Biologics in Patients With Psoriasis or Psoriatic Arthritis. Arthritis Care Res. 2022, 74, 1792–1805. [Google Scholar] [CrossRef]
- Cheng, D.; Kochar, B.D.; Cai, T.; Ananthakrishnan, A.N. Risk of Infections With Ustekinumab and Tofacitinib Compared to Tumor Necrosis Factor α Antagonists in Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2022, 20, 2366–2372.e2366. [Google Scholar] [CrossRef]
- Schneeweiss, M.C.; Savage, T.J.; Wyss, R.; Jin, Y.; Schoder, K.; Merola, J.F.; Sidbury, R.; Oduol, T.; Schneeweiss, S.; Glynn, R.J. Risk of Infection in Children With Psoriasis Receiving Treatment With Ustekinumab, Etanercept, or Methotrexate Before and After Labeling Expansion. JAMA Dermatol. 2023, 159, 289–298. [Google Scholar] [CrossRef]
- Tsai, T.F.; Ho, V.; Song, M.; Szapary, P.; Kato, T.; Wasfi, Y.; Li, S.; Shen, Y.K.; Leonardi, C. The safety of ustekinumab treatment in patients with moderate-to-severe psoriasis and latent tuberculosis infection. Br. J. Dermatol. 2012, 167, 1145–1152. [Google Scholar] [CrossRef]
- Jordan, A.; Kinnucan, J. Ustekinumab-Associated Posterior Reversible Encephalopathy Syndrome in a Patient With Crohn's Disease. ACG Case Rep. J. 2022, 9, e00867. [Google Scholar] [CrossRef] [PubMed]
- Mirlekar, B.; Pylayeva-Gupta, Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers 2021, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Smyth, M.J.; Teng, M.W.L. Interleukin (IL)-12 and IL-23 and Their Conflicting Roles in Cancer. Cold Spring Harb. Perspect. Biol. 2018, 10, a028530. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Zenger, C.; Pecoriello, J.; Pang, A.; Vallely, M.; Hudesman, D.P.; Chang, S.; Axelrad, J.E. Ustekinumab and Vedolizumab Are Not Associated With Subsequent Cancer in IBD Patients with Prior Malignancy. Inflamm. Bowel Dis. 2022, 28, 1826–1832. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.S.; Wu, J.; Hellmann, M.D.; Postow, M.A.; Rizvi, N.A.; Freites-Martinez, A.; Chan, D.; Dusza, S.; Motzer, R.J.; Rosenberg, J.E.; et al. Treatment Outcomes of Immune-Related Cutaneous Adverse Events. J. Clin. Oncol. 2019, 37, 2746–2758. [Google Scholar] [CrossRef]
- Shipman, W.D.; Singh, K.; Cohen, J.M.; Leventhal, J.; Damsky, W.; Tomayko, M.M. Immune checkpoint inhibitor-bullous pemphigoid is characterized by interleukin-4 and interleukin-13 expression and responds to dupilumab treatment. Br. J. Dermatol. 2023, 189, 339–341. [Google Scholar] [CrossRef]
- Pop, S.R.; Strock, D.; Smith, R.J. Dupilumab for the treatment of pembrolizumab-induced bullous pemphigoid: A case report. Dermatol. Ther. 2022, 35, e15623. [Google Scholar] [CrossRef]
- Said, J.T.; Iriarte, C.; Talia, J.; Leung, B.; Virgen, C.A.; Robertson, M.; Rabin, M.S.; Larocca, C.; LeBoeuf, N.R. Pembrolizumab-Associated Expansion of Radiation-Induced Morphea Responsive to Dupilumab: A Case Report. Clin. Exp. Dermatol. 2023, 48, 1077–1080. [Google Scholar] [CrossRef]
- HIGHLIGHTS OF PRESCRIBING INFORMATION. These Highlights Do Not Include All the Information Needed to Use DUPIXENT Safely and Effectively. See Full Prescribing Information for DUPIXENT. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761055s040lbl.pdf (accessed on 1 May 2023).
