Impaired Gonadotropin-Lowering Effects of Metformin in Postmenopausal Women with Autoimmune Thyroiditis: A Pilot Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Study Design
4.3. Metformin-Naïve Patients
4.4. Laboratory Assays
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zhou, J.; Massey, S.; Story, D.; Li, L. Metformin: An old drug with new applications. Int. J. Mol. Sci. 2018, 19, 2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krysiak, R.; Okopień, B. The effect of metformin on the hypothalamic-pituitary-thyroid axis in women with polycystic ovary syndrome and subclinical hypothyroidism. J. Clin. Pharmacol. 2015, 55, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Lupoli, R.; Di Minno, A.; Tortora, A.; Ambrosino, P.; Lupoli, G.A.; Di Minno, M.N. Effects of treatment with metformin on TSH levels: A meta-analysis of literature studies. J. Clin. Endocrinol. Metab. 2014, 99, E143–E148. [Google Scholar] [CrossRef] [Green Version]
- Krysiak, R.; Okrzesik, J.; Okopień, B. The effect of short-term metformin treatment on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance: A pilot study. Endocrine 2015, 49, 242–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bo, Q.J.; Wang, Z.M.; Li, X.B.; Ma, X.; Wang, C.Y.; de Leon, J. Adjunctive metformin for antipsychotic- induced hyperprolactinemia: A systematic review. Psychiatry Res. 2016, 237, 257–263. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Okopień, B. The effect of metformin on serum gonadotropin levels in postmenopausal women with diabetes and prediabetes: A pilot study. Exp. Clin. Endocrinol. Diabetes 2018, 126, 645–650. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Okopień, B. The impact of metformin on prolactin levels in postmenopausal women. J. Clin. Pharm. Ther. 2021, 46, 1432–1440. [Google Scholar] [CrossRef]
- Velija-Ašimi, Z. Evaluation of endocrine changes in women with the polycystic ovary syndrome during metformin treatment. Bosn. J. Basic Med. Sci. 2013, 13, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Billa, E.; Kapolla, N.; Nicopoulou, S.C.; Koukkou, E.; Venaki, E.; Milingos, S. Metformin administration was associated with a modification of LH, prolactin and insulin secretion dynamics in women with polycystic ovarian syndrome. Gynecol. Endocrinol. 2009, 25, 427–443. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Bednarska-Czerwińska, A.; Okopień, B. Plasma gonadotropin levels in metformin-treated men with prediabetes: A non-randomized, uncontrolled pilot study. Fundam. Clin. Pharmacol. 2021, 35, 466–472. [Google Scholar] [CrossRef]
- Labuzek, K.; Suchy, D.; Gabryel, B.; Bielecka, A.; Liber, S.; Okopień, B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol. Rep. 2010, 62, 956–965. [Google Scholar] [CrossRef]
- Ueno, M. Molecular anatomy of the brain endothelial barrier: An overview of the distributional features. Curr. Med. Chem. 2007, 14, 1199–1206. [Google Scholar] [CrossRef]
