Prediction of the Drug–Drug Interaction Potential between Tegoprazan and Amoxicillin/Clarithromycin Using the Physiologically Based Pharmacokinetic and Pharmacodynamic Model
Abstract
:1. Introduction
2. Results
2.1. Clarithromycin Advanced Dissolution, Absorption, and Metabolism (ADAM) Model Development
2.2. Development of Amoxicillin PBPK Model
2.3. The Prediction of Tegoprazan PK and PD Changes under DDI Scenario
3. Discussion
4. Materials and Methods
4.1. Clarithromycin ADAM Model Development
4.2. Amoxicillin Model Development
4.3. Alterations in Tegoprazan PK and PD under the DDI Scenario
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, Y.J.; Lee, Y.C.; Kim, J.M.; Kim, J.I.; Moon, J.S.; Lim, Y.J.; Baik, G.H.; Son, B.K.; Lee, H.L.; Kim, K.O. Triple therapy-based on tegoprazan, a new potassium-competitive acid blocker, for first-line treatment of Helicobacter pylori infection: A randomized, double-blind, phase iii, clinical trial. Gut Liver 2022, 16, 535. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Take, Y. Tegoprazan, a novel potassium-competitive acid blocker to control gastric acid secretion and motility. J. Pharmacol. Exp. Ther. 2018, 364, 275–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.K.; Choi, M.G.; Choi, S.C.; Lee, K.M.; Kim, T.O.; Park, S.H.; Moon, J.S.; Lim, Y.J.; Kang, D.H.; Cheon, G.J. Randomised clinical trial: Tegoprazan, a novel potassium-competitive acid blocker, or lansoprazole in the treatment of gastric ulcer. Aliment. Pharmacol. Ther. 2020, 52, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-C.; Kim, M.-G.; Wei, Z.; Lee, K.-R.; Lee, J.; Song, I.-S.; Shin, K.-H. Integration of a Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Tegoprazan and Its Metabolite: Application for Predicting Food Effect and Intragastric pH Alterations. Pharmaceutics 2022, 14, 1298. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, S.-Y.; Kim, H.; Kim, J.H.; Sung, I.-K.; Park, H.S. Efficacy of seven-day potassium-competitive acid blocker-based first-line Helicobacter pylori eradication therapy administered with bismuth. Yonsei Med. J. 2021, 62, 708. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-Y.; Kim, S.-Y.; Moon, S.J.; Oh, K.; Lee, J.; Kim, B.; Song, G.S.; Kim, M.-G. Pharmacokinetic Interactions between Tegoprazan and Metronidazole/Tetracycline/Bismuth and Safety Assessment in Healthy Korean Male Subjects. Clin. Ther. 2021, 43, 722–734. [Google Scholar] [CrossRef]
- Jung, Y.S.; Kim, S.; Kim, H.Y.; Noh, S.J.; Park, J.H.; Park, C.H. 7-day versus 14-day tegoprazan-based triple therapy to treat Helicobacter pylori infection: Real-world evidence. J. Gastroenterol. Hepatol. 2022, 37, 1911–1918. [Google Scholar] [CrossRef]
- Kim, S.H.; Cho, K.B.; Chun, H.J.; Lee, S.W.; Kwon, J.G.; Lee, D.H.; Kim, S.G.; Jung, H.Y.; Kim, J.W.; Lee, J.S. Randomised clinical trial: Comparison of tegoprazan and placebo in non-erosive reflux disease. Aliment. Pharmacol. Ther. 2021, 54, 402–411. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, N.; Lee, A.; Chae, Y.J.; Chung, S.J.; Lee, K.R. Model-Based Prediction of Acid Suppression and Proposal of a New Dosing Regimen of Fexuprazan in Humans. Pharmaceuticals 2022, 15, 709. [Google Scholar] [CrossRef]