- Blauvelt, A.; Guttman-Yassky, E.; Paller, A.S.; Simpson, E.L.; Cork, M.J.; Weisman, J.; Browning, J.; Soong, W.; Sun, X.; Chen, Z.; et al. Long-Term Efficacy and Safety of Dupilumab in Adolescents with Moderate-to-Severe Atopic Dermatitis: Results Through Week 52 from a Phase III Open-Label Extension Trial (LIBERTY AD PED-OLE). Am. J. Clin. Dermatol. 2022, 23, 365–383. [Google Scholar] [CrossRef]
- Owji, S.; Ungar, B.; Dubin, D.P.; Poplausky, D.; Young, J.N.; Ghalili, S.; Han, J.; Srinivasan, D.; Packer, S.; Pavel, A.B.; et al. No association between dupilumab use and short-term cancer development in atopic dermatitis patients. J. Allergy Clin. Immunol. Pract. 2023, 11, 1548–1551. [Google Scholar] [CrossRef]
- Elston, D.M. Dupilumab and cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 2020, 83, 33–34. [Google Scholar] [CrossRef]
- Russomanno, K.; Carver DeKlotz, C.M. Acceleration of cutaneous T-cell lymphoma following dupilumab administration. JAAD Case Rep. 2021, 8, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Leland, P.; Joshi, B.H.; Puri, R.K. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015, 75, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.M.; Gu, S.; Stoll, J.; Moy, A.P.; Dusza, S.W.; Gordon, A.; Haliasos, E.C.; Janjigian, Y.; Kraehenbuehl, L.; Quigley, E.A.; et al. Management of immune-related cutaneous adverse events with dupilumab. J. Immunother. Cancer 2023, 11, e007324. [Google Scholar] [CrossRef] [PubMed]
- Grisaru-Tal, S.; Rothenberg, M.E.; Munitz, A. Eosinophil-lymphocyte interactions in the tumor microenvironment and cancer immunotherapy. Nat. Immunol. 2022, 23, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Zhao, J.; Zhou, J.; Zhou, F.; Jiang, T.; Jiang, S.; Sun, X.; You, X.; Wu, F.; Ren, S.; et al. Association of baseline peripheral-blood eosinophil count with immune checkpoint inhibitor-related pneumonitis and clinical outcomes in patients with non-small cell lung cancer receiving immune checkpoint inhibitors. Lung Cancer 2020, 150, 76–82. [Google Scholar] [CrossRef]
- HIGHLIGHTS OF PRESCRIBING INFORMATION. These Highlights Do Not Include All the Information Needed to Use XOLAIR Safely and Effectively. See Full Prescribing Information for XOLAIR. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/103976s5225lbl.pdf (accessed on 2 May 2023).
- Tharp, M.D.; Bernstein, J.A.; Kavati, A.; Ortiz, B.; MacDonald, K.; Denhaerynck, K.; Abraham, I.; Lee, C.S. Benefits and Harms of Omalizumab Treatment in Adolescent and Adult Patients With Chronic Idiopathic (Spontaneous) Urticaria: A Meta-analysis of "Real-world" Evidence. JAMA Dermatol. 2019, 155, 29–38. [Google Scholar] [CrossRef]
- Gevaert, P.; Saenz, R.; Corren, J.; Han, J.K.; Mullol, J.; Lee, S.E.; Ow, R.A.; Zhao, R.; Howard, M.; Wong, K.; et al. Long-term efficacy and safety of omalizumab for nasal polyposis in an open-label extension study. J. Allergy Clin. Immunol. 2022, 149, 957–965.e953. [Google Scholar] [CrossRef]
- Barrios, D.M.; Phillips, G.S.; Geisler, A.N.; Trelles, S.R.; Markova, A.; Noor, S.J.; Quigley, E.A.; Haliasos, H.C.; Moy, A.P.; Schram, A.M.; et al. IgE blockade with omalizumab reduces pruritus related to immune checkpoint inhibitors and anti-HER2 therapies. Ann. Oncol. 2021, 32, 736–745. [Google Scholar] [CrossRef]
- Gutzmer, R.; Sibaud, V.; Hassel, J.C. IgE blockade in the management of eosinophil-associated recalcitrant pruritus due to medical tumor therapy. Ann. Oncol. 2021, 32, 696–697. [Google Scholar] [CrossRef] [PubMed]
- Jensen-Jarolim, E.; Achatz, G.; Turner, M.C.; Karagiannis, S.; Legrand, F.; Capron, M.; Penichet, M.L.; Rodríguez, J.A.; Siccardi, A.G.; Vangelista, L.; et al. AllergoOncology: The role of IgE-mediated allergy in cancer. Allergy 2008, 63, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Ferastraoaru, D.; Jordakieva, G.; Jensen-Jarolim, E. The other side of the coin: IgE deficiency, a susceptibility factor for malignancy occurrence. World Allergy Organ. J. 2021, 14, 100505. [Google Scholar] [CrossRef] [PubMed]