- Tosca, L.; Froment, P.; Rame, C.; McNeilly, J.R.; McNeilly, A.S.; Maillard, V.; Dupont, J. Metformin decreases GnRH- and activin-induced gonadotropin secretion in rat pituitary cells: Potential involvement of adenosine 5′ monophosphate-activated protein kinase (PRKA). Biol. Reprod. 2011, 84, 351–362. [Google Scholar] [CrossRef]
- Caturegli, P.; Kimura, H.; Rocchi, R.; Rose, N.R. Autoimmune thyroid diseases. Curr. Opin. Rheumatol. 2007, 19, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Gessl, A.; Lemmens-Gruber, R.; Kautzky-Willer, A. Thyroid disorders. Handb. Exp. Pharmacol. 2012, 214, 361–386. [Google Scholar]
- McLeod, D.S.; Cooper, D.S. The incidence and prevalence of thyroid autoimmunity. Endocrine 2012, 42, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Mehran, L.; Amouzegar, A.; Azizi, F. Thyroid disease and the metabolic syndrome. Curr. Opin. Endocrinol. Diabetes Obes. 2019, 26, 256–265. [Google Scholar] [CrossRef]
- Whitcroft, S.; Herriot, A. Insulin resistance and management of the menopause: A clinical hypothesis in practice. Menopause Int. 2011, 17, 24–28. [Google Scholar] [CrossRef]
- Nicholls, A.R.; Holt, R.I. Growth hormone and insulin-like growth factor-1. Front. Horm. Res. 2016, 47, 101–114. [Google Scholar]
- Lizneva, D.; Rahimova, A.; Kim, S.M.; Atabiekov, I.; Javaid, S.; Alamoush, B.; Taneja, C.; Khan, A.; Sun, L.; Azziz, R.; et al. FSH beyond fertility. Front. Endocrinol. 2019, 10, 136. [Google Scholar] [CrossRef]
- Xiong, J.; Kang, S.S.; Wang, Z.; Liu, X.; Kuo, T.C.; Korkmaz, F.; Padilla, A.; Miyashita, S.; Chan, P.; Zhang, Z.; et al. FSH blockade improves cognition in mice with Alzheimer’s disease. Nature 2022, 603, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Barron, A.M.; Verdile, G.; Martins, R.N. The role of gonadotropins in Alzheimer’s disease: Potential neurodegenerative mechanisms. Endocrine 2006, 29, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Cortet, B.; Lucas, S.; Legroux-Gerot, I.; Penel, G.; Chauveau, C.; Paccou, J. Bone disorders associated with diabetes mellitus and its treatments. Jt. Bone Spine 2019, 86, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.; Moreira, P.I. Antidiabetic drugs for Alzheimer’s and Parkinson’s diseases: Repurposing insulin, metformin, and thiazolidinediones. Int. Rev. Neurobiol. 2020, 155, 37–64. [Google Scholar] [PubMed]
- Erge, E.; Kiziltunc, C.; Balci, S.B.; Atak Tel, B.M.; Bilgin, S.; Duman, T.T.; Aktas, G. A novel inflammatory marker for the diagnosis of Hashimoto’s thyroiditis: Platelet-count-to-lymphocyte-count ratio. Diseases 2023, 11, 15. [Google Scholar] [CrossRef]
- Krysiak, R.; Okrzesik, J.; Okopień, B. Different effects of metformin on the hypothalamic-pituitary-thyroid axis in bromocriptine- and cabergoline-treated patients with Hashimoto’s thyroiditis and glucose metabolism abnormalities. Exp. Clin. Endocrinol. Diabetes 2015, 123, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. The impact of combination therapy with metformin and exogenous vitamin D on hypothalamic-pituitary-thyroid axis activity in women with autoimmune thyroiditis and high-normal thyrotropin levels. J. Clin. Pharm. Ther. 2020, 45, 1382–1389. [Google Scholar] [CrossRef]
