A Review of Fatty Acid Biosynthesis Enzyme Inhibitors as Promising Antimicrobial Drugs
Abstract
:1. Introduction
2. FAS-II Enzymes and Their Corresponding Inhibitors
2.1. Malonyl-CoA: ACP Transacylase
2.2. Condensing Enzymes
2.2.1. Description of FabB, FabF and FabH
2.2.2. FabB, FabF and FabH Inhibitors
Benzoic Acids
Five-Membered Heterocycles
Fused Cycles
Others
2.3. β-Ketoacyl-ACP Reductase
2.3.1. Description of FabG
2.3.2. FabG Inhibitors
2.4. ACP Dehydratases
2.4.1. Description of FabA and FabZ
2.4.2. FabZ Inhibitors
2.5. Enoyl-ACP Reductases
2.5.1. Description of FabI, FabK, FabL and FabV
2.5.2. FabI, FabK and FabL Inhibitors
Triclosan and Coumarin Derivatives
Pyridine, Pyridone and Pyrone Derivatives
Imidazole Derivatives
From Tetrahydro-1,4-benzodiazepine Derivatives to Afabicin
Natural Compounds
2.6. Inhibitors That Target Several FAS-II Enzymes
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACP | acyl carrier protein |
ATB | antibacterial |
ATM | antimicrobial |
CoA | coenzyme A |
ED | electron-donating |
ENR | enoyl-ACP reductase |
EW | electron-withdrawing |
FAS | fatty acid synthase |
IC50 | half inhibitory concentration |
INH | isoniazid |
KAS | ketoacyl-ACP synthase |
MIC | minimal inhibitory concentration |
NAC | 2-decenoyl-N-acetylcysteamine |
NADH | nicotinamide adenine dinucleotide |
NADPH | nicotinamide adenine dinucleotide phosphate |
PDB | Protein Data Bank |
SAR | structure–activity relationship |
SDR | short-chain dehydrogenase/reductase |
TLM | thiolactomycin |
WT | wild-type |
References
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 27 February 2023).
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; Wool, E.E.; Han, C.; Hayoon, A.G.; et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Wellcome Trust and UK Government: London, UK, Review on Antimicrobial Resistance; 2016. [Google Scholar]
- World Health Organization. World Malaria Report 2022; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Vaughan, A.M.; O’Neill, M.T.; Tarun, A.S.; Camargo, N.; Phuong, T.M.; Aly, A.S.I.; Cowman, A.F.; Kappe, S.H.I. Type II Fatty Acid Synthesis Is Essential Only for Malaria Parasite Late Liver Stage Development. Cell. Microbiol. 2009, 11, 506–520. [Google Scholar] [CrossRef] [PubMed]
- Quemard, A.; Sacchettini, J.C.; Dessen, A.; Vilcheze, C.; Bittman, R.; Jacobs, W.R.; Blanchard, J.S. Enzymatic Characterization of the Target for Isoniazid in Mycobacterium tuberculosis. Biochemistry 1995, 34, 8235–8241. [Google Scholar] [CrossRef]
- McMurry, L.M.; Oethinger, M.; Levy, S.B. Triclosan Targets Lipid Synthesis. Nature 1998, 394, 531–532. [Google Scholar] [CrossRef]
- Pugh, E.L.; Wakil, S.J. Studies on the Mechanism of Fatty Acid Synthesis: XIV. The prosthetic group of acyl carrier protein and the mode of its attachment to the protein. J. Biol. Chem. 1965, 240, 4727–4733. [Google Scholar] [CrossRef]
- Prescott, D.J.; Vagelos, P.R. Acyl Carrier Protein: XIV. FURTHER STUDIES ON β-KETOACYL ACYL CARRIER PROTEIN SYNTHETASE FROM ESCHERICHIA COLI. J. Biol. Chem. 1970, 245, 5484–5490. [Google Scholar] [CrossRef]
- Joshi, V.C.; Wakil, S.J. Studies on the Mechanism of Fatty Acid Synthesis: XXVI. Purification and Properties of Malonyl-Coenzyme A—Acyl Carrier Protein Transacylase of Escherichia coli. Arch. Biochem. Biophys. 1971, 143, 493–505. [Google Scholar] [CrossRef]
- Tsay, J.T.; Oh, W.; Larson, T.J.; Jackowski, S.; Rock, C.O. Isolation and Characterization of the Beta-Ketoacyl-Acyl Carrier Protein Synthase III Gene (FabH) from Escherichia coli K-12. J. Biol. Chem. 1992, 267, 6807–6814. [Google Scholar] [CrossRef]
- Jackson, M. The Mycobacterial Cell Envelope-Lipids. Cold Spring Harb. Perspect. Med. 2014, 4, a021105. [Google Scholar] [CrossRef]
- Rawlings, M.; Cronan, J.E. The Gene Encoding Escherichia coli Acyl Carrier Protein Lies within a Cluster of Fatty Acid Biosynthetic Genes. J. Biol. Chem. 1992, 267, 5751–5754. [Google Scholar] [CrossRef] [PubMed]
- Cronan, J.E.; Li, W.B.; Coleman, R.; Narasimhan, M.; de Mendoza, D.; Schwab, J.M. Derived Amino Acid Sequence and Identification of Active Site Residues of Escherichia coli Beta-Hydroxydecanoyl Thioester Dehydrase. J. Biol. Chem. 1988, 263, 4641–4646. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Kelly, T.M.; Eveland, S.S.; Raetz, C.R.; Anderson, M.S. An Escherichia coli Gene (FabZ) Encoding (3R)-Hydroxymyristoyl Acyl Carrier Protein Dehydrase. Relation to FabA and Suppression of Mutations in Lipid A Biosynthesis. J. Biol. Chem. 1994, 269, 32896–32903. [Google Scholar] [CrossRef] [PubMed]
- Neckles, C.; Pschibul, A.; Lai, C.-T.; Hirschbeck, M.; Kuper, J.; Davoodi, S.; Zou, J.; Liu, N.; Pan, P.; Shah, S.; et al. Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase. Biochemistry 2016, 55, 2992–3006. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.J.; Su, N.; Murphy, C.K.; Rock, C.O. The Enoyl-[Acyl-Carrier-Protein] Reductases FabI and FabL from Bacillus subtilis *. J. Biol. Chem. 2000, 275, 40128–40133. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.J.; Rock, C.O. Enoyl-Acyl Carrier Protein Reductase (FabI) Plays a Determinant Role in Completing Cycles of Fatty Acid Elongation in Escherichia coli (*). J. Biol. Chem. 1995, 270, 26538–26542. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, S.; Siggaard-Andersen, M.; von Wettstein-Knowles, P. β-Ketoacyl-ACP Synthase I of Escherichia coli: Nucleotide Sequence of ThefabB Gene and Identification of the Cerulenin Binding Residue. Carlsberg Res. Commun. 1988, 53, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Soisson, S.M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y.S.; Cummings, R.; et al. Platensimycin Is a Selective FabF Inhibitor with Potent Antibiotic Properties. Nature 2006, 441, 358–361. [Google Scholar] [CrossRef]
- Ruch, F.E.; Vagelos, P.R. The Isolation and General Properties of Escherichia coli Malonyl Coenzyme A-Acyl Carrier Protein Transacylase. J. Biol. Chem. 1973, 248, 8086–8094. [Google Scholar] [CrossRef]