- Ferastraoaru, D.; Bax, H.J.; Bergmann, C.; Capron, M.; Castells, M.; Dombrowicz, D.; Fiebiger, E.; Gould, H.J.; Hartmann, K.; Jappe, U.; et al. AllergoOncology: Ultra-low IgE, a potential novel biomarker in cancer-a Position Paper of the European Academy of Allergy and Clinical Immunology (EAACI). Clin. Transl. Allergy 2020, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Busse, W.; Buhl, R.; Fernandez Vidaurre, C.; Blogg, M.; Zhu, J.; Eisner, M.D.; Canvin, J. Omalizumab and the risk of malignancy: Results from a pooled analysis. J. Allergy Clin. Immunol. 2012, 129, 983–989.e986. [Google Scholar] [CrossRef]
- Ali, Z.; Egeberg, A.; Thyssen, J.P.; Sørensen, J.A.; Vestergaard, C.; Thomsen, S.F. No association between omalizumab use and risk of cancer: A nationwide registry-based cohort study. Br. J. Dermatol. 2022, 186, 746–748. [Google Scholar] [CrossRef]
- Bagnasco, D.; Canevari, R.F.; Del Giacco, S.; Ferrucci, S.; Pigatto, P.; Castelnuovo, P.; Marseglia, G.L.; Yalcin, A.D.; Pelaia, G.; Canonica, G.W. Omalizumab and cancer risk: Current evidence in allergic asthma, chronic urticaria, and chronic rhinosinusitis with nasal polyps. World Allergy Organ. J. 2022, 15, 100721. [Google Scholar] [CrossRef]
- Lacouture, M.E.; Pan, A.; Dranitsaris, G.; Harris, U.; Chandarlapaty, S.; Dang, C.T.; Gajria, D.; Gordon, A.; Iyengar, N.M.; Robson, M.E.; et al. Interim analysis of a single-center, single-arm, prospective phase 2 study to evaluate the efficacy and safety of benralizumab for alpelisib rash in metastatic PIK3CA-mutant, hormone receptor–positive breast cancer. J. Clin. Oncol. 2022, 40, 12100. [Google Scholar] [CrossRef]
- Maverakis, E.; Ji-Xu, A.; Brüggen, M.C. Targeting interleukin-5 with benralizumab: A novel treatment for drug rash with eosinophilia and systemic symptoms. Allergy 2022, 77, 2287–2289. [Google Scholar] [CrossRef]
- Pham, D.N. Spontaneous resolution of atopic dermatitis incidental to participation in benralizumab clinical trial for severe, uncontrolled asthma: A case report. J. Med. Case Rep. 2021, 15, 103. [Google Scholar] [CrossRef]
- Korn, S.; Bourdin, A.; Chupp, G.; Cosio, B.G.; Arbetter, D.; Shah, M.; Gil, E.G. Integrated Safety and Efficacy Among Patients Receiving Benralizumab for Up to 5 Years. J. Allergy Clin. Immunol. Pract. 2021, 9, 4381–4392.e4384. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.J.; Korn, S.; Mathur, S.K.; Barker, P.; Meka, V.G.; Martin, U.J.; Zangrilli, J.G. Safety of Eosinophil-Depleting Therapy for Severe, Eosinophilic Asthma: Focus on Benralizumab. Drug Saf. 2020, 43, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Mota, D.; Rama, T.A.; Moreira, A. Real-world evidence on the risk of cancer with anti-IL-5 and anti-IL-4Ra biologicals. Allergy 2023, 78, 1375–1377. [Google Scholar] [CrossRef] [PubMed]
- Blaise, M.; Cardot-Leccia, N.; Seitz-Polski, B.; Picard-Gauci, A.; Bertold, C.; Passeron, T.; Montaudié, H. Tocilizumab for Corticosteroid-Refractory Immune Checkpoint Inhibitor-Induced Generalized Morphea. JAMA Dermatol. 2023, 159, 112–114. [Google Scholar] [CrossRef]
- Maximova, N.; Maestro, A.; Zanon, D.; Marcuzzi, A. Rapid recovery of postnivolumab vemurafenib-induced Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) syndrome after tocilizumab and infliximab administration. J. Immunother. Cancer 2020, 8, e000388. [Google Scholar] [CrossRef]
- HIGHLIGHTS OF PRESCRIBING INFORMATION. These Highlights Do Not Include All the Information Needed to Use ACTEMRA Safely and Effectively. See Full Prescribing Information for ACTEMRA. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125276s131lbl.pdf (accessed on 27 April 2023).
