Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin
Abstract
:1. Introduction
2. Results
2.1. Chemical Profile of Microalgae
2.2. Spirulina for the Needs of Persons with Skin Diseases
2.3. Pro-Health Effects of Microalgae on Skin
2.3.1. Antiviral Effect
2.3.2. Antibacterial and Antifungal Activity
2.3.3. Alleviation of Acne Symptoms
2.3.4. Exfoliating Effects
2.3.5. Healing Effect
2.3.6. Photoprotective Effect
2.4. Contraindications
2.5. Application in Industry
2.6. Spirulina-Based Commercial Skin Care Products
2.7. Strengths and Limitations
2.8. Future Research
3. Material and Research Methods
3.1. Comparative Analysis of Selected Properties of Microalgae
3.2. Phrases and Scientific Databases
3.3. Number of Publications Found and Source Analysis Method
3.4. Current Number of Citations of Analysed Publications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Ocampo, M.F.; Rodriguez, B.; Chen, J. Resveratrol and spirulina: Nutraceuticals that potentially improving cardiovascular disease. J. Cardiovasc. Med. Cardiol. 2020, 7, 138–145. [Google Scholar] [CrossRef]
- Ratha, S.K.; Renuka, N.; Rawat, I.; Bux, F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition 2021, 83, 111089. [Google Scholar] [CrossRef]
- Ikeda, I.K.; Sydney, E.B.; Sydney, A.C.N. Potential application of Spirulina in dermatology. J. Cosmet. Dermatol. 2022, 21, 4205–4214. [Google Scholar] [CrossRef]
- Gheda, S.; El-Zaher, E.H.F.A.; Abou-Zeid, A.M.; Bedair, N.A.; Pereira, L. Potential activity of Arthrospira platensis as antioxidant, cytotoxic and antifungal against some skin diseases: Topical cream application. Mar. Drugs 2023, 21, 160. [Google Scholar] [CrossRef]
- Priyanka, S.; Varsha, R.; Verma, R.; Ayenampudi, S.B. Spirulina: A spotlight on its nutraceutical properties and food processing applications. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e4785. [Google Scholar] [CrossRef]
- Terzioğlu, M.E.; Edebali, E.; Bakirci, İ. Investigation of the elemental contents, functional and nutraceutical properties of kefirs enriched with Spirulina platensis, an eco-friendly and alternative protein source. Biol. Trace Elem. Res. 2024, 202, 2878–2890. [Google Scholar] [CrossRef]
- Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for skin care: A bright blue future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Papini, A.; Falsini, S.; Karssa, T.H. Taxonomy and species delimitation in cyanobacteria. Preprints 2021, 2021030212. [Google Scholar] [CrossRef]
- Michael, A.; Kyewalyanga, M.S.; Lugomela, C.V. Biomass and nutritive value of spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Ann. Microbiol. 2019, 69, 1387–1395. [Google Scholar] [CrossRef]
- Roussel, T.; Halary, S.; Duval, C.; Piquet, B.; Cadoret, J.P.; Vernès, L.; Bernard, C.; Marie, B. Monospecific renaming within the cyanobacterial genus Limnospira (Spirulina) and consequences for food authorization. J. Appl. Microbiol. 2023, 134, 1–15. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhou, T.; Cao, L.; Cai, Y.; Wang, Y.; Cui, X.; Yan, H.; Ruan, R.; Zhang, Q. Effects of culture conditions on the performance of Arthrospira platensis and its production of exopolysaccharides. Foods 2022, 11, 2020. [Google Scholar] [CrossRef]
- Baby, A.R.; Morocho-Jácome, A.L. Dermocosmetic applications of microalgal pigments. In Advances in Applied Microbiology, 1st ed.; Gadd, G.M., Sariaslani, S., Eds.; Elsevier: London, UK, 2021; Volume 117, pp. 63–93. [Google Scholar]
- Wali, N.M.; Abdljbaar, A.S. Effect of ethanol and alkaloid extract of Spirulina platensis against dermatophyte fungi. Plant. Arch. 2020, 20 (Suppl. S1), 2736–2743. [Google Scholar]
