A Computational Method for the Binding Mode Prediction of COX-1 and COX-2 Inhibitors: Analyzing the Union of Coxibs, Oxicams, Propionic and Acetic Acids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cavities Analysis of COXs
2.2. Collection of Information for the Date (Active Compounds)
2.3. Analysis of the Crystal Selected for the Predictive Model
2.4. Structural Validation of the Docking Model
Validation of the Values for Our Computational Model
2.5. Validation of the Applicability Domain of Our Computational Method
- The Ibuprofen case (1EQG and 4PH9)
- The Indomethacin (2OYU and 4COX)
- The Celecoxib case (3KK6 and 3LN1)
- The Meloxicam case (4O1Z and 4M11)
2.6. Structural Analysis of Inhibitors from COX-1 and COX-2
3. Materials and Methods
3.1. Search and Selection of PDBs
3.2. Search for In Vitro Biological Activity Values on Previously Reported NSAIDs and New Compounds (IC50)
3.3. Construction and Structural Analysis of Ligands
3.4. Molecular Docking Calculations Docking Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, M.A.; Finkel, R.; Rey, J.A.; Whalen, K. Antiinflamatorios. In Farmacología, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 525–548. [Google Scholar]
- Serhan, C.N.; Petasis, N.A. Resolvins and Protectins in Inflammation Resolution. Chem. Rev. 2011, 111, 5922–5943. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Abbas, A.K.; Aster, J.C. Inflamación y reparación. In Patología Humana, 9th ed.; Klatt, E.C., Kummar, R., Mitchell, R.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 29–75. [Google Scholar]
- Stevens, A.; Lowe, J.; Scott, I. Lesión celular y Muerte. Respuestas tisulares al daño. In Patología Clínica, 3rd ed.; El Manual Moderno: Ciudad de México, México, 2011; pp. 35–54. [Google Scholar]
- Buch, M.H.; Eyre, S.; McGonagle, D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. Nat. Rev. Rheumatol. 2021, 17, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Moriya, J. Critical roles of inflammation in atherosclerosis. J. Cardiol. 2019, 73, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.D.; Busquets-Cortés, C.; Capó, X.; Tejada, S.; Tur, J.A.; Pons, A.; Sureda, A. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem. 2019, 26, 3225–3241. [Google Scholar] [CrossRef]
- Pęczek, P.; Gajda, M.; Rutkowski, K.; Fudalej, M.; Deptała, A.; Badowska-Kozakiewicz, A.M. Cancer-associated inflammation: Pathophysiology and clinical significance. J. Cancer Res. Clin. Oncol. 2023, 149, 2657–2672. [Google Scholar] [CrossRef]
- Barreiro, E.J.; Kümmerle, A.E.; Fraga, C.A.M. The methylation Effect in Medical Chemistry. Chem. Rev. 2011, 111, 5215–5246. [Google Scholar] [CrossRef]
- Leung, C.S.; Leung, S.S.F.; Tirados-Rives, J.; Jorgensen, W.L. Methylation Effects on Protein-Ligand Binding. J. Med. Chem. 2012, 55, 4489–4500. [Google Scholar] [CrossRef] [PubMed]
- Romero-Estudillo, I.; Viveros-Ceballos, J.L.; Cazares-Carreño, O.; González-Morales, A.; de Jésus, B.F.; López-Castillo, M.; Razo-Hernández, R.S.; Castañeda-Corral, G.; Ordóñez, M. 000Synthesis of new α-aminophosphonates: Evaluation as anti-inflammatory agents and QSAR studies. Bioorg. Med. Chem. 2019, 27, 2376–2386. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target Ther. 2021, 6, 94. [Google Scholar] [CrossRef]
- Ahmadi, M.; Bekeschus, S.; Weltmann, K.D.; von Woedtke, T.; Wende, K. Non-steroidal anti-inflammatory drugs: Recent advances in the use of synthetic COX-2 inhibitors. RSC Med. Chem. 2022, 13, 471–496. [Google Scholar] [CrossRef]
- Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem. 2007, 50, 1425–1441. [Google Scholar] [CrossRef]
- Volkamer, A.; Griewel, A.; Grombacher, T.; Rarey, M. Analyzing the topology of active sites: On the prediction of pockets and subpockets. J. Chem. Info. Model. 2010, 50, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Volkamer, A.; Kuhn, D.; Grombacher, T.; Rippmann, F.; Rarey, M. Combining global and local measures for structure-based druggability predictions. J. Chem. Inf. Model. 2012, 52, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; de Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [Google Scholar] [CrossRef] [PubMed]
- Ehrman, T.M.; Barlow, D.J.; Hylands, P.J. In silico search for multi-target anti-inflammatories in Chinese herbs and formulas. Bioorg. Med. Chem. 2010, 18, 2204–2218. [Google Scholar] [CrossRef]
- Ju, Z.; Su, M.; Hong, J.; La Kim, E.; Moon, H.R.; Chung, H.Y.; Jung, J.H. Design of balanced COX inhibitors based on anti-inflammatory and/or COX-2 inhibitory ascidian metabolites. Eur. J. Med. Chem. 2019, 180, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Eren, G.; Ünlü, S.; Nuñez, M.T.; Labeaga, L.; Ledo, F.; Entrena, A.; Banoglu, E.; Constantino, G.; Şahin, M.F. Synthesis, biological evaluation, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors. Bioorg. Med. Chem. 2010, 18, 6367–6376. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Hisa, T.; Arai, J.; Saito, Y.; Yamamoto, F.; Mukai, T.; Ohshima, T.; Maeda, M.; Ohkubo, Y. Isomeric methoxy analogs of nimesulide for development of brain cyclooxygense-2 (COX-2)-targeted imaging agents: Synthesis, in vitro COX-2-inhibitory potency, and cellular transport properties. Bioorg. Med. Chem. 2015, 23, 6807–6814. [Google Scholar] [CrossRef]
- Beno, B.R.; Yeung, K.S.; Bartberger, M.D.; Pennington, L.D.; Meanwell, N.A. A survey of the role of noncovalent sulfur interactions in drug design. J. Med. Chem. 2015, 58, 4383–4438. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, Z.F.; Gilliland, G.; Bhat, T.N.; Weissing, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Goujon, M.; McWilliam, H.; Li, W.; Valentin, F.; Squizzato, S.; Paern, J.; Lopez, R. A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res. 2010, 38, W695–W699. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, D1, D933–D941. [Google Scholar] [CrossRef] [PubMed]
- Meyder, A.; Nittinger, E.; Lange, G.; Klein, R.; Rarey, M. Estimating Electron Density Support for Individual Atoms and Molecular Fragments in X-ray Structure. J. Chem. Inf. Model. 2017, 57, 2437–2447. [Google Scholar] [CrossRef]
- Schöning-Stierand, K.; Diedrich, K.; Ehrt, C.; Flachsenberg, F.; Graef, J.; Sieg, J.; Rarey, M. Proteins Plus: A comprehensive collection of web-based molecular modeling tools. Nucleic Acids Res. 2022, 50, W611–W615. [Google Scholar] [CrossRef]
- Reddy, M.R.; Billa, V.K.; Pallela, V.R.; Mallireddigari, M.R.; Boominathan, R.; Gabriel, J.L.; Reddy, E.P. Design, synthesis, and biological evaluation of 1-(4-sulfamylphenyl)-3-trifluoromethyl-5-indolyl pyrazolines as cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) inhibitors. Bioorg. Med. Chem. 2008, 16, 3907–3916. [Google Scholar] [CrossRef]