- Palmou-Fontana, N.; Sánchez Gaviño, J.A.; McGonagle, D.; García-Martinez, E.; Iñiguez de Onzoño Martín, L. Tocilizumab-induced psoriasiform rash in rheumatoid arthritis. Dermatology 2014, 228, 311–313. [Google Scholar] [CrossRef]
- Babkoor, D.; Alshuqayfi, A.; Alshegaifi, N.; Bamosa, H.; Alsaid, M.; Alkinani, A.; Algozi, S.; AlZaidi, R.; Alahmadi, L.; Hafiz, W.A. Tocilizumab-Induced Dermatosis in a Patient With Rheumatoid Arthritis. Cureus 2022, 14, e32967. [Google Scholar] [CrossRef]
- Khanna, D.; Lin, C.J.F.; Furst, D.E.; Wagner, B.; Zucchetto, M.; Raghu, G.; Martinez, F.J.; Goldin, J.; Siegel, J.; Denton, C.P. Long-Term Safety and Efficacy of Tocilizumab in Early Systemic Sclerosis-Interstitial Lung Disease: Open-Label Extension of a Phase 3 Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2022, 205, 674–684. [Google Scholar] [CrossRef]
- Nishimoto, N.; Miyasaka, N.; Yamamoto, K.; Kawai, S.; Takeuchi, T.; Azuma, J. Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): Evidence of safety and efficacy in a 5-year extension study. Ann. Rheum. Dis. 2009, 68, 1580–1584. [Google Scholar] [CrossRef]
- Huseni, M.A.; Wang, L.; Klementowicz, J.E.; Yuen, K.; Breart, B.; Orr, C.; Liu, L.F.; Li, Y.; Gupta, V.; Li, C.; et al. CD8(+) T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep. Med. 2023, 4, 100878. [Google Scholar] [CrossRef]
- Chung, A.W.; Kozielski, A.J.; Qian, W.; Zhou, J.; Anselme, A.C.; Chan, A.A.; Pan, P.Y.; Lee, D.J.; Chang, J.C. Tocilizumab overcomes chemotherapy resistance in mesenchymal stem-like breast cancer by negating autocrine IL-1A induction of IL-6. npj Breast Cancer 2022, 8, 30. [Google Scholar] [CrossRef]
- Mace, T.A.; Shakya, R.; Pitarresi, J.R.; Swanson, B.; McQuinn, C.W.; Loftus, S.; Nordquist, E.; Cruz-Monserrate, Z.; Yu, L.; Young, G.; et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 2018, 67, 320–332. [Google Scholar] [CrossRef]
- Hailemichael, Y.; Johnson, D.H.; Abdel-Wahab, N.; Foo, W.C.; Bentebibel, S.E.; Daher, M.; Haymaker, C.; Wani, K.; Saberian, C.; Ogata, D.; et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 2022, 40, 509–523.e506. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Pawar, A.; Desai, R.J.; Solomon, D.H.; Gale, S.; Bao, M.; Sarsour, K.; Schneeweiss, S. Risk of malignancy associated with use of tocilizumab versus other biologics in patients with rheumatoid arthritis: A multi-database cohort study. Semin Arthritis Rheum. 2019, 49, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Rubbert-Roth, A.; Sebba, A.; Brockwell, L.; Kelman, A.; Porter-Brown, B.; Pulley, J.; Napalkov, P.; van Vollenhoven, R.F. Malignancy rates in patients with rheumatoid arthritis treated with tocilizumab. RMD Open 2016, 2, e000213. [Google Scholar] [CrossRef] [PubMed]
- Maillard, A.; Pastor, D.; Merat, R. Anti-PD-1-Induced Hidradenitis Suppurativa. Dermatopathology 2021, 8, 37–39. [Google Scholar] [CrossRef]
- Maronese, C.A.; Pimentel, M.A.; Li, M.M.; Genovese, G.; Ortega-Loayza, A.G.; Marzano, A.V. Pyoderma Gangrenosum: An Updated Literature Review on Established and Emerging Pharmacological Treatments. Am. J. Clin. Dermatol. 2022, 23, 615–634. [Google Scholar] [CrossRef]
- Gerriets, V.; Goyal, A.; Khaddour, K. Tumor Necrosis Factor Inhibitors. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Click, B.; Regueiro, M. Managing Risks with Biologics. Curr. Gastroenterol. Rep. 2019, 21, 1. [Google Scholar] [CrossRef]
- Lopez-Olivo, M.A.; Tayar, J.H.; Martinez-Lopez, J.A.; Pollono, E.N.; Cueto, J.P.; Gonzales-Crespo, M.R.; Fulton, S.; Suarez-Almazor, M.E. Risk of Malignancies in Patients With Rheumatoid Arthritis Treated With Biologic Therapy: A Meta-analysis. JAMA 2012, 308, 898–908. [Google Scholar] [CrossRef]
- Lemaitre, M.; Kirchgesner, J.; Rudnichi, A.; Carrat, F.; Zureik, M.; Carbonnel, F.; Dray-Spira, R. Association Between Use of Thiopurines or Tumor Necrosis Factor Antagonists Alone or in Combination and Risk of Lymphoma in Patients With Inflammatory Bowel Disease. JAMA 2017, 318, 1679–1686. [Google Scholar] [CrossRef]