- Bai, B.; Chen, H. Metformin: A novel weapon against inflammation. Front. Pharmacol. 2022, 12, 622262. [Google Scholar] [CrossRef]
- Saisho, Y. Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 196–205. [Google Scholar] [CrossRef]
- O′Neill, L.A.; Hardie, D.G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013, 493, 346–355. [Google Scholar] [CrossRef]
- Jeon, S.M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 2016, 48, e245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malvoisin, E.; Livrozet, J.M.; El Hajji-Ridah, I.; Makloufi, D.; Vincent, N.J. Detection of AMP-activated protein kinase in human sera by immuno-isoelectric focusing. Immunol. Methods 2009, 351, 24–29. [Google Scholar] [CrossRef] [PubMed]
- López, M. Hypothalamic AMPK as a possible target for energy balance-related diseases. Trends Pharmacol. Sci. 2022, 43, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Ohkura, S.; Uenoyama, Y.; Wakabayashi, Y.; Oka, Y.; Tsukamura, H.; Okamura, H. Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res. 2010, 1364, 103–115. [Google Scholar] [CrossRef]
- Tosca, L.; Solnais, P.; Ferré, P.; Foufelle, F.; Dupont, J. Metformin-induced stimulation of adenosine 5′ monophosphate-activated protein kinase (PRKA) impairs progesterone secretion in rat granulosa cells. Biol. Reprod. 2006, 75, 342–351. [Google Scholar] [CrossRef]
- Li, H.W.; Robertson, D.M.; Burns, C.; Ledger, W.L. Challenges in measuring AMH in the clinical setting. Front. Endocrinol. 2021, 12, 691432. [Google Scholar] [CrossRef]
- Brown, K.A.; Hunger, N.I.; Docanto, M.; Simpson, E.R. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res. Treat. 2010, 123, 591–596. [Google Scholar] [CrossRef]
- Patil, M. Gonadotrophins: The future. J. Hum. Reprod. Sci. 2014, 7, 236–248. [Google Scholar] [CrossRef]
- Graham, G.G.; Punt, J.; Arora, M.; Day, R.O.; Doogue, M.P.; Duong, J.K.; Duong, J.K.; Furlong, T.J.; Greenfield, R.; Greenup, L.C.; et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 2011, 50, 81–98. [Google Scholar] [CrossRef]
- Gutch, M.; Kumar, S.; Razi, S.M.; Gupta, K.K.; Gupta, A. Assessment of insulin sensitivity/resistance. Indian J. Endocrinol. Metab. 2015, 19, 160–164. [Google Scholar] [CrossRef]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Diabetes Prevention Program Research Group. Reduction the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [PubMed]
- Huang, S.; Czech, M.P. The GLUT4 glucose transporter. Cell Metab. 2007, 5, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jager, J.; Grémeaux, T.; Cormont, M.; Le Marchand-Brustel, Y.; Tanti, J.F. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 2007, 148, 241–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peraldi, P.; Spiegelman, B. TNF-alpha and insulin resistance: Summary and future prospects. Mol. Cell Biochem. 1998, 182, 169–175. [Google Scholar] [CrossRef]
