Pharmaceutical Approaches to Normal Tension Glaucoma
Abstract
:1. Introduction
1.1. Normal Tension Glaucoma (NTG) Definition
1.2. Epidemiology of NTG
1.3. Diagnosis, Differential Diagnosis and Clinical Features of NTG
- o
- Congenital disorders: coloboma of the OHN, pits, ONH oblique insertion and autosomal dominant optic atrophy (Kjer type);
- o
- Acquired disorders: history of steroid use, previous trauma or surgery that may induce prior elevated IOP, hemodynamic crisis, optic neuritis, anterior optic ischemic neuropathy (both arteritic and non-arteritic), compressive lesions of the ONH and optic tract (meningioma, pituitary adenoma, craniopharyngioma, internal carotid artery aneurysm, etc.).
- Diurnal, nocturnal and postural IOP variations, with the possibility of missing peaks of elevated IOP during non-office hours, especially during nocturnal and sleeping periods [18].
- Corneal thickness variations, in which thin corneas can cause an underestimation of the IOP measured with several tonometers, including the gold standard Goldmann applanation tonometry (GAT) [19].
- Corneal biomechanics variations, with more deformable corneas inducing an underestimation of the IOP measured with various tonometers, including GAT [20].
- Older age and higher prevalence of females, Asian population and high myopia;
- Neuro-retinal rim damage prevalently situated in the inferotemporal quadrant;
- Narrower neuro-retinal rim for a given VF defect amount;
- More frequent disc hemorrhages, focal defects of the lamina cribrosa and beta peri-papillary zone;
- More frequent focal areas of cupping at the disc margin;
- VF defects closer to the fixation point, deeper and more focal;
- More frequent association with a variety of systemic diseases that can induce an ischemic and/or hypoxic damage of the ONH, including migraine, Raynaud’s phenomenon, primary vascular dysfunction (Flammer syndrome), systemic hypotension (especially nocturnal arterial hypotension) and obstructive sleep apnea syndrome (OSAS). A systemic evaluation for potentially contributing conditions, such as OSAS or Raynaud’s phenomenon or systemic hypotension, is important, especially in cases of disease progression refractory to IOP-lowering therapy.
2. Pathophysiology of the NTG as Rationale for Different Therapeutic Strategies
2.1. The IOP-Dependent Theories
- Diurnal, nocturnal and postural IOP variations: in measuring the blood pressure and IOP every 3 h over 24 h, studies have [36] found that approximately 25% of NTG patients showed IOP spikes during non-office hours. Clinical trials based on the assessment of the nychtemeral IOP curves with a telemetric sensor incorporated in contact lenses (the Sensimed Triggerfish device) by Agnifili et al. [37] showed that 40–80% of the NTG patients had IOP spikes during the night.
- Corneal thickness variations: several studies have demonstrated that central corneal thickness (CCT) tends to be lower in NTG patients than in healthy subjects or in other types of glaucoma [38].
- Corneal biomechanics variations: in comparison with POAG and normal subjects, NTG patients have been demonstrated to have higher corneal deformability and lower corneal hysteresis (CH), i.e., the ability of the cornea to resist deformation [39].
2.2. The IOP-Independent Theories
- History of cardiovascular events or the presence of cardiovascular and/or cerebrovascular diseases, such as chronic atherosclerosis, obstructive arterial disease, intermittent claudication, vascular dementia, cerebral cortical micro-infarcts, atrial fibrillation, systemic hypertension or hypotension, in particular low diastolic blood pressure, excessive dip in nocturnal blood pressure levels and low mean OPP [36,42,43,44];
- Raynaud phenomenon and Flammer syndrome [45]. The latter is a recently described clinical entity characterized by a general dysregulation of the blood supply, with several different clinical manifestations, including cold hands and feet, low blood pressure and high blood pressure drops at night [45];
- Migraine [46];
- Obstructive sleep apnea syndrome (OSAS) [47];
- Impaired glucose tolerance, diabetes, smoking and high body mass [48];
- Ocular vascular alterations; reduced blood flow velocity in retrobulbar and peripapillary ciliary arteries; small central retinal vessel diameter; ophthalmic artery stenosis; malformations or branch occlusions; anomalous posterior ciliary arteries; high prevalence of circumpapillary atrophy, which is related to a deficit of the SPC arteries blood flow and disc hemorrhages, which seem to be related to platelet dysfunction [49];
- High aqueous and plasma levels of endothelin-1 (ET-1), a potent endogenous vasoconstrictor synthesized and released from the ciliary processes and involved in the regulation of the ocular blood flow [50].
- RGCs of NTG patient show decreased levels of endogenous antioxidants, such as glutathione [41].
- NTG patients are associated with specific mutations of the glutamate/aspartate transporter (GLAST) gene [41]. GLADT is expressed in the Mueller glia of the retina and removes excess glutamate from the synapses, preventing excitotoxic damage to the surrounding neurons. Loss of GLADT in mice leads to RGCs degeneration that simulates NTG [41].
- The risk of development of NTG has been associated with distinct features of mitochondrial DNA variations [54].
- Optic neuropathies requiring a differential diagnosis from NTG, such as Leber’s hereditary optic neuropathy and autosomal dominant optic atrophy, are caused by mitochondrial genetic variants [54].
- -
- The supine position: It has been demonstrated that moving from the sitting to the supine position induces an increase in IOP of approximately 4 mmHg in glaucomatous patients, with a further increase in IOP for lateral decubitus [1,2]. Previous authors have demonstrated that the VF indices in progressive NTG patients were related to the IOPs measured in the supine position, but not to those taken in the sitting position [62].
- -
- The abnormal eye movements: As known, eye movements can cause mechanical traction of the ONH. Using magnetic nuclear resonance imaging, previous authors have demonstrated that NTG patients may have abnormal globe retraction during eye movements, which could be related to the progression of glaucomatous damage [63].
- -
- The decreased scleral stiffness: It has been hypothesized that a lower scleral rigidity could be associated with higher deformation of the lamina cribrosa and subsequently greater axonal damage in response to the IOP. Unfortunately, scleral stiffness is difficult to measure in vivo. It has been suggested that the biomechanical properties of the sclera might correlate to those of the cornea, which are measurable in vivo with relatively new instruments, such as the Ocular Response Analyzer (ORA) and the Corvis-ST pachy-tonometer [20]. Considering that, as mentioned above, NTG patients have shown lower CCT values, higher corneal deformability and lower CH in comparison with healthy and POAG subjects [38,39], it is speculated that they may have also less resistant lamina cribrosa and peripapillary sclera tissues, which could potentially reduce the ability of these structures to dampen IOP changes. This might increase the susceptibility of the ONH to increased IOP or IOP spikes, with the consequent development of GON [64]. Supporting this theory, thin CCT and low CH have been indeed identified as risk factors for the development and progression of glaucoma [64].