- Williams, C.J.M.; Peyrin-Biroulet, L.; Ford, A.C. Systematic review with meta-analysis: Malignancies with anti-tumour necrosis factor-α therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2014, 39, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Micic, D.; Komaki, Y.; Alavanja, A.; Rubin, D.T.; Sakuraba, A. Risk of Cancer Recurrence Among Individuals Exposed to Antitumor Necrosis Factor Therapy: A Systematic Review and Meta-Analysis of Observational Studies. J. Clin. Gastroenterol. 2019, 53, e1–e11. [Google Scholar] [CrossRef]
- Mercer, L.K.; Galloway, J.B.; Lunt, M.; Davies, R.; Low, A.L.; Dixon, W.G.; Watson, K.D.; Symmons, D.P.; Hyrich, K.L. Risk of lymphoma in patients exposed to antitumour necrosis factor therapy: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 2017, 76, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Verheijden, R.J.; May, A.M.; Blank, C.U.; Aarts, M.J.B.; van den Berkmortel, F.; van den Eertwegh, A.J.M.; de Groot, J.W.B.; Boers-Sonderen, M.J.; van der Hoeven, J.J.M.; Hospers, G.A.; et al. Association of Anti-TNF with Decreased Survival in Steroid Refractory Ipilimumab and Anti-PD1-Treated Patients in the Dutch Melanoma Treatment Registry. Clin. Cancer Res. 2020, 26, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, F.; Montfort, A.; Marcheteau, E.; Imbert, C.; Gilhodes, J.; Filleron, T.; Rochaix, P.; Andrieu-Abadie, N.; Levade, T.; Meyer, N.; et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat. Commun. 2017, 8, 2256. [Google Scholar] [CrossRef]
- Lesage, C.; Longvert, C.; Prey, S.; Maanaoui, S.; Dréno, B.; Machet, L.; Zehou, O.; Kramkimel, N.; Jeudy, G.; Skowron, F.; et al. Incidence and Clinical Impact of Anti-TNFα Treatment of Severe Immune Checkpoint Inhibitor-induced Colitis in Advanced Melanoma: The Mecolit Survey. J. Immunother. 2019, 42, 175–179. [Google Scholar] [CrossRef]
- Favara, D.M.; Spain, L.; Au, L.; Clark, J.; Daniels, E.; Diem, S.; Chauhan, D.; Turajlic, S.; Powell, N.; Larkin, J.M.; et al. Five-year review of corticosteroid duration and complications in the management of immune checkpoint inhibitor-related diarrhoea and colitis in advanced melanoma. ESMO Open 2020, 5, e000585. [Google Scholar] [CrossRef]
- Badran, Y.R.; Cohen, J.V.; Brastianos, P.K.; Parikh, A.R.; Hong, T.S.; Dougan, M. Concurrent therapy with immune checkpoint inhibitors and TNFα blockade in patients with gastrointestinal immune-related adverse events. J. Immunother. Cancer 2019, 7, 226. [Google Scholar] [CrossRef]
- Chen, A.Y.; Wolchok, J.D.; Bass, A.R. TNF in the era of immune checkpoint inhibitors: Friend or foe? Nat. Rev. Rheumatol. 2021, 17, 213–223. [Google Scholar] [CrossRef]
- Deftereos, S.N.; Georgonikou, D. Effectiveness of rituximab in treating immune-checkpoint-inhibitor-induced immune-related adverse events: Results of a systematic review. Ann. Oncol. 2021, 32, 282–283. [Google Scholar] [CrossRef]
- HIGHLIGHTS OF PRESCRIBING INFORMATION. These Highlights Do Not Include All the Information Needed to Use RITUXAN Safely and Effectively. See Full Prescribing Information for RITUXAN. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/103705s5464lbl.pdf (accessed on 23 April 2023).
- Kremer, N.; Snast, I.; Cohen, E.S.; Hodak, E.; Mimouni, D.; Lapidoth, M.; Mazor, S.; Levi, A. Rituximab and Omalizumab for the Treatment of Bullous Pemphigoid: A Systematic Review of the Literature. Am. J. Clin. Dermatol. 2019, 20, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Kridin, K.; Mruwat, N.; Amber, K.T.; Ludwig, R.J. Risk of infections in patients with pemphigus treated with rituximab vs. azathioprine or mycophenolate mofetil: A large-scale global cohort study. Br. J. Dermatol. 2023, 188, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Rituximab: A Review in Pemphigus Vulgaris. Am. J. Clin. Dermatol. 2020, 21, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Alping, P.; Askling, J.; Burman, J.; Fink, K.; Fogdell-Hahn, A.; Gunnarsson, M.; Hillert, J.; Langer-Gould, A.; Lycke, J.; Nilsson, P.; et al. Cancer Risk for Fingolimod, Natalizumab, and Rituximab in Multiple Sclerosis Patients. Ann. Neurol. 2020, 87, 688–699. [Google Scholar] [CrossRef] [PubMed]