- Gerusz, V. Recent Advances in the Inhibition of Bacterial Fatty Acid Biosynthesis. In Annual Reports in Medicinal Chemistry; Macor, J.E., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 45, pp. 295–311. [Google Scholar]
- Kong, Y.; Zhang, L.; Yang, Z.; Han, C.; Hu, L.; Jiang, H.; Shen, X. Natural Product Juglone Targets Three Key Enzymes from Helicobacter pylori: Inhibition Assay with Crystal Structure Characterization. Acta Pharmacol. Sin. 2008, 29, 870–876. [Google Scholar] [CrossRef]
- Beld, J.; Lee, D.J.; Burkart, M.D. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering. Mol. Biosyst. 2015, 11, 38–59. [Google Scholar] [CrossRef] [PubMed]
- Serre, L.; Verbree, E.C.; Dauter, Z.; Stuitje, A.R.; Derewenda, Z.S. The Escherichia coli Malonyl-CoA:Acyl Carrier Protein Transacylase at 1.5-Å Resolution.: Crystal structure of a fatty acid synthase component*. J. Biol. Chem. 1995, 270, 12961–12964. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.C.; Park, J.; Balasubramanian, P.K.; Kim, Y. Elucidation of the Crystal Structure of FabD from the Multidrug-Resistant Bacterium Acinetobacter baumannii. Biochem. Biophys. Res. Commun. 2018, 505, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Baugh, L.; Gallagher, L.A.; Patrapuvich, R.; Clifton, M.C.; Gardberg, A.S.; Edwards, T.E.; Armour, B.; Begley, D.W.; Dieterich, S.H.; Dranow, D.M.; et al. Combining Functional and Structural Genomics to Sample the Essential Burkholderia Structome. PLoS ONE 2013, 8, e53851. [Google Scholar] [CrossRef]
- Ghadbane, H.; Brown, A.K.; Kremer, L.; Besra, G.S.; Fütterer, K. Structure of Mycobacterium tuberculosis MtFabD, a Malonyl-CoA:Acyl Carrier Protein Transacylase (MCAT). Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 2007, 63, 831–835. [Google Scholar] [CrossRef]
- Misson, L.E.; Mindrebo, J.T.; Davis, T.D.; Patel, A.; McCammon, J.A.; Noel, J.P.; Burkart, M.D. Interfacial Plasticity Facilitates High Reaction Rate of E. coli FAS Malonyl-CoA:ACP Transacylase, FabD. Proc. Natl. Acad. Sci. USA 2020, 117, 24224–24233. [Google Scholar] [CrossRef]
- Oefner, C.; Schulz, H.; D’Arcy, A.; Dale, G.E. Mapping the Active Site of Escherichia coli Malonyl-CoA-Acyl Carrier Protein Transacylase (FabD) by Protein Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 613–618. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; White, S.W.; Rock, C.O. Inhibiting Bacterial Fatty Acid Synthesis. J. Biol. Chem. 2006, 281, 17541–17544. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Pratap, S.; Kumar, P. Biochemical and Biophysical Characterization of 1,4-Naphthoquinone as a Dual Inhibitor of Two Key Enzymes of Type II Fatty Acid Biosynthesis from Moraxella catarrhalis. Biochim. Biophys. Acta BBA Proteins Proteom. 2018, 1866, 1131–1142. [Google Scholar] [CrossRef]
- Campbell, J.W.; Cronan, J.E. Bacterial Fatty Acid Biosynthesis: Targets for Antibacterial Drug Discovery. Annu. Rev. Microbiol. 2001, 55, 305–332. [Google Scholar] [CrossRef] [PubMed]
- Khandekar, S.S.; Gentry, D.R.; Van Aller, G.S.; Warren, P.; Xiang, H.; Silverman, C.; Doyle, M.L.; Chambers, P.A.; Konstantinidis, A.K.; Brandt, M.; et al. Identification, Substrate Specificity, and Inhibition of The Streptococcus pneumoniae β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH)*. J. Biol. Chem. 2001, 276, 30024–30030. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-Y.; Cronan, J.E. β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) Is Essential for Bacterial Fatty Acid Synthesis. J. Biol. Chem. 2003, 278, 51494–51503. [Google Scholar] [CrossRef] [PubMed]
- Clough, R.C.; Matthis, A.L.; Barnum, S.R.; Jaworski, J.G. Purification and Characterization of 3-Ketoacyl-Acyl Carrier Protein Synthase III from Spinach. A Condensing Enzyme Utilizing Acetyl-Coenzyme A to Initiate Fatty Acid Synthesis. J. Biol. Chem. 1992, 267, 20992–20998. [Google Scholar] [CrossRef]
- Pinto, V.; Araújo, J.S.C.; Silva, R.C.; da Costa, G.V.; Cruz, J.N.; Neto, M.F.; Campos, J.M.; Santos, C.B.R.; Leite, F.H.A.; Junior, M.C.S. In Silico Study to Identify New Antituberculosis Molecules from Natural Sources by Hierarchical Virtual Screening and Molecular Dynamics Simulations. Pharmaceuticals 2019, 12, 36. [Google Scholar] [CrossRef]
- Sridharan, S.; Wang, L.; Brown, A.K.; Dover, L.G.; Kremer, L.; Besra, G.S.; Sacchettini, J.C. X-Ray Crystal Structure of Mycobacterium tuberculosis β-Ketoacyl Acyl Carrier Protein Synthase II (MtKasB). J. Mol. Biol. 2007, 366, 469–480. [Google Scholar] [CrossRef]
- Price, A.C.; Choi, K.-H.; Heath, R.J.; Li, Z.; White, S.W.; Rock, C.O. Inhibition of β-Ketoacyl-Acyl Carrier Protein Synthases by Thiolactomycin and Cerulenin: STRUCTURE AND MECHANISM*. J. Biol. Chem. 2001, 276, 6551–6559. [Google Scholar] [CrossRef]
- Daines, R.A.; Pendrak, I.; Sham, K.; Van Aller, G.S.; Konstantinidis, A.K.; Lonsdale, J.T.; Janson, C.A.; Qiu, X.; Brandt, M.; Khandekar, S.S.; et al. First X-Ray Cocrystal Structure of a Bacterial FabH Condensing Enzyme and a Small Molecule Inhibitor Achieved Using Rational Design and Homology Modeling. J. Med. Chem. 2003, 46, 5–8. [Google Scholar] [CrossRef]
- Li, H.-Q.; Shi, L.; Li, Q.-S.; Liu, P.-G.; Luo, Y.; Zhao, J.; Zhu, H.-L. Synthesis of C(7) Modified Chrysin Derivatives Designing to Inhibit β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) as Antibiotics. Bioorg. Med. Chem. 2009, 17, 6264–6269. [Google Scholar] [CrossRef]
- Li, H.-Q.; Luo, Y.; Zhu, H.-L. Discovery of Vinylogous Carbamates as a Novel Class of β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) Inhibitors. Bioorg. Med. Chem. 2011, 19, 4454–4459. [Google Scholar] [CrossRef]
- White, S.W.; Zheng, J.; Zhang, Y.-M.; Rock, C.O. The Structural Biology of Type II Fatty Acid Biosynthesis. Annu. Rev. Biochem. 2005, 74, 791–831. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Heath, R.J.; White, S.W.; Rock, C.O. The 1.8 Å Crystal Structure and Active-Site Architecture of β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) from Escherichia coli. Structure 2000, 8, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, S. Recent Advances in Inhibitors of Bacterial Fatty Acid Synthesis Type II (FASII) System Enzymes as Potential Antibacterial Agents. ChemMedChem 2013, 8, 1589–1608. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.J.; Rock, C.O. Fatty Acid Biosynthesis as a Target for Novel Antibacterials. Curr. Opin. Investig. Drugs 2004, 5, 146–153. [Google Scholar] [PubMed]