3. The Therapeutic Approaches in NTG
3.1. Studies Supporting the IOP-Dependent Therapies: The Role of IOP Reduction in the Treatment of NTG
3.2. Studies Supporting the IOP-Independent Therapies for the Treatment of NTG
4. The Pharmacological Approaches in NTG Therapy
4.1. IOP-Dependent Therapies: The Drugs Used to Reduce the IOP in NTG
4.2. The IOP-Independent Therapies
- (1)
- Maintenance and/or increase of the ONH blood perfusion and/or oxygenation;
- (2)
- Neuro-protection, i.e., prevention and/or reduction of the degeneration and death of the RGCs, and/or RGCs regeneration.
4.2.1. Dietary Supplements in the NTG Treatment
- Vasodilatation and enhancement of the cerebral blood flow;
- Antioxidant properties related to its free radical scavenging activity;
- Anti-inflammatory effect, inducing a decrease in the levels of the pro-inflammatory prostaglandins and cytokines;
- Regulation of mitochondrial activity, especially by reducing the mitochondria’s oxidative stress;
- Anti-apoptotic activity by the downregulation of pro-apoptotic genes;
- Hemorheological regulation effect, by increasing the erythrocyte deformability and because of a fibrinolytic effect;
- Neuroprotective activity: GBE provides neuroprotection against ROS, calcium overload, nitric oxide and beta-amyloid-induced toxicity and ischemic-reperfusion-inducing toxicity;
- Neurotransmission regulation, by regulating the gene expression of neurotransmitter receptors;
- Hormonal regulation: GBE increases the expression of several hormones, such as thyroid, growth hormones and prolactin, which are essential for neuronal proliferation and differentiation, cognitive capacity related to memory, alertness, motivation and working capacity, and it has been proven to be beneficial in the treatment of cognitive disorders, including dementia;
- Anti-neoplastic activity, by regulating the expression of proteins involved in DNA damage signaling, repair and gene expression.
- Absence of statistically significant effect on the IOP values;
- Significantly higher peri-papillary blood flow when compared to placebo;
- Controversial results on the VF indices;
- Significant delay in the VF loss progression.
4.2.2. Drugs Used for Their IOP-Independent Effects in NTG Patients
- To improve the ONH and choroidal in healthy and glaucoma subjects, especially in NTG patients, by inducing vasodilatation in the posterior ciliary arteries, which has been demonstrated using color Doppler imaging and laser Doppler flowmetry;
- To slow the progression of VFs defects and ONH damage in NTG, whereas the efficacy in POAG patients is debated;
- To increase VF indices and color contrast sensitivity in NTG patients;
- To reduce the glutaminergic neurotoxicity on the RGCs both in vitro and in glaucoma animal models, suggesting neuroprotective properties;
- To induce systemic hypotension that may theoretically decrease the ONH perfusion. For this reason, the use of CCBs in glaucoma, especially in NTG, is controversial. Many authors suggest avoiding systemic anti-hypertensive medication and local beta-blockers at nighttime, because both beta-blockers and CCBs may have a negative impact on the perfusion and oxygenation of the ocular tissues [42,71,78,118].
5. NTG Prognosis, Considerations about the Available Pharmacological Approaches, Future Perspectives and Conclusions
- -
- To avoid nonselective topical beta-blockers in the evening;
- -
- To avoid any systemic anti-hypertensive medications at nighttime, because both beta-blockers and calcium channel blockers may have a negative impact on ONH perfusion and oxygenation;
- -
- To implement the diet with antioxidants;
- -
- To diagnose and possibly treat the systemic disorders typically associated with the NTG, such as systemic hyper- and hypotension, OSAS, hyperlipidemia, hyperglycemia, anemia, congestive heart failure, transient ischemic attacks, cardiac arrhythmias and vitamin deficiencies.
- -
- Neurotrophic factors that are important for neurons growth, differentiation and survival;
- -
- Gene therapy that can protect RGCs by transferring some foreign genes;
- -
- Stem-cells-based therapy that can integrate and replace dead RGCs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jonas, J.B.; Aung, T.; Bourne, R.R.; Bron, A.M.; Ritch, R.; Panda-Jonas, S. Glaucoma. Lancet 2017, 390, 2183–2193. [Google Scholar] [CrossRef]
- Kang, J.M.; Tanna, A.P. Glaucoma. Med. Clin. N. Am. 2021, 105, 493–510. [Google Scholar] [CrossRef] [PubMed]
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br. J. Ophthalmol. 2021, 105 (Suppl. S1), 1–169. [CrossRef] [PubMed]
- Von Graefe, A. Iridectomie bei Glaucom and ueber den glaucomatosen Pozess. Graefe’s Arch. Clin. Exp. Ophthalmol. 1857, 3, 456–650. [Google Scholar] [CrossRef]
- Gosling, D.; Meyer, J.J. Normal Tension Glaucoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gedde, S.J.; Vinod, K.; Wright, M.M.; Muir, K.W.; Lind, J.T.; Chen, P.P.; Li, T.; Mansberger, S.L. American Academy of Ophthalmology Preferred Practice Pattern Glaucoma Panel. Primary Open-Angle Glaucoma Preferred Practice Pattern®. Ophthalmology 2021, 128, P71–P150. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.M.; Wu, C.M.; Young, B.K.; Wu, D.J.; Chen, A.; Margo, C.E.; Greenberg, P.B. Evaluation of primary open-angle glaucoma clinical practice guidelines. Can. J. Ophthalmol. 2015, 50, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Asia-Pacific Glaucoma Society (APGS). Amsterdam, The Netherlands: Kugler Publications, 3th Edition. 2016. Available online: https://www.apglaucomasociety.org/Public/Public/Resources/APGG.aspx (accessed on 7 August 2023).