- van Daalen, E.E.; Rizzo, R.; Kronbichler, A.; Wolterbeek, R.; Bruijn, J.A.; Jayne, D.R.; Bajema, I.M.; Rahmattulla, C. Effect of rituximab on malignancy risk in patients with ANCA-associated vasculitis. Ann. Rheum. Dis. 2017, 76, 1064–1069. [Google Scholar] [CrossRef]
- Griss, J.; Bauer, W.; Wagner, C.; Simon, M.; Chen, M.; Grabmeier-Pfistershammer, K.; Maurer-Granofszky, M.; Roka, F.; Penz, T.; Bock, C.; et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 2019, 10, 4186. [Google Scholar] [CrossRef]
- Damsky, W.; Jilaveanu, L.; Turner, N.; Perry, C.; Zito, C.; Tomayko, M.; Leventhal, J.; Herold, K.; Meffre, E.; Bosenberg, M.; et al. B cell depletion or absence does not impede anti-tumor activity of PD-1 inhibitors. J. Immunother. Cancer 2019, 7, 153. [Google Scholar] [CrossRef]
- Gleason, L.; Hunter, E.; Cohen, A.; Suriano, J.; Nikbakht, N. Atezolizumab-induced psoriasiform drug eruption successfully treated with ixekizumab: A case report and literature review. Dermatol. Online J. 2023, 29, 9. [Google Scholar] [CrossRef]
- Johnson, D.; Patel, A.B.; Uemura, M.I.; Trinh, V.A.; Jackson, N.; Zobniw, C.M.; Tetzlaff, M.T.; Hwu, P.; Curry, J.L.; Diab, A. IL17A Blockade Successfully Treated Psoriasiform Dermatologic Toxicity from Immunotherapy. Cancer Immunol. Res. 2019, 7, 860–865. [Google Scholar] [CrossRef]
- Kost, Y.; Mattis, D.; Muskat, A.; Amin, B.; McLellan, B. Immune Checkpoint Inhibitor-Induced Psoriasiform, Spongiotic, and Lichenoid Dermatitis: A Novel Clinicopathological Pattern. Cureus 2022, 14, e28010. [Google Scholar] [CrossRef]
- Gottlieb, A.B.; Deodhar, A.; McInnes, I.B.; Baraliakos, X.; Reich, K.; Schreiber, S.; Bao, W.; Marfo, K.; Richards, H.B.; Pricop, L.; et al. Long-term Safety of Secukinumab Over Five Years in Patients with Moderate-to-severe Plaque Psoriasis, Psoriatic Arthritis and Ankylosing Spondylitis: Update on Integrated Pooled Clinical Trial and Post-marketing Surveillance Data. Acta Derm. Venereol. 2022, 102, adv00698. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, A.; Mease, P.J.; McInnes, I.B.; Baraliakos, X.; Reich, K.; Blauvelt, A.; Leonardi, C.; Porter, B.; Das Gupta, A.; Widmer, A.; et al. Long-term safety of secukinumab in patients with moderate-to-severe plaque psoriasis, psoriatic arthritis, and ankylosing spondylitis: Integrated pooled clinical trial and post-marketing surveillance data. Arthritis Res. Ther. 2019, 21, 111. [Google Scholar] [CrossRef]
- Schreiber, S.; Colombel, J.F.; Feagan, B.G.; Reich, K.; Deodhar, A.A.; McInnes, I.B.; Porter, B.; Das Gupta, A.; Pricop, L.; Fox, T. Incidence rates of inflammatory bowel disease in patients with psoriasis, psoriatic arthritis and ankylosing spondylitis treated with secukinumab: A retrospective analysis of pooled data from 21 clinical trials. Ann. Rheum. Dis. 2019, 78, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Elewski, B.E.; Baddley, J.W.; Deodhar, A.A.; Magrey, M.; Rich, P.A.; Soriano, E.R.; Soung, J.; Bao, W.; Keininger, D.; Marfo, K.; et al. Association of Secukinumab Treatment With Tuberculosis Reactivation in Patients With Psoriasis, Psoriatic Arthritis, or Ankylosing Spondylitis. JAMA Dermatol. 2021, 157, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Restifo, N.P. TH17 cells in tumour immunity and immunotherapy. Nat. Rev. Immunol. 2010, 10, 248–256. [Google Scholar] [CrossRef]
- Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Zou, W. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 2009, 114, 357–359. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, X.; Herjan, T.; Li, X. The role of interleukin-17 in tumor development and progression. J. Exp. Med. 2020, 217, e20190297. [Google Scholar] [CrossRef]
- Liu, C.; Liu, R.; Wang, B.; Lian, J.; Yao, Y.; Sun, H.; Zhang, C.; Fang, L.; Guan, X.; Shi, J.; et al. Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer. J. Immunother. Cancer 2021, 9, e001895. [Google Scholar] [CrossRef]
- Pellegrini, C.; Esposito, M.; Rossi, E.; Gisondi, P.; Piaserico, S.; Dapavo, P.; Conti, A.; Gambardella, A.; Burlando, M.; Narcisi, A.; et al. Secukinumab in Patients with Psoriasis and a Personal History of Malignancy: A Multicenter Real-Life Observational Study. Dermatol. Ther 2022, 12, 2613–2626. [Google Scholar] [CrossRef]