- Olsen, J.G.; Kadziola, A.; von Wettstein-Knowles, P.; Siggaard-Andersen, M.; Larsen, S. Structures of Beta-Ketoacyl-Acyl Carrier Protein Synthase I Complexed with Fatty Acids Elucidate Its Catalytic Machinery. Structure 2001, 9, 233–243. [Google Scholar] [CrossRef]
- Heath, R.J.; White, S.W.; Rock, C.O. Lipid Biosynthesis as a Target for Antibacterial Agents. Prog. Lipid Res. 2001, 40, 467–497. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Liang, H.; Gao, H. Roles of Multiple KASIII Homologues of Shewanella oneidensis in Initiation of Fatty Acid Synthesis and in Cerulenin Resistance. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2018, 1863, 1153–1163. [Google Scholar] [CrossRef]
- Lomakin, I.B.; Xiong, Y.; Steitz, T.A. The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together. Cell 2007, 129, 319–332. [Google Scholar] [CrossRef]
- Olsen, J.G.; Kadziola, A.; von Wettstein-Knowles, P.; Siggaard-Andersen, M.; Lindquist, Y.; Larsen, S. The X-Ray Crystal Structure of β-Ketoacyl [Acyl Carrier Protein] Synthase I. FEBS Lett. 1999, 460, 46–52. [Google Scholar] [CrossRef]
- Von Wettstein-Knowles, P.; Olsen, J.G.; McGuire, K.A.; Henriksen, A. Fatty Acid Synthesis. Role of Active Site Histidines and Lysine in Cys-His-His-Type Beta-Ketoacyl-Acyl Carrier Protein Synthases. FEBS J. 2006, 273, 695–710. [Google Scholar] [CrossRef]
- Milligan, J.C.; Lee, D.J.; Jackson, D.R.; Schaub, A.J.; Beld, J.; Barajas, J.F.; Hale, J.J.; Luo, R.; Burkart, M.D.; Tsai, S.-C. Molecular Basis for Interactions between an Acyl Carrier Protein and a Ketosynthase. Nat. Chem. Biol. 2019, 15, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Mindrebo, J.T.; Chen, A.; Kim, W.E.; Re, R.N.; Davis, T.D.; Noel, J.P.; Burkart, M.D. Structure and Mechanistic Analyses of the Gating Mechanism of Elongating Ketosynthases. ACS Catal. 2021, 11, 6787–6799. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Jia, J.; Edwards, P.; Dehesh, K.; Schneider, G.; Lindqvist, Y. Crystal Structure of Beta-Ketoacyl-Acyl Carrier Protein Synthase II from E. coli Reveals the Molecular Architecture of Condensing Enzymes. EMBO J. 1998, 17, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Mindrebo, J.T.; Patel, A.; Kim, W.E.; Davis, T.D.; Chen, A.; Bartholow, T.G.; La Clair, J.J.; McCammon, J.A.; Noel, J.P.; Burkart, M.D. Gating Mechanism of Elongating β-Ketoacyl-ACP Synthases. Nat. Commun. 2020, 11, 1727. [Google Scholar] [CrossRef] [PubMed]
- Gajiwala, K.S.; Margosiak, S.; Lu, J.; Cortez, J.; Su, Y.; Nie, Z.; Appelt, K. Crystal Structures of Bacterial FabH Suggest a Molecular Basis for the Substrate Specificity of the Enzyme. FEBS Lett. 2009, 583, 2939–2946. [Google Scholar] [CrossRef] [PubMed]
- Alhamadsheh, M.M.; Musayev, F.; Komissarov, A.A.; Sachdeva, S.; Wright, H.T.; Scarsdale, N.; Florova, G.; Reynolds, K.A. Alkyl-CoA Disulfides as Inhibitors and Mechanistic Probes for FabH Enzymes. Chem. Biol. 2007, 14, 513–524. [Google Scholar] [CrossRef]
- Qiu, X.; Janson, C.A.; Smith, W.W.; Head, M.; Lonsdale, J.; Konstantinidis, A.K. Refined Structures of Beta-Ketoacyl-Acyl Carrier Protein Synthase III. J. Mol. Biol. 2001, 307, 341–356. [Google Scholar] [CrossRef]
- Qiu, X.; Janson, C.A.; Konstantinidis, A.K.; Nwagwu, S.; Silverman, C.; Smith, W.W.; Khandekar, S.; Lonsdale, J.; Abdel-Meguid, S.S. Crystal Structure of β-Ketoacyl-Acyl Carrier Protein Synthase III: A Key Condensing Enzyme in Bacterial Fatty Acid Biosynthesis*. J. Biol. Chem. 1999, 274, 36465–36471. [Google Scholar] [CrossRef]
- Alhamadsheh, M.M.; Waters, N.C.; Sachdeva, S.; Lee, P.; Reynolds, K.A. Synthesis and Biological Evaluation of Novel Sulfonyl-Naphthalene-1,4-Diols as FabH Inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 6402–6405. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Jeong, K.-W.; Shin, S.; Lee, J.-U.; Kim, Y. Discovery of Novel Selective Inhibitors of Staphylococcus aureus β-Ketoacyl Acyl Carrier Protein Synthase III. Eur. J. Med. Chem. 2012, 47, 261–269. [Google Scholar] [CrossRef]
- Alhamadsheh, M.M.; Waters, N.C.; Huddler, D.P.; Kreishman-Deitrick, M.; Florova, G.; Reynolds, K.A. Synthesis and Biological Evaluation of Thiazolidine-2-One 1,1-Dioxide as Inhibitors of Escherichia coli β-Ketoacyl-ACP-Synthase III (FabH). Bioorg. Med. Chem. Lett. 2007, 17, 879–883. [Google Scholar] [CrossRef]
- Wang, J.; Kodali, S.; Lee, S.H.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.; Hernandez, L.; Tinney, E.; et al. Discovery of Platencin, a Dual FabF and FabH Inhibitor with in Vivo Antibiotic Properties. Proc. Natl. Acad. Sci. USA 2007, 104, 7612–7616. [Google Scholar] [CrossRef] [PubMed]
- Allahverdiyev, A.M.; Bagirova, M.; Abamor, E.S.; Ates, S.C.; Koc, R.C.; Miraloglu, M.; Elcicek, S.; Yaman, S.; Unal, G. The Use of Platensimycin and Platencin to Fight Antibiotic Resistance. Infect. Drug Resist. 2013, 6, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; Ondeyka, J.G.; Herath, K.B.; Zhang, C.; Jayasuriya, H.; Zink, D.L.; Parthasarathy, G.; Becker, J.W.; Wang, J.; Soisson, S.M. Isolation, Enzyme-Bound Structure and Antibacterial Activity of Platencin A1 from Streptomyces platensis. Bioorg. Med. Chem. Lett. 2009, 19, 4756–4759. [Google Scholar] [CrossRef] [PubMed]
- Jayasuriya, H.; Herath, K.B.; Ondeyka, J.G.; Zink, D.L.; Burgess, B.; Wang, J.; Singh, S.B. Structure of Homoplatensimide A: A Potential Key Biosynthetic Intermediate of Platensimycin Isolated from Streptomyces platensis. Tetrahedron Lett. 2008, 49, 3648–3651. [Google Scholar] [CrossRef]
- Nie, Z.; Perretta, C.; Lu, J.; Su, Y.; Margosiak, S.; Gajiwala, K.S.; Cortez, J.; Nikulin, V.; Yager, K.M.; Appelt, K.; et al. Structure-Based Design, Synthesis, and Study of Potent Inhibitors of β-Ketoacyl-Acyl Carrier Protein Synthase III as Potential Antimicrobial Agents. J. Med. Chem. 2005, 48, 1596–1609. [Google Scholar] [CrossRef] [PubMed]