- Zarghi, A.; Zebardast, T.; Daraie, B.; Hedayati, M. Design and synthesis of new 1, 3-benzthiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. 2009, 17, 5369–5373. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.K.; Srivastava, P.; Bandresh, R.; Tripathi, P.N.; Tripathi, A. Design, synthesis, and biological evaluation of some novel indolizine derivatives as dual cyclooxygenase and lipoxygenase inhibitor for anti-inflammatory activity. Bioorg. Med. Chem. 2017, 25, 4424–4432. [Google Scholar] [CrossRef]
- Magda, A.A.; Abdel-Aziz, N.I.; Alaa, A.M.; El-Azab, A.S.; ElTahir, K.E. Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2. Bioorg. Med. Chem. 2012, 20, 3306–3316. [Google Scholar] [CrossRef]
- Kaur, J.; Bhardwaj, A.; Huang, Z.; Knaus, E.E. N-1 and C-3 substituted indole Schiff bases as selective COX-2 inhibitors: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2012, 22, 2154–2159. [Google Scholar] [CrossRef]
- Pérez, D.J.; Díaz-Reval, M.I.; Obledo-Benicio, F.; Zakai, U.I.; Gómez-Sandoval, Z.; Razo-Hernández, R.S.; West, R.; Sumaya-Martínez, M.T.; Pineda-Urbina, K.; Ramos-Organillo, Á. Silicon containing ibuprofen derivatives with antioxidant and anti-inflammatory activities: An in vivo and in silico study. Eur. J. Pharmacol. 2017, 814, 18–27. [Google Scholar] [CrossRef]
- Rodríguez-Lozada, J.; Tovar-Gudiño, E.; Guevara-Salazar, J.A.; Razo-Hernández, R.S.; Santiago, Á.; Pastor, N.; Fernández-Zertuche, M. QSAR and molecular docking studies of the inhibitory activity of novel heterocyclic GABA analogues over GABA-AT. Molecules 2018, 23, 2984. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.J. A Guide to Molecular Mechanics and Quantum Chemical Calculations; Wavefunction: Irvine, CA, USA, 2003; Volume 2. [Google Scholar]
- Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- Selinsky, B.S.; Gupta, K.; Sharkey, C.T.; Loll, P.J. Structural analysis of NSAID binding by prostaglandin H2 synthase: Time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry 2001, 40, 5172–5180. [Google Scholar] [CrossRef] [PubMed]
- Harman, C.A.; Turman, M.V.; Kozak, K.R.; Marnett, L.J.; Smith, W.L.; Garavito, R.M. Structural basis of enantioselective inhibition of cyclooxygenase-1 by S-α-substituted Indomethacin ethanolamide. J. Biol. Chem. 2007, 282, 28096–28105. [Google Scholar] [CrossRef]
- Rimon, G.; Sidhu, R.S.; Lauver, D.A.; Lee, J.Y.; Sharma, N.P.; Yuan, C.; Frieler, R.A.; Trievel, R.C.; Lucchesi, B.R.; Smith, W.L. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1. Proc. Natl. Acad. Sci. USA 2010, 107, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Hermanson, D.J.; Banerjee, S.; Ghebreselasie, K.; Clayton, G.M.; Garavito, R.M.; Marnett, L.J. Oxicams bind in a novel mode to the cyclooxygenase active site via a two-water-mediated H-bonding network. J. Biol. Chem. 2014, 289, 6799–6808. [Google Scholar] [CrossRef] [PubMed]
- Orlando, B.J.; Lucido, M.J.; Malkowski, M.G. The structure of ibuprofen bound to cyclooxygenase-2. J. Struct. Biol. 2015, 189, 62–66. [Google Scholar] [CrossRef]
- Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Iyashiro, J.M.; Penning, T.D.; Seibert, K.; et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996, 384, 644–648. [Google Scholar] [CrossRef]
- Ferraroni, M.; Matera, I.; Steimer, L.; Bürger, S.; Scozzafava, A.; Stolz, A.; Briganti, F. Crystal structures of salicylate 1, 2-dioxygenase-substrates adducts: A step towards the comprehension of the structural basis for substrate selection in class III ring cleaving dioxygenases. J. Struct. Biol. 2012, 177, 431–438. [Google Scholar] [CrossRef]