- Kiuchi, Y.; Inoue, T.; Shoji, N.; Nakamura, M.; Tanito, M. Glaucoma Guideline Preparation Committee, Japan Glaucoma Society. The Japan Glaucoma Society guidelines for glaucoma 5th edition. Jpn. J. Ophthalmol. 2023, 67, 189–254. [Google Scholar] [CrossRef]
- Klein, B.E.; Klein, R.; Sponsel, W.E.; Franke, T.; Cantor, L.B.; Martone, J.; Menage, M.J. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology 1992, 99, 1499–1504. [Google Scholar] [CrossRef]
- Zhao, J.; Solano, M.M.; Oldenburg, C.E.; Liu, T.; Wang, Y.; Wang, N.; Lin, S.C. Prevalence of Normal-Tension Glaucoma in the Chinese Population: A Systematic Review and Meta-Analysis. Am. J. Ophthalmol. 2019, 199, 101–110. [Google Scholar] [CrossRef]
- Greenfield, D.S. Glaucomatous versus nonglaucomatous optic disc cupping: Clinical differentiation. Semin. Ophthalmol. 1999, 14, 95–108. [Google Scholar] [CrossRef]
- Fard, M.A.; Moghimi, S.; Sahraian, A.; Ritch, R. Optic nerve head cupping in glaucomatous and non-glaucomatous optic neuropathy. Br. J. Ophthalmol. 2019, 103, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Senthil, S.; Nakka, M.; Sachdeva, V.; Goyal, S.; Sahoo, N.; Choudhari, N. Glaucoma Mimickers: A major review of causes, diagnostic evaluation, and recommendations. Semin. Ophthalmol. 2021, 36, 692–712. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Lee, E.J.; Kim, T.W.; Yang, H.K.; Hwang, J.M. Comparison of Optic Nerve Head Microvasculature Between Normal-Tension Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 15. [Google Scholar] [CrossRef] [PubMed]
- Waisberg, E.; Micieli, J.A. Neuro-Ophthalmological Optic Nerve Cupping: An Overview. Eye Brain 2021, 13, 255–268. [Google Scholar] [CrossRef]
- Fan, N.; Tan, J.; Liu, X. Is “normal tension glaucoma” glaucoma? Med. Hypotheses 2019, 133, 109405. [Google Scholar] [CrossRef]
- Kim, J.H.; Caprioli, J. Intraocular Pressure Fluctuation: Is It Important? J. Ophthalmic Vis. Res. 2018, 13, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, T.; Balakrishna, N. Effect of central corneal thickness on intraocular pressure and comparison of Topcon CT-80 non-contact tonometry with Goldmann applanation tonometry. Clin. Exp. Optom. 2018, 101, 206–212. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, A.; Hang, Q.; Li, L.; Zhang, S.; Cheng, G.; Zhou, Q. Corneal Biomechanical Properties of various types of glaucoma and their impact on measurement of intraocular pressure. Ophthalmic Res. 2023, 66, 742–749. [Google Scholar] [CrossRef]
- Shields, M.B. Normal-tension glaucoma: Is it different from primary open-angle glaucoma? Curr. Opin. Ophthalmol. 2008, 19, 85–88. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, X. Retinal Ganglion Cell Death in Glaucoma: Advances and Caveats. Curr. Eye Res. 2023, 48, 1–10. [Google Scholar] [CrossRef]
- Adeghate, J.; Rahmatnejad, K.; Waisbourd, M.; Katz, L.J. Intraocular pressure-independent management of normal tension glaucoma. Surv. Ophthalmol. 2019, 64, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, W.S.; Ahmed, O.M.; Waisbourd, M.; Katz, L.J. A review of potential novel glaucoma therapeutic options independent of intraocular pressure. Surv. Ophthalmol. 2022, 67, 1062–1080. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, Y.; Yao, K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp. Eye Res. 2021, 205, 108506. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.C.; Huang, B.Q.; Yang, J. Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural. Regen. Res. 2023, 18, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.J.; Fan, C.L.; Hu, X.M.; Ban, X.X.; Wan, H.; He, Y.; Zhang, Q.; Xiong, K. Regulated Cell Death of Retinal Ganglion Cells in Glaucoma: Molecular Insights and Therapeutic Potentials. Cell. Mol. Neurobiol. 2023. ahead of print. [Google Scholar] [CrossRef]
- Kerrigan-Baumrind, L.A.; Quigley, H.A.; Pease, M.E.; Kerrigan, D.F.; Mitchell, R.S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig. Ophthalmol. Vis. Sci. 2000, 41, 741–748. [Google Scholar]
- Zhang, H.J.; Mi, X.S.; So, K.F. Normal tension glaucoma: From the brain to the eye or the inverse? Neural. Regen. Res. 2019, 14, 1845–1850. [Google Scholar] [CrossRef]
- Killer, H.E.; Pircher, A. Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. Eye Lond. 2018, 32, 924–930. [Google Scholar] [CrossRef]
- Trivli, A.; Koliarakis, I.; Terzidou, C.; Goulielmos, G.N.; Siganos, C.S.; Spandidos, D.A.; Dalianis, G.; Detorakis, E.T. Normal-tension glaucoma: Pathogenesis and genetics. Exp. Ther. Med. 2019, 17, 563–574. [Google Scholar] [CrossRef]
- Leung, D.Y.L.; Tham, C.C. Normal-tension glaucoma: Current concepts and approaches—A review. Clin. Exp. Ophthalmol. 2022, 50, 247–259. [Google Scholar] [CrossRef]
- Tojo, N.; Hayashi, A. Twenty-Four-Hour Intraocular Pressure Indicators Distinguish Normal Tension Glaucoma From Healthy Eyes Measured With a Contact Lens Sensor. J. Glaucoma 2022, 31, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Sakata, R.; Aihara, M.; Murata, H.; Saito, H.; Iwase, A.; Yasuda, N.; Araie, M. Intraocular pressure change over a habitual 24-hour period after changing posture or drinking water and related factors in normal tension glaucoma. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5313–5320. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.U.; Ha, A.; Kim, D.W.; Jeoung, J.W.; Park, K.H.; Kim, Y.K. Risk factors for disease progression in low-teens normal-tension glaucoma. Br. J. Ophthalmol. 2020, 104, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Dinakaran, S.; Mehta, P.; Mehta, R.; Tilva, B.; Arora, D.; Tejwani, S. Significance of non-intraocular pressure (IOP)-related factors particularly in normal tension glaucoma: Looking beyond IOP. Indian J. Ophthalmol. 2022, 70, 569–573. [Google Scholar] [CrossRef]