- Oishi, H.; Noto, T.; Sasaki, H.; Suzuki, K.; Hayashi, T.; Okazaki, H.; Ando, K.; Sawada, M. Thiolactomycin, a New Antibiotic I. Taxonomy of the Producing Organism, Fermentation and Biological Properties. J. Antibiot. 1982, 35, 391–395. [Google Scholar] [CrossRef]
- Hamada, S.; Fujiwara, T.; Shimauchi, H.; Ogawa, T.; Nishihara, T.; Koga, T.; Nehashi, T.; Matsuno, T. Antimicrobial Activities of Thiolactomycin against Gram-Negative Anaerobes Associated with Periodontal Disease. Oral Microbiol. Immunol. 1990, 5, 340–345. [Google Scholar] [CrossRef]
- Slayden, R.A.; Lee, R.E.; Armour, J.W.; Cooper, A.M.; Orme, I.M.; Brennan, P.J.; Besra, G.S. Antimycobacterial Action of Thiolactomycin: An Inhibitor of Fatty Acid and Mycolic Acid Synthesis. Antimicrob. Agents Chemother. 1996, 40, 2813–2819. [Google Scholar] [CrossRef]
- Hayashi, T.; Yamamoto, O.; Sasaki, H.; Okazaki, H.; Kawaguchi, A. Inhibition of fatty acid synthesis by the antibiotic thiolactomycin. J. Antibiot. 1984, 37, 1456–1461. [Google Scholar] [CrossRef]
- Zhang, H.-J.; Li, Z.-L.; Zhu, H.-L. Advances in the Research of β-Ketoacyl-ACP Synthase III (FabH) Inhibitors. Curr. Med. Chem. 2012, 19, 1225–1237. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Reeve, A.M.; Desai, U.R.; Kellogg, G.E.; Reynolds, K.A. 1,2-Dithiole-3-Ones as Potent Inhibitors of the Bacterial 3-Ketoacyl Acyl Carrier Protein Synthase III (FabH). Antimicrob. Agents Chemother. 2004, 48, 3093–3102. [Google Scholar] [CrossRef]
- Senior, S.J.; Illarionov, P.A.; Gurcha, S.S.; Campbell, I.B.; Schaeffer, M.L.; Minnikin, D.E.; Besra, G.S. Acetylene-Based Analogues of Thiolactomycin, Active against Mycobacterium tuberculosis MtFabH Fatty Acid Condensing Enzyme. Bioorg. Med. Chem. Lett. 2004, 14, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Al-Balas, Q.; Anthony, N.G.; Al-Jaidi, B.; Alnimr, A.; Abbott, G.; Brown, A.K.; Taylor, R.C.; Besra, G.S.; McHugh, T.D.; Gillespie, S.H.; et al. Identification of 2-Aminothiazole-4-Carboxylate Derivatives Active against Mycobacterium tuberculosis H37Rv and the β-Ketoacyl-ACP Synthase MtFabH. PLoS ONE 2009, 4, e5617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-J.; Zhu, D.-D.; Li, Z.-L.; Sun, J.; Zhu, H.-L. Synthesis, Molecular Modeling and Biological Evaluation of β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) as Novel Antibacterial Agents. Bioorg. Med. Chem. 2011, 19, 4513–4519. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, Y.; Hu, Y.; Zhu, D.-D.; Zhang, S.; Liu, Z.-J.; Gong, H.-B.; Zhu, H.-L. Design, Synthesis and Antimicrobial Activities of Nitroimidazole Derivatives Containing 1,3,4-Oxadiazole Scaffold as FabH Inhibitors. Bioorg. Med. Chem. 2012, 20, 4316–4322. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Li, D.-D.; Wang, R.-R.; Sun, J.; Dong, J.-J.; Du, Q.-R.; Fang, F.; Zhang, W.-M.; Zhu, H.-L. Design and Synthesis of Thiazole Derivatives as Potent FabH Inhibitors with Antibacterial Activity. Eur. J. Med. Chem. 2014, 75, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Ballell, L.; Bates, R.H.; Young, R.J.; Alvarez-Gomez, D.; Alvarez-Ruiz, E.; Barroso, V.; Blanco, D.; Crespo, B.; Escribano, J.; González, R.; et al. Fueling Open-Source Drug Discovery: 177 Small-Molecule Leads against Tuberculosis. ChemMedChem 2013, 8, 313–321. [Google Scholar] [CrossRef]
- Abrahams, K.A.; Chung, C.; Ghidelli-Disse, S.; Rullas, J.; Rebollo-López, M.J.; Gurcha, S.S.; Cox, J.A.G.; Mendoza, A.; Jiménez-Navarro, E.; Martínez-Martínez, M.S.; et al. Identification of KasA as the Cellular Target of an Anti-Tubercular Scaffold. Nat. Commun. 2016, 7, 12581–12593. [Google Scholar] [CrossRef]
- Cunningham, F.; Esquivias, J.; Fernández-Menéndez, R.; Pérez, A.; Guardia, A.; Escribano, J.; Rivero, C.; Vimal, M.; Cacho, M.; de Dios-Antón, P.; et al. Exploring the SAR of the β-Ketoacyl-ACP Synthase Inhibitor GSK3011724A and Optimization around a Genotoxic Metabolite. ACS Infect. Dis. 2020, 6, 1098–1109. [Google Scholar] [CrossRef]
- Kumar, P.; Capodagli, G.C.; Awasthi, D.; Shrestha, R.; Maharaja, K.; Sukheja, P.; Li, S.-G.; Inoyama, D.; Zimmerman, M.; Ho Liang, H.P.; et al. Synergistic Lethality of a Binary Inhibitor of Mycobacterium tuberculosis KasA. mBio 2018, 9, e02101-17. [Google Scholar] [CrossRef] [PubMed]
- McKinney, D.C.; Eyermann, C.J.; Gu, R.-F.; Hu, J.; Kazmirski, S.L.; Lahiri, S.D.; McKenzie, A.R.; Shapiro, A.B.; Breault, G. Antibacterial FabH Inhibitors with Mode of Action Validated in Haemophilus Influenzae by in Vitro Resistance Mutation Mapping. ACS Infect. Dis. 2016, 2, 456–464. [Google Scholar] [CrossRef]
- Cheng, K.; Zheng, Q.-Z.; Qian, Y.; Shi, L.; Zhao, J.; Zhu, H.-L. Synthesis, Antibacterial Activities and Molecular Docking Studies of Peptide and Schiff Bases as Targeted Antibiotics. Bioorg. Med. Chem. 2009, 17, 7861–7871. [Google Scholar] [CrossRef] [PubMed]
- Omura, S. The Antibiotic Cerulenin, a Novel Tool for Biochemistry as an Inhibitor of Fatty Acid Synthesis. Bacteriol. Rev. 1976, 40, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Ōmura, S. Cerulenin. In Methods in Enzymology; Lipids Part D.; Academic Press: Cambridge, MA, USA, 1981; Volume 72, pp. 520–532. [Google Scholar]
- Trajtenberg, F.; Altabe, S.; Larrieux, N.; Ficarra, F.; de Mendoza, D.; Buschiazzo, A.; Schujman, G.E. Structural Insights into Bacterial Resistance to Cerulenin. FEBS J. 2014, 281, 2324–2338. [Google Scholar] [CrossRef]
- Moche, M.; Schneider, G.; Edwards, P.; Dehesh, K.; Lindqvist, Y. Structure of the Complex between the Antibiotic Cerulenin and Its Target, β-Ketoacyl-Acyl Carrier Protein Synthase*. J. Biol. Chem. 1999, 274, 6031–6034. [Google Scholar] [CrossRef]
- He, X.; Reynolds, K.A. Purification, Characterization, and Identification of Novel Inhibitors of the β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) from Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 1310–1318. [Google Scholar] [CrossRef]