PDB | Ligand | Volume (Å3) | Surface (Å2) | Depth (Å) | Hydrophobicity Ratio | aa in Both Isoforms | aa in Only This Isoform |
---|---|---|---|---|---|---|---|
1EQG (COX-1) | Ibuprofen | 204.80 | 254.18 | 10.91 | 0.792 | Tyr355, Arg120, Ser530, Tyr385 | Ile523, Ile434, Phe503, His513 |
4PH9 (COX-2) | Ibuprofen | 228.86 | 306.53 | 11.39 | 0.760 | Tyr356, Arg121, Ser531, Tyr386 | Leu504, Val435, Arg514, Val524 |
2OYU (COX-1) | Indomethacin | 288.76 | 335.33 | 12.82 | 0.745 | Tyr355, Arg120, Ser530, Tyr385 | Ile523, Ile434, Phe503, His513 |
4COX (COX-2) | Indomethacin | 260.09 | 343.12 | 12.34 | 0.780 | Tyr355, Arg120, Ser530, Tyr385 | Leu503, Val523, Val434, Arg513 |
3KK6 (COX-1) | Celecoxib | 198.14 | 309.36 | 10.91 | 0.763 | Tyr341, Arg106, Ser516, Tyr371 | Ile523, Ile434, Phe503, His513 |
3LN1 (COX-2) | Celecoxib | 269.31 | 306.59 | 12.28 | 0.760 | Tyr355, Arg120, Ser530, Tyr385 | Arg513, Leu503, Val523, Val434 |
4O1Z (COX-1) | Meloxicam | 272.89 | 335.02 | 12.67 | 0.815 | Tyr355, Arg120, Ser530, Tyr385 | Ile523, Ile434, Phe503, His513 |
4M11 (COX-2) | Meloxicam | 292.35 | 320.25 | 13.21 | 0.831 | Tyr355, Arg120, Ser530, Tyr385 | Leu503, Val384, Val523, Arg513 |
NSAIDs/COX | COX-1 | COX-2 | ΔE | ||||||
---|---|---|---|---|---|---|---|---|---|
1EQG | 2OYU | 3KK6 | 4O1Z | 4PH9 | 4COX | 3LN1 | 4M11 | ||
Flurbiprofen | −104.84 | −105.12 | −93.58 | −110.92 | −104.45 | −123.05 | −103.01 | −105.91 | −5.00 |
Indomethacin | −155.27 | −145.91 | −135.67 | −152.18 | −151.98 | −150.60 | −146.31 | −140.19 | −3.29 |
Ibuprofen | −96.57 | −82.19 | −79.92 | −87.85 | −95.66 | −109.53 | −83.01 | −91.59 | −0.91 |
Nimesulide | −122.59 | −122.99 | −119.00 | −104.48 | −114.84 | −125.41 | −117.58 | −109.72 | 2.42 |
Celecoxib | −168.08 | −169.36 | −162.36 | −128.73 | −161.57 | −165.60 | −169.55 | −157.82 | 7.15 |
Diclofenac | −108.23 | −118.20 | −106.68 | −108.64 | −103.98 | −110.47 | −114.72 | −116.44 | 7.79 |
Meloxicam | −109.08 | −155.79 | −118.00 | −92.91 | −122.27 | −125.28 | −135.43 | −115.40 | 17.55 |
Rofecoxib | −139.99 | −135.96 | −123.10 | −105.56 | −140.86 | −140.42 | −144.84 | −111.51 | 21.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello-Vargas, E.; Leyva-Peralta, M.A.; Gómez-Sandoval, Z.; Ordóñez, M.; Razo-Hernández, R.S. A Computational Method for the Binding Mode Prediction of COX-1 and COX-2 Inhibitors: Analyzing the Union of Coxibs, Oxicams, Propionic and Acetic Acids. Pharmaceuticals 2023, 16, 1688. https://doi.org/10.3390/ph16121688
Bello-Vargas E, Leyva-Peralta MA, Gómez-Sandoval Z, Ordóñez M, Razo-Hernández RS. A Computational Method for the Binding Mode Prediction of COX-1 and COX-2 Inhibitors: Analyzing the Union of Coxibs, Oxicams, Propionic and Acetic Acids. Pharmaceuticals. 2023; 16(12):1688. https://doi.org/10.3390/ph16121688
Chicago/Turabian StyleBello-Vargas, Estefany, Mario Alberto Leyva-Peralta, Zeferino Gómez-Sandoval, Mario Ordóñez, and Rodrigo Said Razo-Hernández. 2023. "A Computational Method for the Binding Mode Prediction of COX-1 and COX-2 Inhibitors: Analyzing the Union of Coxibs, Oxicams, Propionic and Acetic Acids" Pharmaceuticals 16, no. 12: 1688. https://doi.org/10.3390/ph16121688
APA StyleBello-Vargas, E., Leyva-Peralta, M. A., Gómez-Sandoval, Z., Ordóñez, M., & Razo-Hernández, R. S. (2023). A Computational Method for the Binding Mode Prediction of COX-1 and COX-2 Inhibitors: Analyzing the Union of Coxibs, Oxicams, Propionic and Acetic Acids. Pharmaceuticals, 16(12), 1688. https://doi.org/10.3390/ph16121688