- Abdel-Aziz, Y.; Metz, D.C.; Howden, C.W. Potassium-competitive acid blockers for the treatment of acid-related disorders. Aliment. Pharmacol. Ther. 2021, 53, 794–809. [Google Scholar]
- Ghim, J.L.; Chin, M.C.; Jung, J.; Lee, J.; Kim, S.; Kim, B.; Song, G.S.; Choi, Y.K.; Shin, J.G. Pharmacokinetics and Pharmacodynamics of Tegoprazan Coadministered With Amoxicillin and Clarithromycin in Healthy Subjects. J. Clin. Pharmacol. 2021, 61, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Park, J.M.; Cheung, D.Y.; Oh, J.H. Comparison of 7-and 14-day eradication therapy for Helicobacter pylori with first-and second-line regimen: Randomized clinical trial. J. Korean Med. Sci. 2020, 35, e33. [Google Scholar] [CrossRef] [PubMed]
- Gong, E.J.; Yun, S.-C.; Jung, H.-Y.; Lim, H.; Choi, K.-S.; Ahn, J.Y.; Lee, J.H.; Kim, D.H.; Choi, K.D.; Song, H.J. Meta-analysis of first-line triple therapy for Helicobacter pylori eradication in Korea: Is it time to change? J. Korean Med. Sci. 2014, 29, 704–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, D.Y.; Lee, S.; Jang, I.-J.; Kim, M.; Lee, H.; Kim, S.; Kim, B.; Song, G.S.; Rhee, S.-J. Prediction of Drug–Drug Interaction Potential of Tegoprazan Using Physiologically Based Pharmacokinetic Modeling and Simulation. Pharmaceutics 2021, 13, 1489. [Google Scholar] [CrossRef]
- Jones, H.; Rowland-Yeo, K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, 1–12. [Google Scholar] [CrossRef]
- Luzon, E.; Blake, K.; Cole, S.; Nordmark, A.; Versantvoort, C.; Berglund, E.G. Physiologically based pharmacokinetic modeling in regulatory decision-making at the European Medicines Agency. Clin. Pharmacol. Ther. 2017, 102, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.M.; Rowland, M. The role of physiologically based pharmacokinetic modeling in regulatory review. Clin. Pharmacol. Ther. 2012, 91, 542–549. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Grimstein, M.; Fan, J.; Grillo, J.A.; Huang, S.M.; Zhu, H.; Wang, Y. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: An update on the 2018–2019 submissions to the US FDA’s office of clinical pharmacology. J. Clin. Pharmacol. 2020, 60, S160–S178. [Google Scholar] [CrossRef]
- Shebley, M.; Sandhu, P.; Emami Riedmaier, A.; Jamei, M.; Narayanan, R.; Patel, A.; Peters, S.A.; Reddy, V.P.; Zheng, M.; de Zwart, L. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: A consortium perspective. Clin. Pharmacol. Ther. 2018, 104, 88–110. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.y.; Wilson, D.; Deaton, R.; Mackenthun, A.; Eason, C.; Cavanaugh, J. Single-and multiple-dose pharmacokinetics of clarithromycin, a new macrolide antimicrobial. J. Clin. Pharmacol. 1993, 33, 719–726. [Google Scholar] [CrossRef]
- Soares, A.L.P.; Montanha, M.C.; Alcantara, C.D.; Silva, S.R.; Kuroda, C.M.; Yamada, S.S.; Nicacio, A.E.; Maldaner, L.; Visentainer, J.V.; Simões, C.F. Pharmacokinetics of amoxicillin in obese and nonobese subjects. Br. J. Clin. Pharmacol. 2021, 87, 3227–3233. [Google Scholar] [CrossRef]