- Varakala, S.D.; Reshma, R.S.; Schnell, R.; Dharmarajan, S. Lead Derivatization of Ethyl 6-Bromo-2-((Dimethylamino)Methyl)-5-Hydroxy-1-Phenyl-1H-Indole-3-Carboxylate and 5-Bromo-2-(Thiophene-2-Carboxamido) Benzoic Acid as FabG Inhibitors Targeting ESKAPE Pathogens. Eur. J. Med. Chem. 2021, 228, 113976–113985. [Google Scholar] [CrossRef]
- Cukier, C.D.; Hope, A.G.; Elamin, A.A.; Moynie, L.; Schnell, R.; Schach, S.; Kneuper, H.; Singh, M.; Naismith, J.H.; Lindqvist, Y.; et al. Discovery of an Allosteric Inhibitor Binding Site in 3-oxo-Acyl-ACP Reductase from Pseudomonas aeruginosa. ACS Chem. Biol. 2013, 8, 2518–2527. [Google Scholar] [CrossRef]
- Toomey, R.E.; Wakil, S.J. Studies on the Mechanism of Fatty Acid Synthesis XV. Preparation and General Properties of β-Ketoacyl Acyl Carrier Protein Reductase from Escherichia coli. Biochim. Biophys. Acta BBA Lipids Lipid Metab. 1966, 116, 189–197. [Google Scholar] [CrossRef]
- Rock, C.O.; Jackowski, S. Forty Years of Bacterial Fatty Acid Synthesis. Biochem. Biophys. Res. Commun. 2002, 292, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cronan, J.E. Transcriptional Analysis of Essential Genes of the Escherichia coli Fatty Acid Biosynthesis Gene Cluster by Functional Replacement with the Analogous Salmonella Typhimurium Gene Cluster. J. Bacteriol. 1998, 180, 3295–3303. [Google Scholar] [CrossRef] [PubMed]
- Vella, P.; Rudraraju, R.S.; Lundbäck, T.; Axelsson, H.; Almqvist, H.; Vallin, M.; Schneider, G.; Schnell, R. A FabG Inhibitor Targeting an Allosteric Binding Site Inhibits Several Orthologs from Gram-Negative ESKAPE Pathogens. Bioorg. Med. Chem. 2021, 30, 115898–115909. [Google Scholar] [CrossRef] [PubMed]
- Price, A.C.; Zhang, Y.-M.; Rock, C.O.; White, S.W. Structure of β-Ketoacyl-[Acyl Carrier Protein] Reductase from Escherichia coli: Negative Cooperativity and Its Structural Basis. Biochemistry 2001, 40, 12772–12781. [Google Scholar] [CrossRef]
- Price, A.C.; Zhang, Y.-M.; Rock, C.O.; White, S.W. Cofactor-Induced Conformational Rearrangements Establish a Catalytically Competent Active Site and a Proton Relay Conduit in FabG. Structure 2004, 12, 417–428. [Google Scholar] [CrossRef]
- Dodge, G.J.; Patel, A.; Jaremko, K.L.; McCammon, J.A.; Smith, J.L.; Burkart, M.D. Structural and Dynamical Rationale for Fatty Acid Unsaturation in Escherichia coli. Proc. Natl. Acad. Sci. USA 2019, 116, 6775–6783. [Google Scholar] [CrossRef]
- He, L.; Zhang, L.; Liu, X.; Li, X.; Zheng, M.; Li, H.; Yu, K.; Chen, K.; Shen, X.; Jiang, H.; et al. Discovering Potent Inhibitors against the β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) of Helicobacter pylori: Structure-Based Design, Synthesis, Bioassay, and Crystal Structure Determination. J. Med. Chem. 2009, 52, 2465–2481. [Google Scholar] [CrossRef]
- McGillick, B.E.; Kumaran, D.; Vieni, C.; Swaminathan, S. β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Francisella tularensis and Yersinia pestis: Structure Determination, Enzymatic Characterization, and Cross-Inhibition Studies. Biochemistry 2016, 55, 1091–1099. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Pratap, S.; Kumar, P. Characterization of Isoflavonoids as Inhibitors of β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Moraxella catarrhalis: Kinetics, Spectroscopic, Thermodynamics and in Silico Studies. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 726–744. [Google Scholar] [CrossRef]
- Helmkamp, G.M.; Rando, R.R.; Brock, D.J.H.; Bloch, K. β-Hydroxydecanoyl Thioester Dehydrase: Specificity of Substrated and Acetylenic Inhibitors. J. Biol. Chem. 1968, 243, 3229–3231. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Hu, T.; Du, L.; Luo, C.; Chen, K.; Shen, X.; Jiang, H. Structural Basis for Catalytic and Inhibitory Mechanisms of β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ). J. Biol. Chem. 2008, 283, 5370–5379. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Biswas, R.; Bhattacharyya, S.; Basak, A.; Das, A.K. The C-Terminal End of Mycobacterial HadBC Regulates AcpM Interaction during the FAS-II Pathway: A Structural Perspective. FEBS J. 2022, 289, 4963–4980. [Google Scholar] [CrossRef]
- Leesong, M.; Henderson, B.S.; Gillig, J.R.; Schwab, J.M.; Smith, J.L. Structure of a Dehydratase–Isomerase from the Bacterial Pathway for Biosynthesis of Unsaturated Fatty Acids: Two Catalytic Activities in One Active Site. Structure 1996, 4, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Moynié, L.; Hope, A.G.; Finzel, K.; Schmidberger, J.; Leckie, S.M.; Schneider, G.; Burkart, M.D.; Smith, A.D.; Gray, D.W.; Naismith, J.H. A Substrate Mimic Allows High-Throughput Assay of the FabA Protein and Consequently the Identification of a Novel Inhibitor of Pseudomonas aeruginosa FabA. J. Mol. Biol. 2016, 428, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Kimber, M.S.; Martin, F.; Lu, Y.; Houston, S.; Vedadi, M.; Dharamsi, A.; Fiebig, K.M.; Schmid, M.; Rock, C.O. The Structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Pseudomonas aeruginosa. J. Biol. Chem. 2004, 279, 52593–52602. [Google Scholar] [CrossRef] [PubMed]
- Maity, K.; Venkata, B.S.; Kapoor, N.; Surolia, N.; Surolia, A.; Suguna, K. Structural Basis for the Functional and Inhibitory Mechanisms Ofb-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) of Plasmodium falciparum. J. Struct. Biol. 2011, 176, 238–249. [Google Scholar] [CrossRef]
- Nguyen, C.; Haushalter, R.W.; Lee, D.J.; Markwick, P.R.L.; Bruegger, J.; Caldara-Festin, G.; Finzel, K.; Jackson, D.R.; Ishikawa, F.; O’Dowd, B.; et al. Trapping the Dynamic Acyl Carrier Protein in Fatty Acid Biosynthesis. Nature 2014, 505, 427–431. [Google Scholar] [CrossRef]
- Sharma, S.K.; Kapoor, M.; Ramya, T.N.C.; Kumar, S.; Kumar, G.; Modak, R.; Sharma, S.; Surolia, N.; Surolia, A. Identification, Characterization, and Inhibition of Plasmodium falciparum β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ). J. Biol. Chem. 2003, 278, 45661–45671. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, A.K.; Chi, Y.M.; Jeong, S.W. Crystal Structures of Pseudomonas aeruginosa Enoyl-ACP Reductase (FabI) in the Presence and Absence of NAD+ and Triclosan. Bull. Korean Chem. Soc. 2015, 36, 322–326. [Google Scholar] [CrossRef]