- Agnifili, L.; Mastropasqua, R.; Frezzotti, P.; Fasanella, V.; Motolese, I.; Pedrotti, E.; Di Iorio, A.; Mattei, P.A.; Motolese, E.; Mastropasqua, L. Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmol. 2015, 93, e14–e21. [Google Scholar] [CrossRef]
- Morad, Y.; Sharon, E.; Hefetz, L.; Nemet, P. Corneal thickness and curvature in normal-tension glaucoma. Am. J. Ophthalmol. 1998, 125, 164–168. [Google Scholar] [CrossRef]
- Wei, Y.H.; Cai, Y.; Choy, B.N.K.; Li, B.B.; Li, R.S.; Xing, C.; Wang, X.; Tian, T.; Fang, Y.; Li, M.; et al. Comparison of corneal biomechanics among primary open-angle glaucoma with normal tension or hypertension and controls. Chin. Med. J. Engl. 2021, 134, 1087–1092. [Google Scholar] [CrossRef]
- Nucci, C.; Russo, R.; Martucci, A.; Giannini, C.; Garaci, F.; Floris, R.; Bagetta, G.; Morrone, L.A. New strategies for neuroprotection in glaucoma, a disease that affects the central nervous system. Eur. J. Pharmacol. 2016, 787, 119–126. [Google Scholar] [CrossRef]
- Harada, C.; Noro, T.; Kimura, A.; Guo, X.; Namekata, K.; Nakano, T.; Harada, T. Suppression of Oxidative Stress as Potential Therapeutic Approach for Normal Tension Glaucoma. Antioxidants 2020, 9, 874. [Google Scholar] [CrossRef]
- Quaranta, L.; Katsanos, A.; Russo, A.; Riva, I. 24-hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv. Ophthalmol. 2013, 58, 26–41. [Google Scholar] [CrossRef]
- Fan, N.; Wang, P.; Tang, L.; Liu, X. Ocular Blood Flow and Normal Tension Glaucoma. BioMed Res. Int. 2015, 2015, 308505. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Jo, Y.H.; Song, M.K.; Won, H.J.; Kook, M.S. Nocturnal blood pressure dip and parapapillary choroidal microvasculature dropout in normal-tension glaucoma. Sci. Rep. 2021, 11, 206. [Google Scholar] [CrossRef]
- Konieczka, K.; Flammer, J. Treatment of Glaucoma Patients with Flammer Syndrome. J. Clin. Med. 2021, 10, 4227. [Google Scholar] [CrossRef]
- Xu, C.; Li, J.; Li, Z.; Mao, X. Migraine as a risk factor for primary open angle glaucoma: A systematic review and meta-analysis. Med. Baltim. 2018, 97, e11377. [Google Scholar] [CrossRef]
- Chuang, L.H.; Koh, Y.Y.; Chen, H.S.L.; Lo, Y.L.; Yu, C.C.; Yeung, L.; Lai, C.C. Normal tension glaucoma in obstructive sleep apnea syndrome: A structural and functional study. Med. Baltim. 2020, 99, e19468. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jeoung, J.W.; Park, K.H.; Oh, W.H.; Choi, H.J.; Kim, D.M. Metabolic syndrome as a risk factor in normal-tension glaucoma. Acta Ophthalmol. 2014, 92, e637–e643. [Google Scholar] [CrossRef]
- Shim, S.H.; Kim, J.M.; Woo, H.Y.; Shin, K.U.; Koh, J.W.; Park, K.H. Association Between Platelet Function and Disc Hemorrhage in Patients With Normal-Tension Glaucoma: A Prospective Cross-Sectional Study. Am. J. Ophthalmol. 2015, 160, 1191–1199.e1. [Google Scholar] [CrossRef]
- Sugiyama, T.; Moriya, S.; Oku, H.; Azuma, I. Association of endothelin-1 with normal tension glaucoma: Clinical and fundamental studies. Surv. Ophthalmol. 1995, 39 (Suppl. S1), S49–S56. [Google Scholar] [CrossRef] [PubMed]
- Boccuni, I.; Fairless, R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life 2022, 12, 638. [Google Scholar] [CrossRef]
- Johnson, E.C.; Guo, Y.; Cepurna, W.O.; Morrison, J.C. Neurotrophin roles in retinal ganglion cell survival: Lessons from rat glaucoma models. Exp. Eye Res. 2009, 88, 808–815. [Google Scholar] [CrossRef]
- Cha, Y.W.; Kim, S.T. Serum and aqueous humor levels of brain-derived neurotrophic factor in patients with primary open-angle glaucoma and normal-tension glaucoma. Int. Ophthalmol. 2021, 41, 3869–3875. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska-Nowak, A.; Kosior-Jarecka, E.; Schab, A.; Wrobel-Dudzinska, D.; Bartnik, E.; Zarnowski, T.; Tonska, K. Investigation of whole mitochondrial genome variation in normal tension glaucoma. Exp. Eye Res. 2019, 178, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Lai, Y.J.; Yen, Y.F.; Shen, Y.C.; Wang, C.Y.; Liang, C.Y.; Lin, K.H.; Fan, L.W. Association between normal tension glaucoma and the risk of Alzheimer’s disease: A nationwide population-based cohort study in Taiwan. BMJ Open 2018, 8, e022987. [Google Scholar] [CrossRef]
- Vohra, R.; Tsai, J.C.; Kolko, M. The role of inflammation in the pathogenesis of glaucoma. Surv. Ophthalmol. 2013, 58, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Baudouin, C.; Kolko, M.; Melik-Parsadaniantz, S.; Messmer, E.M. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog. Retin. Eye Res. 2021, 83, 100916. [Google Scholar] [CrossRef] [PubMed]
- Von Thun Und Hohenstein-Blaul, N.; Bell, K.; Pfeiffer, N.; Grus, F.H. Autoimmune aspects in glaucoma. Eur. J. Pharmacol. 2016, 787, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Joachim, S.C.; Bruns, K.; Lackner, K.J.; Pfeiffer, N.; Grus, F.H. Antibodies to alpha B-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and IgG antibody patterns against retinal antigen in aqueous humor. Curr. Eye Res. 2007, 32, 501–509. [Google Scholar] [CrossRef]