- Jin, B.H.; Yoo, B.W.; Park, J.; Kim, J.H.; Lee, J.Y.; Shin, J.S.; Park, M.S. Pharmacokinetic drug interaction and safety after coadministration of clarithromycin, amoxicillin, and ilaprazole: A randomised, open-label, one-way crossover, two parallel sequences study. Eur. J. Clin. Pharmacol. 2018, 74, 1149–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarowny, D.; Ogilvie, R.; Tamblyn, D.; Macleod, C.; Ruedy, J. Pharmacokinetics of amoxicillin. Clin. Pharmacol. Ther. 1974, 16, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, J.; Oh, J.; Moon, S.; Ji, S.; Lee, S.; Yu, K.S.; Kim, H.; Lee, A.; Jang, I.J. Safety, tolerability, pharmacodynamics and pharmacokinetics of DWP 14012, a novel potassium-competitive acid blocker, in healthy male subjects. Aliment. Pharmacol. Ther. 2018, 48, 206–218. [Google Scholar] [CrossRef] [Green Version]
- Ezuruike, U.; Zhang, M.; Pansari, A.; De Sousa Mendes, M.; Pan, X.; Neuhoff, S.; Gardner, I. Guide to development of compound files for PBPK modeling in the Simcyp population-based simulator. CPT Pharmacomet. Syst Pharm. 2022, 11, 805–821. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Ning, J.; Pansari, A.; Pan, X.; Jamei, M. Prediction of Maternal and Fetoplacental Concentrations of Cefazolin, Cefuroxime, and Amoxicillin during Pregnancy Using Bottom-Up Physiologically Based Pharmacokinetic Models. Drug Metab. Dispos. 2022, 50, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Lode, H.; Janisch, P.; Küpper, G.; Weuta, H. Comparative clinical pharmacology of three ampicillins and amoxicillin administered orally. J. Infect. Dis. 1974, 129, S156–S168. [Google Scholar] [CrossRef] [PubMed]
- Perveen, S.; Gauhar, S.; Yousuf, R.I.; Ali, H.; Zafar, F.; Sheikh, A.F. Evaluation of pharmacokinetic interactions of amoxicillin with ranitidine in healthy human volunteers of Karachi, Pakistan. PLoS ONE 2022, 17, e0267791. [Google Scholar] [CrossRef] [PubMed]
DDI Prediction | Cmax (ng/mL) | AUCτ (ng × h/mL) | Fold Change Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pred. (n = 100) | Obs. (n = 20) | Ratio Pred./Obs. | Pred. (n = 100) | Obs. (n = 20) | Ratio Pred./Obs. | DDI Cmax R | DDI AUCR | |||||
Pred. | Obs. | Pred./Obs. | Pred. | Obs. | Pred./Obs. | |||||||
Tegoprazan alone | 1283.5 | 1018.4 | 1.26 | 5326.5 | 5955.9 | 0.89 | ||||||
Tegoprazan coadministration | 1849.2 | 2285.6 | 0.81 | 12,652.0 | 16,045.0 | 0.79 | 1.46 | 2.24 | 0.65 | 2.45 | 2.69 | 0.91 |
Parameters | Tegoprazan 100 mg + Amoxicillin 1000 mg/Clarithromycin 500 mg Twice Daily for 7 Days | Tegoprazan 50 mg + Amoxicillin 1000 mg/Clarithromycin 500 mg Twice Daily for 7 Days | ||
---|---|---|---|---|
Observed [11] (n = 11) | Predicted (n = 100) | Observed [11] (n = 11) | Predicted (n = 100) | |
Median pH (min–max) | Day 1: 7.56 (7.31–8.45) Day 7: 7.39 (6.48–8.67) | Day 1: 7.82 (1.50–8.30) Day 7: 7.48 (6.25–8.40) | Day 1: 7.22 (6.48–8.33) Day 7: 6.91 (6.30–7.53) | Day 1: 7.49 (1.50–8.20) Day 7: 7.12 (4.77–8.25) |
pH > 4 over 24 h (%) | Day 1: 97.38 Day 7:100.00 | Day 1: 97.33 Day 7: 100.00 | Day 1: 96.45 Day 7: 99.25 | Day 1: 96.63 Day 7: 100.00 |
pH > 6 over 24 h (%) | Day 1: 96.97 Day 7: 99.42 | Day 1: 94.50 Day 7: 100.00 | Day 1: 90.11 Day 7: 88.13 | Day 1: 93.83 Day 7: 81.21 |
Parameters | Value | Source |
---|---|---|
Phys-chem properties | ||