- Kaplan, N.; Albert, M.; Awrey, D.; Bardouniotis, E.; Berman, J.; Clarke, T.; Dorsey, M.; Hafkin, B.; Ramnauth, J.; Romanov, V.; et al. Mode of Action, In Vitro Activity, and In Vivo Efficacy of AFN-1252, a Selective Antistaphylococcal FabI Inhibitor. Antimicrob. Agents Chemother. 2012, 56, 5865–5874. [Google Scholar] [CrossRef]
- Hafkin, B.; Kaplan, N.; Murphy, B. Efficacy and Safety of AFN-1252, the First Staphylococcus-Specific Antibacterial Agent, in the Treatment of Acute Bacterial Skin and Skin Structure Infections, Including Those in Patients with Significant Comorbidities. Antimicrob. Agents Chemother. 2016, 60, 1695–1701. [Google Scholar] [CrossRef] [PubMed]
- Seefeld, M.A.; Miller, W.H.; Newlander, K.A.; Burgess, W.J.; DeWolf, W.E.; Elkins, P.A.; Head, M.S.; Jakas, D.R.; Janson, C.A.; Keller, P.M.; et al. Indole Naphthyridinones as Inhibitors of Bacterial Enoyl-ACP Reductases FabI and FabK. J. Med. Chem. 2003, 46, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Inbaraj, J.J.; Chignell, C.F. Cytotoxic Action of Juglone and Plumbagin: A Mechanistic Study Using HaCaT Keratinocytes. Chem. Res. Toxicol. 2004, 17, 55–62. [Google Scholar] [CrossRef]
- Rafi, S.; Novichenok, P.; Kolappan, S.; Stratton, C.F.; Rawat, R.; Kisker, C.; Simmerling, C.; Tonge, P.J. Structure of Acyl Carrier Protein Bound to FabI, the FASII Enoyl Reductase from Escherichia coli. J. Biol. Chem. 2006, 281, 39285–39293. [Google Scholar] [CrossRef]
- Kim, H.T.; Kim, S.; Na, B.K.; Chung, J.; Hwang, E.; Hwang, K.Y. Structural Insights into the Dimer-Tetramer Transition of FabI from Bacillus Anthracis. Biochem. Biophys. Res. Commun. 2017, 493, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Saito, J.; Yamada, M.; Watanabe, T.; Iida, M.; Kitagawa, H.; Takahata, S.; Ozawa, T.; Takeuchi, Y.; Ohsawa, F. Crystal Structure of Enoyl–Acyl Carrier Protein Reductase (FabK) from Streptococcus pneumoniae Reveals the Binding Mode of an Inhibitor. Protein Sci. 2008, 17, 691–699. [Google Scholar] [CrossRef]
- Kim, K.-H.; Ha, B.H.; Kim, S.J.; Hong, S.K.; Hwang, K.Y.; Kim, E.E. Crystal Structures of Enoyl-ACP Reductases I (FabI) and III (FabL) from B. Subtilis. J. Mol. Biol. 2011, 406, 403–415. [Google Scholar] [CrossRef]
- Hirschbeck, M.W.; Kuper, J.; Lu, H.; Liu, N.; Neckles, C.; Shah, S.; Wagner, S.; Sotriffer, C.A.; Tonge, P.J.; Kisker, C. Structure of the Yersinia pestis FabV Enoyl-ACP Reductase and Its Interaction with Two 2-Pyridone Inhibitors. Structure 2012, 20, 89–100. [Google Scholar] [CrossRef]
- Rafferty, J.B.; Simon, J.W.; Baldock, C.; Artymiuk, P.J.; Baker, P.J.; Stuitje, A.R.; Slabas, A.R.; Rice, D.W. Common Themes in Redox Chemistry Emerge from the X-Ray Structure of Oilseed Rape (Brassica napus) Enoyl Acyl Carrier Protein Reductase. Structure 1995, 3, 927–938. [Google Scholar] [CrossRef]
- Baldock, C.; Rafferty, J.B.; Sedelnikova, S.E.; Baker, P.J.; Stuitje, A.R.; Slabas, A.R.; Hawkes, T.R.; Rice, D.W. A Mechanism of Drug Action Revealed by Structural Studies of Enoyl Reductase. Science 1996, 274, 2107–2110. [Google Scholar] [CrossRef]
- Rozwarski, D.A.; Grant, G.A.; Barton, D.H.R.; Jacobs, W.R.; Sacchettini, J.C. Modification of the NADH of the Isoniazid Target (InhA) from Mycobacterium tuberculosis. Science 1998, 279, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Payne, D.J.; Miller, W.H.; Berry, V.; Brosky, J.; Burgess, W.J.; Chen, E.; DeWolf, W.E.; Fosberry, A.P.; Greenwood, R.; Head, M.S.; et al. Discovery of a Novel and Potent Class of FabI-Directed Antibacterial Agents. Antimicrob. Agents Chemother. 2002, 46, 3118–3124. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.H.; Seefeld, M.A.; Newlander, K.A.; Uzinskas, I.N.; Burgess, W.J.; Heerding, D.A.; Yuan, C.C.K.; Head, M.S.; Payne, D.J.; Rittenhouse, S.F.; et al. Discovery of Aminopyridine-Based Inhibitors of Bacterial Enoyl-ACP Reductase (FabI). J. Med. Chem. 2002, 45, 3246–3256. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, H.N.; Leonard, P.A. Triclosan: Applications and Safety. Am. J. Infect. Control 1996, 24, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.J.; Yu, Y.-T.; Shapiro, M.A.; Olson, E.; Rock, C.O. Broad Spectrum Antimicrobial Biocides Target the FabI Component of Fatty Acid Synthesis*. J. Biol. Chem. 1998, 273, 30316–30320. [Google Scholar] [CrossRef]
- Regös, J.; Zak, O.; Solf, R.; Vischer, W.A.; Weirich, E.G. Antimicrobial Spectrum of Triclosan, a Broad-Spectrum Antimicrobial Agent for Topical Application. Dermatology 1979, 158, 72–79. [Google Scholar] [CrossRef]
- Belluti, F.; Perozzo, R.; Lauciello, L.; Colizzi, F.; Kostrewa, D.; Bisi, A.; Gobbi, S.; Rampa, A.; Bolognesi, M.L.; Recanatini, M.; et al. Design, Synthesis, and Biological and Crystallographic Evaluation of Novel Inhibitors of Plasmodium Falciparum Enoyl-ACP-Reductase (PfFabI). J. Med. Chem. 2013, 56, 7516–7526. [Google Scholar] [CrossRef]
- Ward, W.H.J.; Holdgate, G.A.; Rowsell, S.; McLean, E.G.; Pauptit, R.A.; Clayton, E.; Nichols, W.W.; Colls, J.G.; Minshull, C.A.; Jude, D.A.; et al. Kinetic and Structural Characteristics of the Inhibition of Enoyl (Acyl Carrier Protein) Reductase by Triclosan. Biochemistry 1999, 38, 12514–12525. [Google Scholar] [CrossRef]
- Lu, H.; Tonge, P.J. Inhibitors of FabI, an Enzyme Drug Target in the Bacterial Fatty Acid Biosynthesis Pathway. Acc. Chem. Res. 2008, 41, 11–20. [Google Scholar] [CrossRef]
- Roujeinikova, A.; Levy, C.W.; Rowsell, S.; Sedelnikova, S.; Baker, P.J.; Minshull, C.A.; Mistry, A.; Colls, J.G.; Camble, R.; Stuitje, A.R.; et al. Crystallographic Analysis of Triclosan Bound to Enoyl Reductase11Edited by K. Nagcei. J. Mol. Biol. 1999, 294, 527–535. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. FDA Issues Final Rule on Safety and Effectiveness of Antibacterial Soaps. Available online: https://www.fda.gov/news-events/press-announcements/fda-issues-final-rule-safety-and-effectiveness-antibacterial-soaps (accessed on 17 January 2023).