- Pircher, A.; Montali, M.; Wostyn, P.; Pircher, J.; Berberat, J.; Remonda, L.; Killer, H.E. Impaired cerebrospinal fluid dynamics along the entire optic nerve in normal-tension glaucoma. Acta Ophthalmol. 2018, 96, e562–e569. [Google Scholar] [CrossRef]
- Berdahl, J.P.; Fautsch, M.P.; Stinnett, S.S.; Allingham, R.R. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: A case-control study. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5412–5418. [Google Scholar] [CrossRef]
- Kiuchi, T.; Motoyama, Y.; Oshika, T. Relationship of progression of visual field damage to postural changes in intraocular pressure in patients with normal-tension glaucoma. Ophthalmology 2006, 113, 2150–2155. [Google Scholar] [CrossRef]
- Demer, J.L.; Clark, R.A.; Suh, S.Y.; Giaconi, J.A.; Nouri-Mahdavi, K.; Law, S.K.; Bonelli, L.; Coleman, A.L.; Caprioli, J. Magnetic Resonance Imaging of Optic Nerve Traction During Adduction in Primary Open-Angle Glaucoma With Normal Intraocular Pressure. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4114–4125. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, P.; O’Brien, C. Corneal Hysteresis, Intraocular Pressure, and Progression of Glaucoma: Time for a “Hyst-Oric” Change in Clinical Practice? J. Clin. Med. 2022, 11, 2895. [Google Scholar] [CrossRef] [PubMed]
- Daugeliene, L.; Yamamoto, T.; Kitazawa, Y. Effect of trabeculectomy on visual field in progressive normal-tension glaucoma. Jpn. J. Ophthalmol. 1998, 42, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am. J. Ophthalmol. 1998, 126, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M.; Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef]
- Razeghinejad, M.R.; Lee, D. Managing normal tension glaucoma by lowering the intraocular pressure. Surv. Ophthalmol. 2019, 64, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R.; Drance, S.M.; Schulzer, M.; Collaborative Normal-Tension Glaucoma Study Group. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am. J. Ophthalmol. 2003, 136, 820–829. [Google Scholar] [CrossRef]
- Krupin, T.; Liebmann, J.M.; Greenfield, D.S.; Ritch, R.; Gardiner, S.; Low-Pressure Glaucoma Study Group. A randomized trial of brimonidine versus timolol in preserving visual function: Results from the Low-Pressure Glaucoma Treatment Study. Am. J. Ophthalmol. 2011, 151, 671–681, Erratum in Am. J. Ophthalmol. 2011, 151, 1108. [Google Scholar] [CrossRef]
- Hoyng, P.F.; Kitazawa, Y. Medical treatment of normal tension glaucoma. Surv. Ophthalmol. 2002, 47 (Suppl. S1), S116–S124. [Google Scholar] [CrossRef]
- Islam, S.; Spry, C. Prostaglandin Analogues for Ophthalmic Use: A Review of Comparative Clinical Effectiveness, Cost-Effectiveness, and Guidelines [Internet]; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2020. [Google Scholar]
- Kim, J.M.; Sung, K.R.; Kim, H.K.; Park, S.W.; Lee, E.J.; Jeoung, J.W.; Park, H.L.; Ahn, J.; Yoo, C.; Kim, C.Y. Long-Term Effectiveness and Safety of Tafluprost, Travoprost, and Latanoprost in Korean Patients with Primary Open-Angle Glaucoma or Normal-Tension Glaucoma: A Multicenter Retrospective Cohort Study (LOTUS Study). J. Clin. Med. 2021, 10, 2717. [Google Scholar] [CrossRef]
- Orzalesi, N.; Rossetti, L.; Invernizzi, T.; Bottoli, A.; Autelitano, A. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2566–2573. [Google Scholar]
- McKibbin, M.; Menage, M.J. The effect of once-daily latanoprost on intraocular pressure and pulsatile ocular blood flow in normal tension glaucoma. Eye Lond. 1999, 13 Pt 1, 31–34. [Google Scholar] [CrossRef]
- Yamagishi, R.; Aihara, M.; Araie, M. Neuroprotective effects of prostaglandin analogues on retinal ganglion cell death independent of intraocular pressure reduction. Exp. Eye Res. 2011, 93, 265–270. [Google Scholar] [CrossRef]
- Mehran, N.A.; Sinha, S.; Razeghinejad, R. New glaucoma medications: Latanoprostene bunod, netarsudil, and fixed combination netarsudil-latanoprost. Eye Lond. 2020, 34, 72–88. [Google Scholar] [CrossRef]
- Nocentini, A.; Supuran, C.T. Adrenergic agonists and antagonists as antiglaucoma agents: A literature and patent review (2013–2019). Expert Opin. Ther. Pat. 2019, 29, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.; Flack, J.; Patel, M.; Lombera, S. Insights on β-blockers for the treatment of hypertension: A survey of health care practitioners. J. Clin. Hypertens Greenwich 2018, 20, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- Henness, S.; Swainston Harrison, T.; Keating, G.M. Ocular carteolol: A review of its use in the management of glaucoma and ocular hypertension. Drugs Aging 2007, 24, 509–528. [Google Scholar] [CrossRef]
- Dong, Y.; Ishikawa, H.; Wu, Y.; Yoshitomi, T. Vasodilatory mechanism of levobunolol on vascular smooth muscle cells. Exp. Eye Res. 2007, 84, 1039–1046. [Google Scholar] [CrossRef]