- Ullah, N.; Jaffer, M.; Rehman, S.; Ain, Q.; Shaheen, S. Morpho-anatomical characters of family Oscillatoriaceae (algae) identified using primitive (LM) and advance technique (SEM) from Punjab, Pakistan. Microsc. Res. Tech. 2022, 85, 3397–3410. [Google Scholar] [CrossRef]
- López Rodríguez, A. Caracterización Genética y Determinación del Potencial Biotecnológico de las Cepas del Género Arthrospira Stizenberger (Cyanophyceae) Depositadas en Tres Colecciones de Cultivo de Microalgas: UTEX (USA), CCAP (UK) y CCM-UdeC (Chile); Universidad de Concepción Facultad de Ciencias Naturales Y Oceanográficas Doctorado en Ciencias Biológicas Área Botánica: Concepción, Chile, 2022. [Google Scholar]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef]
- Papapanagiotou, G.; Gkelis, S. Taxonomic revision of commercially used Arthrospira (Cyanobacteria) strains: A polyphasic approach. Eur. J. Phycol. 2019, 54, 595–608. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Maciel, G.M.; Fernandes, I.D.A.A.; Pedro, A.C.; Rubio, F.T.V.; Branco, I.G.; Haminiuk, C.W.I. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem. Mol. Sci. 2022, 5, 100134. [Google Scholar] [CrossRef]
- Gentscheva, G.; Nikolova, K.; Panayotova, V.; Peycheva, K.; Makedonski, L.; Slavov, P.; Radusheva, P.; Petrova, P.; Yotkovska, I. Application of Arthrospira platensis for medicinal purposes and the food industry: A review of the literature. Life 2023, 13, 845. [Google Scholar] [CrossRef]
- Dhandwal, A.; Bashir, O.; Malik, T.; Salve, R.V.; Dash, K.K.; Amin, T.; Shams, R.; Wani, A.W.; Shah, Y.A. Sustainable microalgal biomass as a potential functional food and its applications in food industry: A comprehensive review. Environ. Sci. Poll. Res. 2024, 1–19. [Google Scholar] [CrossRef]
- Singh, G.; Yadav, A.; Chouhan, M. Diverse application of Arthrospira potential herb. J. Drug Deliv. Ther. 2019, 9, 9–10. [Google Scholar]
- Mazur-Marzec, H.; Cegłowska, M.; Konkel, R.; Pyrć, K. Antiviral cyanometabolites—A review. Biomolecules 2021, 11, 474. [Google Scholar] [CrossRef]
- Pradhan, B.; Nayak, R.; Patra, S.; Bhuyan, P.P.; Dash, S.R.; Ki, J.S.; Adhikary, S.P.; Ragusa, A.; Jena, M. Cyanobacteria and algae-derived bioactive metabolites as antiviral agents: Evidence, mode of action, and scope for further expansion; a comprehensive review in light of the SARS-CoV-2 outbreak. Antioxidants 2022, 11, 354. [Google Scholar] [CrossRef]
- Jungclaus, K.; Mascarenhas, R.; Tellechea, O.; Reich, J.L.; Reich, K. Open-label observational study of a topical formulation of calcium spirulan contained in a defined extract of the microalga Spirulina platensis in the treatment of children with molluscum contagiosum. Dermatol. Res. Pract. 2023, 2023, 8871299. [Google Scholar] [CrossRef]
- Saraswathi, K.; Naga Kavitha, C.H. Spirulina: Pharmacological activities and health benefits. J. Young Pharm. 2023, 15, 441–447. [Google Scholar] [CrossRef]
- Ali, A.H.; Moustafa, E.E.; Abdelkader, S.A.; Hafez, S.S.; Abdallah, S.A. Antibacterial potential of macro and microalgae extracts against pathogens relevant to human health. Plant Arch. 2020, 20, 9629–9642. [Google Scholar]
- Abbas, H.S.; Abou Baker, D.H.; Ahmed, E.A. Cytotoxicity and antimicrobial efficiency of selenium nanoparticles biosynthesized by Spirulina platensis. Arch. Microbiol. 2021, 203, 523–532. [Google Scholar] [CrossRef]