Molecular weight (g/mol) | 748 | Simcyp compound library |
LogP | 1.7 | Simcyp compound library |
Compound type | Monoprotic base | |
pKa | 8.99 | Simcyp compound library |
B/P | 1 | Simcyp compound library |
fu | 0.18 | Simcyp compound library |
Absorption | ||
Absorption model | ADAM | |
fuGut | 1 | Simcyp compound library |
Peff, man (×10−4 cm/s) | 3.3 | Parameter estimation |
Solubility type | Solubility–pH profile | Predicted by ChemAxon® |
Solubility (mg/mL) | 453.66 (pH 6.8) | |
287.08 (pH 7.0) | ||
92.78 (pH 7.5) | ||
5.68 (pH 9.0) | ||
2.96 (pH 11.0) | ||
28.2 (pH 13.0) | ||
295.67 (pH 13.5) | ||
Distribution | ||
Distribution model | Minimal PBPK | |
Vss (L/kg) | 1.75 | Simcyp compound library |
Elimination | ||
Clearance type | Enzyme kinetics | |
Vmax, CYP3A4 (pmol/min/pmol of isoform) | 15.5 | Parameter estimation |
Km, CYP3A4 (μM) | 22.3 | Simcyp compound library |
CLR (L/h) | 8.05 | Simcyp compound library |
Interaction | ||
Ki, CYP3A4 (μM) | 10 | Simcyp compound library |
fumic, CYP3A4 | 0.87 | |
Kapp (μM) | 12 | |
kinact (1/h) | 2.13 | |
Ki, ABCB1 (P-gp) (μM) | 4.0 | |
Ki, SLCO1B1 (μM) | 0.35 | |
Ki, SLCO1B3 (μM) | 0.7 |
Parameters | Value | Source |
---|---|---|
Phys-chem properties | ||
Molecular weight (g/mol) | 365.4 | PubChem |
LogP | 0.9 | PubChem |
Compound type | Ampholyte | |
pKa1 | 3.2 | PubChem |
pKa2 | 11.7 | PubChem |
B/P | 0.55 | Parameter estimation |
fu | 0.83 | Drug bank |
Absorption | ||
Absorption model | First order | |
Fa | 0.9 | Zarowny et al. [23] |
Ka | 1.08 | Zarowny et al. [23] |
Distribution | ||
Distribution model | Full PBPK | |
Vss (L/kg) | 0.31 | Adjusted by Kp scalar |
Kp Scalar | 0.71 | Parameter estimation |
Prediction model | Method 2 (Rodgers and Rowland model) | |
Elimination | ||
Clearance type | WOMC | |
Hepatic CLint (μL/min/106) | 0.3 | Parameter estimation |
CLR (L/h) | 14.5 | Parameter estimation |
Additional systemic CL (L/h) | 7.5 | Parameter estimation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Jeong, H.-C.; Kim, M.-G.; Shin, K.-H. Prediction of the Drug–Drug Interaction Potential between Tegoprazan and Amoxicillin/Clarithromycin Using the Physiologically Based Pharmacokinetic and Pharmacodynamic Model. Pharmaceuticals 2023, 16, 360. https://doi.org/10.3390/ph16030360
Wei Z, Jeong H-C, Kim M-G, Shin K-H. Prediction of the Drug–Drug Interaction Potential between Tegoprazan and Amoxicillin/Clarithromycin Using the Physiologically Based Pharmacokinetic and Pharmacodynamic Model. Pharmaceuticals. 2023; 16(3):360. https://doi.org/10.3390/ph16030360
Chicago/Turabian StyleWei, Zhuodu, Hyeon-Cheol Jeong, Min-Gul Kim, and Kwang-Hee Shin. 2023. "Prediction of the Drug–Drug Interaction Potential between Tegoprazan and Amoxicillin/Clarithromycin Using the Physiologically Based Pharmacokinetic and Pharmacodynamic Model" Pharmaceuticals 16, no. 3: 360. https://doi.org/10.3390/ph16030360
APA StyleWei, Z., Jeong, H. -C., Kim, M. -G., & Shin, K. -H. (2023). Prediction of the Drug–Drug Interaction Potential between Tegoprazan and Amoxicillin/Clarithromycin Using the Physiologically Based Pharmacokinetic and Pharmacodynamic Model. Pharmaceuticals, 16(3), 360. https://doi.org/10.3390/ph16030360