- Lebwohl, M.; Deodhar, A.; Griffiths, C.E.M.; Menter, M.A.; Poddubnyy, D.; Bao, W.; Jehl, V.; Marfo, K.; Primatesta, P.; Shete, A.; et al. The risk of malignancy in patients with secukinumab-treated psoriasis, psoriatic arthritis and ankylosing spondylitis: Analysis of clinical trial and postmarketing surveillance data with up to five years of follow-up. Br. J. Dermatol. 2021, 185, 935–944. [Google Scholar] [CrossRef]
- Deodhar, A.A.; Combe, B.; Accioly, A.P.; Bolce, R.; Zhu, D.; Gellett, A.M.; Sprabery, A.T.; Burmester, G.R. Safety of ixekizumab in patients with psoriatic arthritis: Data from four clinical trials with over 2000 patient-years of exposure. Ann. Rheum. Dis. 2022, 81, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Ma, V.T.; Lao, C.D.; Fecher, L.A.; Schiopu, E. Successful use of secukinumab in two melanoma patients with immune checkpoint inhibitor-induced inflammatory arthropathy. Immunotherapy 2022, 14, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, K.; Miller, W.H. Reversal of Autoimmune Toxicity and Loss of Tumor Response by Interleukin-17 Blockade. N. Engl. J. Med. 2017, 376, 1989–1991. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Yanagitani, N. Guselkumab for treating immune checkpoint inhibitor-induced psoriatic arthritis. Ann. Rheum. Dis. 2022, 81, 1479–1480. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, L.; Ibba, L.; Valenti, M.; Costanzo, A.; Narcisi, A. Pembrolizumab-induced plaque psoriasis successfully treated with risankizumab in a patient with stage IV cutaneous melanoma. Melanoma Res. 2023, 33, 152–154. [Google Scholar] [CrossRef]
- Glinos, G.D.; Fisher, W.S.; Morr, C.S.; Seminario-Vidal, L. Nivolumab-induced psoriasis successfully treated with risankizumab-rzaa in a patient with stage III melanoma. JAAD Case Rep. 2021, 11, 74–77. [Google Scholar] [CrossRef]
- Megna, M.; Ruggiero, A.; Battista, T.; Marano, L.; Cacciapuoti, S.; Potestio, L. Long-Term Efficacy and Safety of Risankizumab for Moderate to Severe Psoriasis: A 2-Year Real-Life Retrospective Study. J. Clin. Med. 2023, 12, 3233. [Google Scholar] [CrossRef]
- Lebwohl, M.G.; Merola, J.F.; Rowland, K.; Miller, M.; Yang, Y.W.; Yu, J.; You, Y.; Chan, D.; Thaçi, D.; Langley, R.G. Safety of Guselkumab Treatment for up to 5 Years in Patients With Moderate-to-Severe Psoriasis: Pooled Analyses Across Seven Clinical Trials With Greater Than 8600 Patient-Years of Exposure. Br. J. Dermatol. 2023, 189, 42–45. [Google Scholar] [CrossRef]
- Gordon, K.B.; Lebwohl, M.; Papp, K.A.; Bachelez, H.; Wu, J.J.; Langley, R.G.; Blauvelt, A.; Kaplan, B.; Shah, M.; Zhao, Y.; et al. Long-term safety of risankizumab from 17 clinical trials in patients with moderate-to-severe plaque psoriasis. Br. J. Dermatol. 2022, 186, 466–475. [Google Scholar] [CrossRef]
- Wight, A.E.; Sido, J.M.; Degryse, S.; Ao, L.; Nakagawa, H.; Qiu Vivian, Y.; Shen, X.; Oseghali, O.; Kim, H.J.; Cantor, H. Antibody-mediated blockade of the IL23 receptor destabilizes intratumoral regulatory T cells and enhances immunotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2200757119. [Google Scholar] [CrossRef]
- Teng, M.W.; von Scheidt, B.; Duret, H.; Towne, J.E.; Smyth, M.J. Anti-IL-23 monoclonal antibody synergizes in combination with targeted therapies or IL-2 to suppress tumor growth and metastases. Cancer Res. 2011, 71, 2077–2086. [Google Scholar] [CrossRef] [PubMed]
- Blauvelt, A.; Lebwohl, M.; Langley, R.G.; Rowland, K.; Yang, Y.W.; Chan, D.; Miller, M.; You, Y.; Yu, J.; Thaҫi, D.; et al. Malignancy rates through 5 years of follow-up in patients with moderate-to-severe psoriasis treated with guselkumab: Pooled results from the VOYAGE 1 and VOYAGE 2 trials. J. Am. Acad. Dermatol. 2023, 89, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Thaci, D.; Piaserico, S.; Warren, R.B.; Gupta, A.K.; Cantrell, W.; Draelos, Z.; Foley, P.; Igarashi, A.; Langley, R.G.; Asahina, A.; et al. Five-year efficacy and safety of tildrakizumab in patients with moderate-to-severe psoriasis who respond at week 28: Pooled analyses of two randomized phase III clinical trials (reSURFACE 1 and reSURFACE 2). Br. J. Dermatol. 2021, 185, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Dahlberg, S.E.; Adeni, A.; Sholl, L.M.; Nishino, M.; Awad, M.M. Immune Checkpoint Inhibitor Outcomes for Patients With Non-Small-Cell Lung Cancer Receiving Baseline Corticosteroids for Palliative Versus Nonpalliative Indications. J. Clin. Oncol. 2019, 37, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