- Al-Wadei, M.J.; Bakheit, A.H.; Abdel-Aziz, A.A.; Wani, T.A. Betaxolol: A comprehensive profile. Profiles Drug Subst. Excip. Relat. Methodol. 2021, 46, 91–136. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Podhajsky, P.; Zimmerman, M.B. Beta-blocker eyedrops and nocturnal arterial hypotension. Am. J. Ophthalmol. 1999, 128, 301–309. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y.J. Carvedilol Promotes Retinal Ganglion Cell Survival Following Optic Nerve Injury via ASK1-p38 MAPK Pathway. CNS Neurol. Disord Drug Targets 2019, 18, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Szumny, D.; Szeląg, A. The influence of new beta-adrenolytics nebivolol and carvedilol on intraocular pressure and iris blood flow in rabbits. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Hassan, D.H.; Abdelmonem, R.; Abdellatif, M.M. Formulation and Characterization of Carvedilol Leciplex for Glaucoma Treatment: In-Vitro, Ex-Vivo and In-Vivo Study. Pharmaceutics 2018, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, O.; Galambos, P.; Matthiesen, N.; Wagenfeld, L.; Schillinger, W.; Wiermann, A.; Richard, G.; Klemm, M. Effects of the systemic beta-adrenoceptor antagonist nebivolol on ocular hemodynamics in glaucoma patients. Med. Sci. Monit. 2008, 14, CR268–CR275. [Google Scholar]
- di NLešták, J.; Fůs, M.; Weissová, I.; Marešová, K. Betaxolol, Brimonidin and Carteolol in the Therapy of Normal-Tension Glaucoma. Cesk Slov. Oftalmol. 2020, 76, 94–97. (In English) [Google Scholar] [CrossRef]
- Oh, D.J.; Chen, J.L.; Vajaranant, T.S.; Dikopf, M.S. Brimonidine tartrate for the treatment of glaucoma. Expert Opin. Pharmacother. 2019, 20, 115–122. [Google Scholar] [CrossRef]
- Gulati, S.; Aref, A.A. Oral acetazolamide for intraocular pressure lowering: Balancing efficacy and safety in ophthalmic practice. Expert Rev. Clin. Pharmacol. 2021, 14, 955–961. [Google Scholar] [CrossRef]
- Stoner, A.; Harris, A.; Oddone, F.; Belamkar, A.; Verticchio Vercellin, A.C.; Shin, J.; Januleviciene, I.; Siesky, B. Topical carbonic anhydrase inhibitors and glaucoma in 2021: Where do we stand? Br. J. Ophthalmol. 2022, 106, 1332–1337. [Google Scholar] [CrossRef]
- Skaat, A.; Rosman, M.S.; Chien, J.L.; Mogil, R.S.; Ren, R.; Liebmann, J.M.; Ritch, R.; Park, S.C. Effect of Pilocarpine Hydrochloride on the Schlemm Canal in Healthy Eyes and Eyes With Open-Angle Glaucoma. JAMA Ophthalmol. 2016, 134, 976–981. [Google Scholar] [CrossRef]
- Schulzer, M.; The Normal Tension Glaucoma Study Group. Intraocular pressure reduction in normal-tension glaucoma patients. Ophthalmology 1992, 99, 1468–1470. [Google Scholar] [CrossRef]
- Tanna, A.P.; Johnson, M. Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension. Ophthalmology 2018, 125, 1741–1756. [Google Scholar] [CrossRef] [PubMed]
- Ha, A.; Kim, Y.K.; Jeoung, J.W.; Satyal, S.; Kim, J.; Kim, S.; Park, K.H. Sovesudil (locally acting rho kinase inhibitor) for the treatment of normal-tension glaucoma: The randomized phase II study. Acta Ophthalmol. 2022, 100, e470–e477. [Google Scholar] [CrossRef] [PubMed]
- Serle, J.B.; Katz, L.J.; McLaurin, E.; Heah, T.; Ramirez-Davis, N.; Usner, D.W.; Novack, G.D.; Kopczynski, C.C.; ROCKET-1 and ROCKET-2 Study Groups. Two Phase 3 Clinical Trials Comparing the Safety and Efficacy of Netarsudil to Timolol in Patients With Elevated Intraocular Pressure: Rho Kinase Elevated IOP Treatment Trial 1 and 2 (ROCKET-1 and ROCKET-2). Am. J. Ophthalmol. 2018, 186, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Lusthaus, J.; Goldberg, I. Current management of glaucoma. Med. J. Aust. 2019, 210, 180–187. [Google Scholar] [CrossRef]
- Adornetto, A.; Rombolà, L.; Morrone, L.A.; Nucci, C.; Corasaniti, M.T.; Bagetta, G.; Russo, R. Natural Products: Evidence for Neuroprotection to Be Exploited in Glaucoma. Nutrients 2020, 12, 3158. [Google Scholar] [CrossRef]
- Chaudhry, S.; Dunn, H.; Carnt, N.; White, A. Nutritional supplementation in the prevention and treatment of glaucoma. Surv. Ophthalmol. 2022, 67, 1081–1098. [Google Scholar] [CrossRef]
- Fahmideh, F.; Marchesi, N.; Barbieri, A.; Govoni, S.; Pascale, A. Non-drug interventions in glaucoma: Putative roles for lifestyle, diet and nutritional supplements. Surv. Ophthalmol. 2022, 67, 675–696. [Google Scholar] [CrossRef]
- Mohan, N.; Chakrabarti, A.; Nazm, N.; Mehta, R.; Edward, D.P. Newer advances in medical management of glaucoma. Indian J. Ophthalmol. 2022, 70, 1920–1930. [Google Scholar] [CrossRef]
- Sim, R.H.; Sirasanagandla, S.R.; Das, S.; Teoh, S.L. Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients 2022, 14, 534. [Google Scholar] [CrossRef]
- Labkovich, M.; Jacobs, E.B.; Bhargava, S.; Pasquale, L.R.; Ritch, R. Ginkgo Biloba Extract in Ophthalmic and Systemic Disease, With a Focus on Normal-Tension Glaucoma. Asia Pac. J. Ophthalmol. Phila 2020, 9, 215–225. [Google Scholar] [CrossRef]
- Mori, A.; Ezawa, Y.; Asano, D.; Kanamori, T.; Morita, A.; Kashihara, T.; Sakamoto, K.; Nakahara, T. Resveratrol dilates arterioles and protects against N-methyl-d-aspartic acid-induced excitotoxicity in the rat retina. Neurosci. Lett. 2023, 793, 136999. [Google Scholar] [CrossRef] [PubMed]
- Faiq, M.A.; Wollstein, G.; Schuman, J.S.; Chan, K.C. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog. Retin. Eye Res. 2019, 72, 100767. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, S.; Marchini, G.; Caporossi, A.; Scuderi, G.; Tomasso, L.; Brunoro, A. Cytidine 5′-Diphosphocholine (Citicoline): Evidence for a Neuroprotective Role in Glaucoma. Nutrients 2020, 12, 793. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, L.; Iester, M.; Tranchina, L.; Ottobelli, L.; Coco, G.; Calcatelli, E.; Ancona, C.; Cirafici, P.; Manni, G. Can Treatment With Citicoline Eyedrops Reduce Progression in Glaucoma? The Results of a Randomized Placebo-controlled Clinical Trial. J. Glaucoma 2020, 29, 513–520. [Google Scholar] [CrossRef]