- Weatherly, L.M.; Gosse, J.A. Triclosan Exposure, Transformation, and Human Health Effects. J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 447–469. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Beland, F.A.; Fang, J.-L. Effect of Triclosan, Triclocarban, 2,2′,4,4′-Tetrabromodiphenyl Ether, and Bisphenol A on the Iodide Uptake, Thyroid Peroxidase Activity, and Expression of Genes Involved in Thyroid Hormone Synthesis. Toxicol. Vitr. 2016, 32, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.N.; Nolan, G.T.; Hood, S.R. Lignans, Bacteriocides and Organochlorine Compounds Activate the Human Pregnane X Receptor (PXR). Toxicol. Appl. Pharmacol. 2005, 209, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Popova, L.B.; Nosikova, E.S.; Kotova, E.A.; Tarasova, E.O.; Nazarov, P.A.; Khailova, L.S.; Balezina, O.P.; Antonenko, Y.N. Protonophoric Action of Triclosan Causes Calcium Efflux from Mitochondria, Plasma Membrane Depolarization and Bursts of Miniature End-Plate Potentials. Biochim. Biophys. Acta BBA Biomembr. 2018, 1860, 1000–1007. [Google Scholar] [CrossRef]
- Teplova, V.V.; Belosludtsev, K.N.; Kruglov, A.G. Mechanism of Triclosan Toxicity: Mitochondrial Dysfunction Including Complex II Inhibition, Superoxide Release and Uncoupling of Oxidative Phosphorylation. Toxicol. Lett. 2017, 275, 108–117. [Google Scholar] [CrossRef]
- Ajao, C.; Andersson, M.A.; Teplova, V.V.; Nagy, S.; Gahmberg, C.G.; Andersson, L.C.; Hautaniemi, M.; Kakasi, B.; Roivainen, M.; Salkinoja-Salonen, M. Mitochondrial Toxicity of Triclosan on Mammalian Cells. Toxicol. Rep. 2015, 2, 624–637. [Google Scholar] [CrossRef]
- Belosludtsev, K.N.; Belosludtseva, N.V.; Tenkov, K.S.; Penkov, N.V.; Agafonov, A.V.; Pavlik, L.L.; Yashin, V.A.; Samartsev, V.N.; Dubinin, M.V. Study of the Mechanism of Permeabilization of Lecithin Liposomes and Rat Liver Mitochondria by the Antimicrobial Drug Triclosan. Biochim. Biophys. Acta BBA Biomembr. 2018, 1860, 264–271. [Google Scholar] [CrossRef]
- Tipparaju, S.K.; Mulhearn, D.C.; Klein, G.M.; Chen, Y.; Tapadar, S.; Bishop, M.H.; Yang, S.; Chen, J.; Ghassemi, M.; Santarsiero, B.D.; et al. Design and Synthesis of Aryl Ether Inhibitors of the Bacillus Anthracis Enoyl-ACP Reductase. ChemMedChem 2008, 3, 1250–1268. [Google Scholar] [CrossRef]
- Kim, Y.G.; Seo, J.H.; Kwak, J.H.; Shin, K.J. Discovery of a Potent Enoyl-Acyl Carrier Protein Reductase (FabI) Inhibitor Suitable for Antistaphylococcal Agent. Bioorg. Med. Chem. Lett. 2015, 25, 4481–4486. [Google Scholar] [CrossRef]
- Gerusz, V.; Denis, A.; Faivre, F.; Bonvin, Y.; Oxoby, M.; Briet, S.; LeFralliec, G.; Oliveira, C.; Desroy, N.; Raymond, C.; et al. From Triclosan toward the Clinic: Discovery of Nonbiocidal, Potent FabI Inhibitors for the Treatment of Resistant Bacteria. J. Med. Chem. 2012, 55, 9914–9928. [Google Scholar] [CrossRef]
- Wang, S.-F.; Yin, Y.; Wu, X.; Qiao, F.; Sha, S.; Lv, P.-C.; Zhao, J.; Zhu, H.-L. Synthesis, Molecular Docking and Biological Evaluation of Coumarin Derivatives Containing Piperazine Skeleton as Potential Antibacterial Agents. Bioorg. Med. Chem. 2014, 22, 5727–5737. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Shen, Y.; Wu, X.; Tu, X.; Wang, G.-X. Synthesis and Biological Evaluation of Coumarin Derivatives Containing Imidazole Skeleton as Potential Antibacterial Agents. Eur. J. Med. Chem. 2018, 143, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.; Lott, W.A.; Steinberg, B.A.; Yale, H.L. Chemotherapy of Experimental Tuberculosis. Am. Rev. Tuberc. 1952, 65, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Fox, H.H. The Chemical Approach to the Control of Tuberculosis. Science 1952, 116, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Hopf, F.S.M.; Roth, C.D.; de Souza, E.V.; Galina, L.; Czeczot, A.M.; Machado, P.; Basso, L.A.; Bizarro, C.V. Bacterial Enoyl-Reductases: The Ever-Growing List of Fabs, Their Mechanisms and Inhibition. Front. Microbiol. 2022, 13, 891610. [Google Scholar] [CrossRef] [PubMed]
- Zabinski, R.F.; Blanchard, J.S. The Requirement for Manganese and Oxygen in the Isoniazid-Dependent Inactivation of Mycobacterium Tuberculosis Enoyl Reductase. J. Am. Chem. Soc. 1997, 119, 2331–2332. [Google Scholar] [CrossRef]
- Sachar, M.; Li, F.; Liu, K.; Wang, P.; Lu, J.; Ma, X. Chronic Treatment with Isoniazid Causes Protoporphyrin IX Accumulation in Mouse Liver. Chem. Res. Toxicol. 2016, 29, 1293–1297. [Google Scholar] [CrossRef]
- Ruan, J.; Saidi, O.; Iggo, J.A.; Xiao, J. Direct Acylation of Aryl Bromides with Aldehydes by Palladium Catalysis. J. Am. Chem. Soc. 2008, 130, 10510–10511. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, H.; Kumura, K.; Takahata, S.; Iida, M.; Atsumi, K. 4-Pyridone Derivatives as New Inhibitors of Bacterial Enoyl-ACP Reductase FabI. Bioorg. Med. Chem. 2007, 15, 1106–1116. [Google Scholar] [CrossRef]
- Takahata, S.; Iida, M.; Yoshida, T.; Kumura, K.; Kitagawa, H.; Hoshiko, S. Discovery of 4-Pyridone Derivatives as Specific Inhibitors of Enoyl-Acyl Carrier Protein Reductase (FabI) with Antibacterial Activity against Staphylococcus aureus. J. Antibiot. 2007, 60, 123–128. [Google Scholar] [CrossRef]
- Park, H.S.; Yoon, Y.M.; Jung, S.J.; Kim, C.M.; Kim, J.M.; Kwak, J.-H. Antistaphylococcal Activities of CG400549, a New Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Inhibitor. J. Antimicrob. Chemother. 2007, 60, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, H.; Ozawa, T.; Takahata, S.; Iida, M.; Saito, J.; Yamada, M. Phenylimidazole Derivatives of 4-Pyridone as Dual Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductases FabI and FabK. J. Med. Chem. 2007, 50, 4710–4720. [Google Scholar] [CrossRef] [PubMed]