Class | Medication | ircAE Phenotype Indications per NCCN Guidelines | Common AEs |
---|---|---|---|
Steroids | Glucocorticoids | Maculopapular, pruritus, bullous dermatitis, lichenoid | Hypertension, hyperglycemia, osteoporosis, peptic ulcers, cataracts, glaucoma, infections |
Immunosuppressives | Cyclosporine | Bullous dermatitis, lichenoid, psoriasiform | Hypertension, renal dysfunction, infection, hypertrichosis, gingival hyperplasia, fatigue, myalgia, cough, dyspnea |
Azathioprine | Lichenoid | Nausea, fever, fatigue, arthralgias/myalgias, rash, hepatotoxicity, infection | |
Methotrexate | Lichenoid, psoriasiform | Transaminitis, nausea/vomiting, stomatitis, thrombocytopenia, rash, diarrhea, alopecia, photosensitivity, pancytopenia, dizziness | |
Immunomodulators | IVIG | Bullous dermatitis | Headaches, fatigue, nausea, chills, fever, abdominal pain, epistaxis, vomiting |
Apremilast | Psoriasiform | Diarrhea, nausea, upper respiratory tract infections, headache, abdominal pain, vomiting | |
Acitretin | Lichenoid, psoriasiform | Flushing, headache, myopathy, thinning of the skin, capillary leak syndrome, skeletal abnormalities, xeropthalmia, vision/hearing loss | |
Biologics | Dupilumab | Pruritus | Injection site reactions, conjunctivitis, oral herpes |
Omalizumab | Pruritus | Headache, upper respiratory tract infection, arthralgias | |
Anti-TNFa (infliximab, adalimumab, golimumab, etanercept) | Bullous dermatitis | Headache, injection site reactions, rash, upper respiratory tract infections, nausea, diarrhea | |
Rituximab | Bullous dermatitis | Infusion reactions, infection, alopecia, fatigue, abdominal pain, conjunctivitis, dizziness, headache |
Class | Medication | Risk of Progression of Existing Malignancy While on ICI | Level of Evidence |
---|---|---|---|
Glucocorticoids | Glucocorticoids | Increased | IV [15,198] |
Immunosuppressives | Cyclosporine | NA | NA |
Azathioprine | NA | NA | |
Methotrexate | Decreased | V [37,47] | |
Mycophenolate Mofetil | NA | NA | |
Hydroxychloroquine | Mixed | V [70,71,72] | |
Immunomodulators | Dapsone | NA | NA |
IVIG | NA | NA | |
Apremilast | NA | NA | |
Acitretin | NA | NA | |
Biologics | Ustekinumab | Mixed | V [100,101] |
Dupilumab | Mixed | V [2,112,113,114,115] | |
Omalizumab | Decreased | V [2] | |
Benralizumab | Mixed | V [114] | |
Tocilizumab | Decreased | V [142,143] | |
Anti-TNFa (infliximab, adalimumab, golimumab, etanercept) | Mixed | IV [152,153,154,155,156] | |
Rituximab | Mixed | V [168,169] | |
Anti-IL17 (secukinumab, ixekizumab, brodalumab) | Mixed | IV [171,184,185] | |
Anti-IL23 (risankizumab, guselkumab, tildrakizumab) | Decreased | V [192,193] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, S.L.; Nath, S.; Markova, A. Safety of Immunomodulatory Systemic Therapies Used in the Management of Immune-Related Cutaneous Adverse Events. Pharmaceuticals 2023, 16, 1610. https://doi.org/10.3390/ph16111610
Gu SL, Nath S, Markova A. Safety of Immunomodulatory Systemic Therapies Used in the Management of Immune-Related Cutaneous Adverse Events. Pharmaceuticals. 2023; 16(11):1610. https://doi.org/10.3390/ph16111610
Chicago/Turabian StyleGu, Stephanie L., Sandy Nath, and Alina Markova. 2023. "Safety of Immunomodulatory Systemic Therapies Used in the Management of Immune-Related Cutaneous Adverse Events" Pharmaceuticals 16, no. 11: 1610. https://doi.org/10.3390/ph16111610
APA StyleGu, S. L., Nath, S., & Markova, A. (2023). Safety of Immunomodulatory Systemic Therapies Used in the Management of Immune-Related Cutaneous Adverse Events. Pharmaceuticals, 16(11), 1610. https://doi.org/10.3390/ph16111610