- Mormile, R. Induction of GLUT4 by inhibiting IFN-γ: A winning move to halt type 2 diabetes? Int. J. Colorectal Dis. 2016, 31, 1387. [Google Scholar] [CrossRef] [Green Version]
- Krysiak, R.; Okopień, B. The effect of levothyroxine and selenomethionine on lymphocyte and monocyte cytokine release in women with Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab. 2011, 96, 2206–2215. [Google Scholar] [CrossRef] [Green Version]
- Leyhe, T.; Müssig, K. Cognitive and affective dysfunctions in autoimmune thyroiditis. Brain Behav. Immun. 2014, 41, 216–261. [Google Scholar] [CrossRef]
- Djurovic, M.; Pereira, A.M.; Smit, J.W. Cognitive functioning and quality of life in patients with Hashimoto thyroiditis on long-term levothyroxine replacement. Endocrine 2018, 62, 136–143. [Google Scholar] [CrossRef]
- Wu, J.; Huang, H.; Yu, X. How does Hashimoto’s thyroiditis affect bone metabolism? Rev. Endocr. Metab. Disord. 2023, 24, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Blaslov, K.; Gajski, D.; Vucelić, V.; Gaćina, P.; Mirošević, G.; Marinković, J.; Vrkljan, M.; Rotim, K. The association of subclinical insulin resistance with thyroid autoimmunity in euthyroid individuals. Acta Clin. Croat. 2020, 59, 696–702. [Google Scholar] [CrossRef]
- Thvilum, M.; Brandt, F.; Lillevang-Johansen, M.; Folkestad, L.; Brix, T.H.; Hegedüs, L. Increased risk of dementia in hypothyroidism: A Danish nationwide register-based study. Clin. Endocrinol. 2021, 94, 1017–1024. [Google Scholar] [CrossRef]
- Liontiris, M.I.; Mazokopakis, E.E. A concise review of Hashimoto thyroiditis (HT) and the importance of iodine, selenium, vitamin D and gluten on the autoimmunity and dietary management of HT patients. Points that need more investigation. Hell. J. Nucl. Med. 2017, 20, 51–56. [Google Scholar] [PubMed]
- Nordio, M.; Basciani, S. Treatment with myo-inositol and selenium ensures euthyroidism in patients with autoimmune thyroiditis. Int. J. Endocrinol. 2017, 2017, 2549491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kłapcińska, B.; Poprzecki, S.; Danch, A.; Sobczak, A.; Kempa, K. Selenium levels in blood of Upper Silesian population: Evidence of suboptimal selenium status in a significant percentage of the population. Biol. Trace Elem. Res. 2005, 108, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Szybiński, Z. Polish council for control of iodine deficiency disorders. Work of the Polish council for control of iodine deficiency disorders, and the model of iodine prophylaxis in Poland. Endokrynol. Pol. 2012, 63, 156–160. [Google Scholar] [PubMed]
Variable | Group A | Group B | p-Value |
---|---|---|---|
Number (n) | 34 | 34 | - |
Age (years) | 59 ± 5 | 60 ± 6 | 0.4580 |
Smokers (%) | 38 | 35 | - |
Body mass index (kg/m2) | 24.4 ± 4.9 | 23.7 ± 5.1 | 0.5658 |
Systolic blood pressure (mmHg) | 134 ± 12 | 132 ± 14 | 0.5293 |
Systolic blood pressure (mmHg) | 85 ± 4 | 84 ± 5 | 0.3658 |
Variable | Group A | Group B | p-Value (A vs. B) |