- Ahmad, S.S. Coenzyme Q and its role in glaucoma. Saudi J. Ophthalmol. 2020, 34, 45–49. [Google Scholar] [CrossRef]
- Parisi, V.; Centofanti, M.; Gandolfi, S.; Marangoni, D.; Rossetti, L.; Tanga, L.; Tardini, M.; Traina, S.; Ungaro, N.; Vetrugno, M.; et al. Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J. Glaucoma 2014, 23, 391–404. [Google Scholar] [CrossRef]
- Falsini, B.; Marangoni, D.; Salgarello, T.; Stifano, G.; Montrone, L.; Di Landro, S.; Guccione, L.; Balestrazzi, E.; Colotto, A. Effect of epigallocatechin-gallate on inner retinal function in ocular hypertension and glaucoma: A short-term study by pattern electroretinogram. Graefes Arch. Clin. Exp. Ophthalmol. 2009, 247, 1223–1233. [Google Scholar] [CrossRef]
- Nomi, Y.; Iwasaki-Kurashige, K.; Matsumoto, H. Therapeutic Effects of Anthocyanins for Vision and Eye Health. Molecules 2019, 24, 3311. [Google Scholar] [CrossRef]
- Passani, A.; Posarelli, C.; Sframeli, A.T.; Perciballi, L.; Pellegrini, M.; Guidi, G.; Figus, M. Cannabinoids in Glaucoma Patients: The Never-Ending Story. J. Clin. Med. 2020, 9, 3978. [Google Scholar] [CrossRef]
- Jordan, E.; Nguyen, G.N.; Piechot, A.; Kayser, O. Cannabinoids as New Drug Candidates for the Treatment of Glaucoma. Planta Med. 2022, 88, 1267–1274. [Google Scholar] [CrossRef]
- Keppel Hesselink, J.M.; Costagliola, C.; Fakhry, J.; Kopsky, D.J. Palmitoylethanolamide, a Natural Retinoprotectant: Its Putative Relevance for the Treatment of Glaucoma and Diabetic Retinopathy. J. Ophthalmol. 2015, 2015, 430596. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.C.M.; Scudeller, L.; Lumini, C.; Bettio, F.; Picasso, E.; Ruberto, G.; Briola, A.; Mirabile, A.; Paviglianiti, A.; Pasinetti, G.M.; et al. Effect of palmitoylethanolamide on inner retinal function in glaucoma: A randomized, single blind, crossover, clinical trial by pattern-electroretinogram. Sci. Rep. 2020, 10, 10468. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, S.; Opere, C.A.; Singh, S. Unmet needs in glaucoma therapy: The potential role of hydrogen sulfide and its delivery strategies. J. Control. Release 2022, 347, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Kimura, A.; Azuchi, Y.; Akiyama, G.; Noro, T.; Harada, C.; Namekata, K.; Harada, T. Caloric restriction promotes cell survival in a mouse model of normal tension glaucoma. Sci. Rep. 2016, 6, 33950. [Google Scholar] [CrossRef]
- Araie, M.; Mayama, C. Use of calcium channel blockers for glaucoma. Prog. Retin. Eye Res. 2011, 30, 54–71. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Liebmann, J.M.; Cioffi, G.A.; Goldberg, I.; Brandt, J.D.; Johnson, C.A.; Zangwill, L.M.; Schneider, S.; Badger, H.; Bejanian, M. Oral Memantine for the Treatment of Glaucoma: Design and Results of 2 Randomized, Placebo-Controlled, Phase 3 Studies. Ophthalmology 2018, 125, 1874–1885. [Google Scholar] [CrossRef]
- Kimura, A.; Guo, X.; Noro, T.; Harada, C.; Tanaka, K.; Namekata, K.; Harada, T. Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma. Neurosci. Lett. 2015, 588, 108–113. [Google Scholar] [CrossRef]
- Akaiwa, K.; Namekata, K.; Azuchi, Y.; Guo, X.; Kimura, A.; Harada, C.; Mitamura, Y.; Harada, T. Edaravone suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma. Cell Death Dis. 2017, 8, e2934. [Google Scholar] [CrossRef]
- Ha, J.S.; Lee, H.S.; Park, J.Y.; Jeon, J.; Kim, D.K.; Kim, M.; Hwang, H.S.; Kim, T.H.; Ahn, H.K.; Cho, K.S. Relationship between Androgen Deprivation Therapy and Normal-Tension Glaucoma in Patients with Prostate Cancer: A Nationwide Cohort Study. Yonsei Med. J. 2022, 63, 908–914. [Google Scholar] [CrossRef]
- Himori, N.; Ogawa, H.; Ichinose, M.; Nakazawa, T. CPAP therapy reduces oxidative stress in patients with glaucoma and OSAS and improves the visual field. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 939–941. [Google Scholar] [CrossRef]
- Bach-Holm, D.; Jensen, P.K.; Kessing, S.V. Long-term rate of progression and target intraocular pressure in patients with normal-tension glaucoma in clinical care. Acta Ophthalmol. 2018, 96, e1034–e1035. [Google Scholar] [CrossRef] [PubMed]
- Sakata, R.; Yoshitomi, T.; Iwase, A.; Matsumoto, C.; Higashide, T.; Shirakashi, M.; Aihara, M.; Sugiyama, K.; Araie, M.; Lower Normal Pressure Glaucoma Study Members in Japan Glaucoma Society. Factors Associated with Progression of Japanese Open-Angle Glaucoma with Lower Normal Intraocular Pressure. Ophthalmology 2019, 126, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Sawada, A.; Rivera, J.A.; Takagi, D.; Nishida, T.; Yamamoto, T. Progression to Legal Blindness in Patients with Normal Tension Glaucoma: Hospital-Based Study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3635–3641. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Clemons, T.E.; Agrón, E.; Domalpally, A.; Keenan, T.D.L.; Vitale, S.; Weber, C.; Smith, D.C.; Christen, W.; AREDS2 Research Group. Long-term Outcomes of Adding Lutein/Zeaxanthin and ω-3 Fatty Acids to the AREDS Supplements on Age-Related Macular Degeneration Progression: AREDS2 Report 28. JAMA Ophthalmol. 2022, 140, 692–698. [Google Scholar] [CrossRef] [PubMed]