- Heerding, D.A.; Chan, G.; DeWolf, W.E.; Fosberry, A.P.; Janson, C.A.; Jaworski, D.D.; McManus, E.; Miller, W.H.; Moore, T.D.; Payne, D.J.; et al. 1,4-Disubstituted Imidazoles Are Potential Antibacterial Agents Functioning as Inhibitors of Enoyl Acyl Carrier Protein Reductase (FabI). Bioorg. Med. Chem. Lett. 2001, 11, 2061–2065. [Google Scholar] [CrossRef] [PubMed]
- Ramnauth, J.; Surman, M.D.; Sampson, P.B.; Forrest, B.; Wilson, J.; Freeman, E.; Manning, D.D.; Martin, F.; Toro, A.; Domagala, M.; et al. 2,3,4,5-Tetrahydro-1H-Pyrido [2,3-b and e][1,4]Diazepines as Inhibitors of the Bacterial Enoyl ACP Reductase, FabI. Bioorg. Med. Chem. Lett. 2009, 19, 5359–5362. [Google Scholar] [CrossRef] [PubMed]
- Sampson, P.; Picard, C.; Handerson, S.; McGrath, T.; Domagala, M.; Leeson, A.; Romanov, V.; Awrey, D.; Thambipillai, D.; Bardouniotis, E. Sampson Spiro-Naphthyridinone Piperidines as Inhibitors of S. aureus and E. coli Enoyl-ACP Reductase (FabI). Bioorg. Med. Chem. Lett. 2009, 19, 5355–5358. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Laing, N.M.; Baudry, T.; Kaplan, N.; Vaughan, D.; Hoban, D.J.; Zhanel, G.G. In Vitro Activity of API-1252, a Novel FabI Inhibitor, against Clinical Isolates of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2007, 51, 1580–1581. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Kaplan, N.; Hafkin, B.; Hoban, D.J.; Zhanel, G.G. AFN-1252, a FabI Inhibitor, Demonstrates a Staphylococcus-Specific Spectrum of Activity. Antimicrob. Agents Chemother. 2009, 53, 3544–3548. [Google Scholar] [CrossRef]
- Parker, E.N.; Drown, B.S.; Geddes, E.J.; Lee, H.Y.; Ismail, N.; Lau, G.W.; Hergenrother, P.J. Implementation of Permeation Rules Leads to a FabI Inhibitor with Activity against Gram-Negative Pathogens. Nat. Microbiol. 2020, 5, 67–75. [Google Scholar] [CrossRef]
- Banevicius, M.A.; Kaplan, N.; Hafkin, B.; Nicolau, D.P. Pharmacokinetics, Pharmacodynamics and Efficacy of Novel FabI Inhibitor AFN-1252 against MSSA and MRSA in the Murine Thigh Infection Model. J. Chemother. 2013, 25, 26–31. [Google Scholar] [CrossRef]
- Parker, E.N.; Cain, B.N.; Hajian, B.; Ulrich, R.J.; Geddes, E.J.; Barkho, S.; Lee, H.Y.; Williams, J.D.; Raynor, M.; Caridha, D.; et al. An Iterative Approach Guides Discovery of the FabI Inhibitor Fabimycin, a Late-Stage Antibiotic Candidate with In Vivo Efficacy against Drug-Resistant Gram-Negative Infections. ACS Cent. Sci. 2022, 8, 1145–1158. [Google Scholar] [CrossRef]
- Kim, N.; Sohn, M.-J.; Kim, C.-J.; Kwon, H.J.; Kim, W.-G. Verrulactones A and B, New Inhibitors of Staphylococcus Aureus Enoyl-ACP Reductase Produced by Penicillium verruculosum F375. Bioorg. Med. Chem. Lett. 2012, 22, 2503–2506. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Sohn, M.-J.; Koshino, H.; Kim, E.-H.; Kim, W.-G. Verrulactone C with an Unprecedented Dispiro Skeleton, a New Inhibitor of Staphylococcus Aureus Enoyl-ACP Reductase, from Penicillium verruculosum F375. Bioorg. Med. Chem. Lett. 2014, 24, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-J.; Fang, Y.; Xu, G.-H.; Kim, W.-G. Aquastatin A, a New Inhibitor of Enoyl-Acyl Carrier Protein Reductase from Sporothrix sp. FN611. Biol. Pharm. Bull. 2009, 32, 2061–2064. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.J.; Sohn, M.-J.; Oh, T.; Cho, S.-N.; Kim, C.-J.K.; Kim, G. Panosialins, Inhibitors of Enoyl-ACP Reductase from Streptomyces Sp. AN1761. J. Microbiol. Biotechnol. 2013, 23, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.-J.; Sohn, M.-J.; Kim, W.-G. Atromentin and Leucomelone, the First Inhibitors Specific to Enoyl-ACP Reductase (FabK) of Streptococcus pneumoniae. J. Antibiot. 2006, 59, 808–812. [Google Scholar] [CrossRef]
- Kırmızıbekmez, H.; Çalıs, I.; Perozzo, R.; Brun, R.; Dönmez, A.A.; Linden, A.; Rüedi, P.; Tasdemir, D. Inhibiting Activities of the Secondary Metabolites of Phlomis brunneogaleata against Parasitic Protozoa and Plasmodial Enoyl-ACP Reductase, a Crucial Enzyme in Fatty Acid Biosynthesis. Planta Med. 2004, 70, 711–717. [Google Scholar] [CrossRef]
- Tasdemir, D.; Lack, G.; Brun, R.; Rüedi, P.; Scapozza, L.; Perozzo, R. Inhibition of Plasmodium falciparum Fatty Acid Biosynthesis: Evaluation of FabG, FabZ, and FabI as Drug Targets for Flavonoids. J. Med. Chem. 2006, 49, 3345–3353. [Google Scholar] [CrossRef]
- Zhang, L.; Kong, Y.; Wu, D.; Zhang, H.; Wu, J.; Chen, J.; Ding, J.; Hu, L.; Jiang, H.; Shen, X. Three Flavonoids Targeting the β-Hydroxyacyl-Acyl Carrier Protein Dehydratase from Helicobacter pylori: Crystal Structure Characterization with Enzymatic Inhibition Assay. Protein Sci. 2008, 17, 1971–1978. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Rock, C. Evaluation of Epigallocatechin Gallate and Related Plant Polyphenols as Inhibitors of the FabG and FabI Reductases of Bacterial Type II Fatty-Acid Synthase. J. Biol. Chem. 2004, 279, 30994–31001. [Google Scholar] [CrossRef]
- Inatsu, S.; Ohsaki, A.; Nagata, K. Idebenone Acts against Growth of Helicobacter Pylori by Inhibiting Its Respiration. Antimicrob. Agents Chemother. 2006, 50, 2237–2239. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bibens, L.; Becker, J.-P.; Dassonville-Klimpt, A.; Sonnet, P. A Review of Fatty Acid Biosynthesis Enzyme Inhibitors as Promising Antimicrobial Drugs. Pharmaceuticals 2023, 16, 425. https://doi.org/10.3390/ph16030425
Bibens L, Becker J-P, Dassonville-Klimpt A, Sonnet P. A Review of Fatty Acid Biosynthesis Enzyme Inhibitors as Promising Antimicrobial Drugs. Pharmaceuticals. 2023; 16(3):425. https://doi.org/10.3390/ph16030425
Chicago/Turabian StyleBibens, Laurie, Jean-Paul Becker, Alexandra Dassonville-Klimpt, and Pascal Sonnet. 2023. "A Review of Fatty Acid Biosynthesis Enzyme Inhibitors as Promising Antimicrobial Drugs" Pharmaceuticals 16, no. 3: 425. https://doi.org/10.3390/ph16030425
APA StyleBibens, L., Becker, J. -P., Dassonville-Klimpt, A., & Sonnet, P. (2023). A Review of Fatty Acid Biosynthesis Enzyme Inhibitors as Promising Antimicrobial Drugs. Pharmaceuticals, 16(3), 425. https://doi.org/10.3390/ph16030425