---|---|---|---|
Glucose (mmol/L) | |||
Baseline | 6.00 ± 0.69 | 6.06± 0.65 | 0.7134 |
Follow-up | 5.67± 0.61 | 5.38 ± 0.50 | 0.0357 |
p-value (follow-up vs. baseline) | 0.0406 | <0.0001 | - |
Insulin (mU/L) | |||
Baseline | 15.0 ± 4.0 | 14.6 ± 3.8 | 0.6738 |
Follow-up | 11.8 ± 3.0 | 8.5 ± 2.5 | <0.0001 |
p-value (follow-up vs. baseline) | 0.0004 | <0.0001 | - |
HOMA1-IR | |||
Baseline | 4.0 ± 1.1 | 3.9 ± 1.0 | 0.6962 |
Follow-up | 3.0 ± 0.7 | 2.0 ± 0.6 | <0.0001 |
p-value (follow-up vs. baseline) | <0.0001 | <0.0001 | - |
TPOAb (IU/mL) | |||
Baseline | 912 ± 291 | 15 ± 11 | <0.0001 |
Follow-up | 810 ± 210 | 14 ± 12 | <0.0001 |
p-value (follow-up vs. baseline) | 0.1022 | 0.7213 | - |
TgAb (IU/mL) | |||
Baseline | 860 ± 302 | 18 ± 10 | <0.0001 |
Follow-up | 750 ± 248 | 16 ± 15 | <0.0001 |
p-value (follow-up vs. baseline) | 0.1055 | 0.5188 | - |
Thyrotropin (mIU/L) | |||
Baseline | 2.4 ± 1.0 | 2.2 ± 0.9 | 0.3892 |
Follow-up | 2.3 ± 1.0 | 2.0 ± 0.9 | 0.1980 |
p-value (follow-up vs. baseline) | 0.6814 | 0.3628 | - |
Free thyroxine (pmol/L) | |||
Baseline | 14.4 ± 2.2 | 15.0 ± 2.5 | 0.2973 |
Follow-up | 14.8 ± 2.4 | 15.3 ± 2.8 | 0.4320 |
p-value (follow-up vs. baseline) | 0.4763 | 0.6427 | - |
Free triiodothyronine (pmol/L) | |||
Baseline | 3.5 ± 0.7 | 3.4 ± 0.7 | 0.5579 |
Follow-up | 3.4 ± 0.6 | 3.6 ± 0.9 | 0.2849 |
p-value (follow-up vs. baseline) | 0.5293 | 0.3101 | - |
FSH (U/L) | |||
Baseline | 72 ± 24 | 69 ± 22 | 0.5928 |
Follow-up | 70 ± 26 | 52 ± 20 | 0.0021 |
p-value (follow-up vs. baseline) | 0.7428 | 0.0014 | - |
LH (U/L) | |||
Baseline | 52 ± 16 | 53 ± 12 | 0.7715 |
Follow-up | 54 ± 14 | 47 ± 13 | 0.0364 |
p-value (follow-up vs. baseline) | 0.5852 | 0.0523 | - |
Estradiol (pg/mL) | |||
Baseline | 17 ± 4 | 18 ± 4 | 0.3064 |
Follow-up | 18 ± 5 | 19 ± 6 | 0.4540 |
p-value (follow-up vs. baseline) | 0.3658 | 0.4216 | - |
Progesterone (ng/mL) | |||
Baseline | 0.47 ± 0.20 | 0.52 ± 0.20 | 0.3064 |
Follow-up | 0.49 ± 0.22 | 0.50 ± 0.24 | 0.8584 |
p-value (follow-up vs. baseline) | 0.6162 | 0.7102 | - |
Anti-Müllerian hormone (pmol/L) a | |||
Baseline | 0.55 ± 0.65 | 0.50 ± 0.70 | 0.8305 |
Follow-up | 0.60 ± 0.57 | 0.56 ± 0.68 | 0.8537 |
p-value (follow-up vs. baseline) | 0.8130 | 0.8015 | - |
Prolactin (ng/mL) | |||
Baseline | 14.9 ± 6.2 | 15.5 ± 5.0 | 0.5939 |
Follow-up | 13.8 ± 6.0 | 14.2 ± 5.8 | 0.7807 |
p-value (follow-up vs. baseline) | 0.3843 | 0.3258 | - |
ACTH (pg/mL) | |||
Baseline | 35 ± 10 | 31 ± 16 | 0.2208 |
Follow-up | 39 ± 15 | 36 ± 11 | 0.3504 |
p-value (follow-up vs. baseline) | 0.2003 | 0.1380 | - |
Insulin-like growth factor-1 (ng/mL) | |||
Baseline | 120 ± 30 | 112 ± 43 | 0.3769 |
Follow-up | 125 ± 26 | 122 ± 46 | 0.7417 |
p-value (follow-up vs. baseline) | 0.4653 | 0.3578 | - |
hsCRP (mg/L) | |||
Baseline | 3.1 ± 0.8 | 2.0 ± 0.5 | <0.0001 |
Follow-up | 2.9 ± 0.8 | 1.0 ± 0.4 | <0.0001 |
p-value (follow-up vs. baseline) | 0.3064 | <0.0001 | - |
Variable | Group A | Group B | p-Value (A vs. B) |
---|---|---|---|