Substances | IOP-Lowering Effect | OBF Modification | Neuroprotection | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Animal | OAG | NTG | Animal | OAG | NTG | In Vitro | Animal | OAG | NTG | |
Models | Patients | Patients | Models | Patients | Patients | Models | Models | Patients | Patients | |
PGA and prostamide analogs | D | D | D | D > | D > | D > | D | D | ||
Latanoprost | D | D | D | D > | D > | D > | ||||
Travoprost | D | D | D | D > | D > | D > | ||||
Bimatoprost | D | D | D | D > | D > | D > | D | D | ||
Tafluprost | D | D | D | D > | D > | D > | D | D | ||
NO-donating PGA analogs | ||||||||||
Latanoprostene bunod | D | D | D | |||||||
β-adrenergic antagonists | ||||||||||
Timolol | D | D | D | D < | D < | D | D | |||
Carteolol | D | D | D | D > | D > | D | D | S | S | |
Levobunolol | D | D | D | D > | D > | D | D | |||
Betaxolol | D | D | D | D > | D > | D | D | S | S | |
Carvedilol | D | D > | D | D | ||||||
Nebivolol | D | D > | D > | |||||||
α-2-adrenergic agonists | ||||||||||
Brimonidine | D | D | D | D | D | S | S | |||
Carbonic anhydrase inhibitors | ||||||||||
Dorzolamide | D | D | D | D > | D > | D > | D | |||
Brinzolamide | D | D | D | |||||||
Acetazolamide | D | D | D | |||||||
Miotics | ||||||||||
Pilocarpine | D | D | D | S | ||||||
ROCK inh. | ||||||||||
Sovesudil | D | D | D | D > | D > | D | D | |||
Netarsuldil | D | D | D | D > | D > | D | D |
Substances | IOP Changes | OBF Changes | Neuroprotection | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Animal | OAG | NTG | Animal | OAG | NTG | In Vitro | Animal | OAG | NTG | |
Models | Patients | Patients | Models | Patients | Patients | Models | Models | Patients | Patients | |
Flavonoids | D > | D > | D | D | ||||||
Ginkgo biloba extract | D > | D > | D > | D | D | S | S | |||
Camelia sinensis or Green tea | D > | D | D | S | S | |||||
Anthocyanins | D < | D > | D > | D | D | S | S | |||
Epigallocatechin-3-gallate | D | D | S | |||||||
Resveratrol | D | D | ||||||||
Citicoline | D | D | D * | S | ||||||
Coenzyme Q10 (ubiquinone) | D < | D | D | S | ||||||
Forskolin | D < | D < | D | D | S | |||||
Panax Ginseng | D > | D > | D | D | S | |||||
Curcumin | D | D | ||||||||
Cannabinoids | D < | D < | D | |||||||
Palmitoylethanolamide (PEA) | D < | D < | D | S | S | |||||
Nitric oxide (NO) | D < | D < | D < | |||||||
Crocus sativus L. or Saffron | D < | D | D | |||||||
Crocin and Crocetin | D > | D | D | |||||||
Taurine | D | D | ||||||||
Lycium barbarum | D | D | ||||||||
Erigeron Breviscapus Hand. Mazz. | D < | D | S | S | ||||||
Hesperidin | D | D | ||||||||
Scutellaria baicalensis Georgi | D < | D | D | |||||||
Diospyros kaki L. | D < | D | D | |||||||
Tripterygium wilfordii Hook F. | D | D | ||||||||
Lutein and Zeaxanthin | D | D | ||||||||
Caffeine | D < | D </> | D | |||||||
Nicotine | D < | D | D | |||||||
Melatonin | D < | D < | D | D | ||||||
Ethilic alcohol | D </> | |||||||||
Vitamin A (retinol) | S | |||||||||
Vitamin B3 (niacine)/nicotinamide | D | D | S | |||||||
Vitamin B6 (pyridoxine) | D | S | ||||||||
Vitamin B12 (cobalamin) | D | S | ||||||||
Vitamin C (ascorbic acid) | D < | D < | D | D | S | |||||
Vitamin D (cholecalciferol) | D < | D | ||||||||
Vitamin E (alpha-tocopherol) | D > | D | D | S | ||||||
Omega-3 PUFAs | D < | D < | D | |||||||
Alfa-lipoic acid | D | D | ||||||||
Apolipoprotein-E | D | D | ||||||||
Zinc | D | D | ||||||||
Magnesium | D > | D | D | |||||||
Hydrogen sulfide | D < | D | ||||||||
Creatine | D | |||||||||
Spermidine | D | D | ||||||||
Nuclear factor-kappa B | D | D |
Substances | IOP-Lowering Effect | Ocular Blood Flow Alteration | Neuro-Protection | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Animal | OAG | NTG | Animal | OAG | NTG | In Vitro | Animal | OAG | NTG | |
Models | Patients | Patients | Models | Patients | Patients | Models | Models | Patients | Patients | |
Calcium channel blockers | D >/< | D >/< | D >/< | D | D | S | S | |||
Memantine | D | S | ||||||||
ACEIs | D | D | D | |||||||
Anticonvulsants (valproic acid) | D | D | ||||||||
Edaravone | D | |||||||||
N-acetylcysteine | D | |||||||||
Statins | S | S | ||||||||
Androgen deprivation therapy | S | S | ||||||||
Minocycline | D | |||||||||
Azithromycin | D | |||||||||
cAMP PI | D | |||||||||
C-PAP | S | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvetat, M.L.; Pellegrini, F.; Spadea, L.; Salati, C.; Zeppieri, M. Pharmaceutical Approaches to Normal Tension Glaucoma. Pharmaceuticals 2023, 16, 1172. https://doi.org/10.3390/ph16081172
Salvetat ML, Pellegrini F, Spadea L, Salati C, Zeppieri M. Pharmaceutical Approaches to Normal Tension Glaucoma. Pharmaceuticals. 2023; 16(8):1172. https://doi.org/10.3390/ph16081172
Chicago/Turabian StyleSalvetat, Maria Letizia, Francesco Pellegrini, Leopoldo Spadea, Carlo Salati, and Marco Zeppieri. 2023. "Pharmaceutical Approaches to Normal Tension Glaucoma" Pharmaceuticals 16, no. 8: 1172. https://doi.org/10.3390/ph16081172
APA StyleSalvetat, M. L., Pellegrini, F., Spadea, L., Salati, C., & Zeppieri, M. (2023). Pharmaceutical Approaches to Normal Tension Glaucoma. Pharmaceuticals, 16(8), 1172. https://doi.org/10.3390/ph16081172