Δ Glucose | −4 ± 4 | −11 ± 5 | <0.0001 |
Δ Insulin | −21 ± 19 | −42 ± 20 | <0.0001 |
Δ HOMA1-IR | −25 ± 20 | −49 ± 25 | <0.0001 |
Δ TPOAb | −11 ± 16 | −7 ± 19 | 0.3512 |
Δ TgAb | −13 ± 20 | −11 ± 25 | 0.7168 |
Δ Thyrotropin | −4 ± 10 | −10 ± 20 | 0.1225 |
Δ Free thyroxine | 3 ± 5 | 2 ± 8 | 0.5386 |
Δ Free triiodothyronine | −3 ± 14 | 5 ± 25 | 0.1283 |
Δ FSH | −3 ± 11 | −25 ± 18 | 0.0001 |
Δ LH | 4 ± 9 | −11 ± 20 | 0.0002 |
Δ Estradiol | 6 ± 10 | 6 ± 12 | 1.0000 |
Δ Progesterone | 4 ± 18 | −4 ± 23 | 0.1150 |
Δ Anti-Müllerian hormone a | 9 ± 14 | 12 ± 20 | 0.6158 |
Δ Prolactin | −7 ± 8 | −8 ± 6 | 0.5618 |
Δ ACTH | 11 ± 12 | 16 ± 19 | 0.1988 |
Δ Insulin-like growth factor-1 | 4 ± 11 | 9 ± 16 | 0.1380 |
Δ hsCRP | −6 ± 10 | −50 ± 24 | <0.0001 |
Variable | Baseline | Follow-Up (Six Months Later) |
---|---|---|
Glucose (mmol/L) | 6.11 ± 0.50 | 6.00 ± 0.61 |
Insulin (mU/L) | 15.7 ± 5.5 | 15.2 ± 5.3 |
HOMA1-IR | 4.2 ± 1.2 | 4.0 ± 1.4 |
TPOAb (IU/mL) | 946 ± 345 | 910 ± 368 |
TgAb (IU/mL) | 880 ± 355 | 868 ± 378 |
Thyrotropin (mIU/L) | 2.5 ± 1.1 | 2.5 ± 1.0 |
Free thyroxine (pmol/L) | 14.8 ± 2.5 | 15.3 ± 2.7 |
Free triiodothyronine (pmol/L) | 3.4 ± 0.7 | 3.6 ± 0.8 |
FSH (U/L) | 78 ± 24 | 82 ± 26 |
LH (U/L) | 55 ± 18 | 57 ± 16 |
Estradiol (pg/mL) | 16 ± 5 | 16 ± 6 |
Prolactin (ng/mL) | 13.9 ± 5.1 | 14.3 ± 5.8 |
hsCRP (mg/L) | 3.2 ± 0.9 | 3.1 ± 0.8 |
Variable | Baseline | Follow-Up (Six Months Later) |
---|---|---|
Glucose (mmol/L) | 6.11 ± 0.65 | 6.00 ± 0.72 |
Insulin (mU/L) | 14.8 ± 4.2 | 13.5 ± 4.0 |
HOMA1-IR | 4.2 ± 1.5 | 3.6 ± 1.3 |
TPOAb (IU/mL) | 14 ± 10 | 15 ± 12 |
TgAb (IU/mL) | 19 ± 12 | 17 ± 11 |
Thyrotropin (mIU/L) | 2.3 ± 0.9 | 2.2 ± 0.8 |
Free thyroxine (pmol/L) | 14.2 ± 2.3 | 14.6 ± 2.9 |
Free triiodothyronine (pmol/L) | 3.5 ± 0.8 | 3.5 ± 0.7 |
FSH (U/L) | 76 ± 25 | 74 ± 26 |
LH (U/L) | 57 ± 18 | 55 ± 16 |
Estradiol (pg/mL) | 16 ± 6 | 17 ± 5 |
Prolactin (ng/mL) | 14.7 ± 5.8 | 15.2 ± 6.0 |
hsCRP (mg/L) | 1.9 ± 0.7 | 1.7 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krysiak, R.; Basiak, M.; Machnik, G.; Okopień, B. Impaired Gonadotropin-Lowering Effects of Metformin in Postmenopausal Women with Autoimmune Thyroiditis: A Pilot Study. Pharmaceuticals 2023, 16, 922. https://doi.org/10.3390/ph16070922
Krysiak R, Basiak M, Machnik G, Okopień B. Impaired Gonadotropin-Lowering Effects of Metformin in Postmenopausal Women with Autoimmune Thyroiditis: A Pilot Study. Pharmaceuticals. 2023; 16(7):922. https://doi.org/10.3390/ph16070922
Chicago/Turabian StyleKrysiak, Robert, Marcin Basiak, Grzegorz Machnik, and Bogusław Okopień. 2023. "Impaired Gonadotropin-Lowering Effects of Metformin in Postmenopausal Women with Autoimmune Thyroiditis: A Pilot Study" Pharmaceuticals 16, no. 7: 922. https://doi.org/10.3390/ph16070922
APA StyleKrysiak, R., Basiak, M., Machnik, G., & Okopień, B. (2023). Impaired Gonadotropin-Lowering Effects of Metformin in Postmenopausal Women with Autoimmune Thyroiditis: A Pilot Study. Pharmaceuticals, 16(7), 922. https://doi.org/10.3390/ph16070922