- Hidhayati, N.; Agustini, N.W.S.; Apriastini, M.; Diaudin, D.P.A. Bioactive compounds from microalgae Spirulina platensis as antibacterial candidates against pathogen bacteria. J. Kim. Sains Apl. 2022, 25, 41–48. [Google Scholar] [CrossRef]
- Hamad, G.M.; El-Baky, A.; Sharaf, M.M.; Amara, A.A. Volatile compounds, fatty acids constituents, and antimicrobial activity of cultured Spirulina (Arthrospira fusiformis) isolated from Lake Mariout in Egypt. Sci. World J. 2023, 2023, 9919814. [Google Scholar] [CrossRef]
- Afrasiabi, S.; Pourhajibagher, M.; Chiniforush, N.; Aminian, M.; Bahador, A. Anti-biofilm and anti-metabolic effects of antimicrobial photodynamic therapy using chlorophyllin-phycocyanin mixture against Streptococcus mutans in experimental biofilm caries model on enamel slabs. Photodiagnosis. Photodyn. Ther. 2020, 29, 101620. [Google Scholar] [CrossRef]
- Masoudi-Sobhanzadeh, Y.; Pourseif, M.M.; Khalili-Sani, A.; Jafari, B.; Salemi, A.; Omidi, Y. Deciphering anti-biofilm property of Arthrospira platensis—Origin peptides against Staphylococcus aureus. Comput. Biol. Med. 2023, 160, 106975. [Google Scholar] [CrossRef]
- Calella, P.; Di Dio, M.; Cerullo, G.; Di Onofrio, V.; Galle, F.; Liguori, G. Antioxidant, immunomodulatory, and anti-inflammatory effects of Spirulina in disease conditions: A systematic review. Int. J Food Sci. Nutr. 2022, 73, 1047–1056. [Google Scholar] [CrossRef]
- Perna, A.; Hay, E.; Sellitto, C.; Del Genio, E.; De Falco, M.; Guerra, G.; De Luca, A.; De Blasiis, P.; Lucariello, A. Antiinflammatory activities of curcumin and spirulina: Focus on their role against COVID-19. J. Diet. Suppl. 2023, 20, 372–389. [Google Scholar] [CrossRef]
- Kaipa, V.R.K.; Asif, S.M.; Assiri, K.I.; Saquib, S.A.; Arem, S.A.; Sree, S.; Yassin, S.M.; Ibrahim, M.; Shariff, M.; Shamsudeen, S.M.; et al. Antioxidant effect of spirulina in chronic periodontitis. Medicine 2022, 101, e31521. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Diksha Kumari, A.; Panwar, A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. J. Basic Microbiol. 2022, 62, 1064–1082. [Google Scholar] [CrossRef]
- Ansari, R.; Foroughinia, F.; Dadbakhsh, A.H.; Afsari, F.; Zarshenas, M.M. An overview of pharmacological and clinical aspects of Spirulina. Curr. Drug Discov. Technol. 2023, 20, 74–88. [Google Scholar] [CrossRef]
- Stunda-Zujeva, A.; Berele, M.; Lece, A.; Šķesters, A. Comparison of antioxidant activity in various spirulina containing products and factors affecting it. Sci. Rep. 2023, 13, 4529. [Google Scholar] [CrossRef]
- González, H.; Almirall, I.; Alpízar, J.; de Oca, R.M.; Cerdà, V. Determination of vitamin E in Spirulina platensis extracts and photoprotective creams by multi-syringe chromatography (MSC) and high-performance liquid chromatography (HPLC). Anal. Lett. 2020, 53, 2949–2959. [Google Scholar] [CrossRef]
- Jang, Y.A.; Kim, B.A. Protective effect of spirulina-derived C-phycocyanin against ultraviolet B-induced damage in HaCaT cells. Medicina 2021, 57, 273. [Google Scholar] [CrossRef]
- Resende, D.I.; Ferreira, M.; Magalhães, C.; Lobo, J.S.; Sousa, E.; Almeida, I.F. Trends in the use of marine ingredients in anti-aging cosmetics. Algal Res. 2021, 55, 102273. [Google Scholar] [CrossRef]
- Nova, M.; Citterio, S.; Martegani, E.; Colombo, S. Unraveling the anti-aging properties of phycocyanin from the cyanobacterium Spirulina (Arthrospira platensis). Int. J. Mol. Sci. 2024, 25, 4215. [Google Scholar] [CrossRef]
- Alrubaie, G.; Zaki, N.H.; Al-Hashimi, A.; Khuyon, A. Antibacterial effect of Spirulina platensis extracts on the viability of bacterial species isolated form acne patients in Baghdad. Ann. Romanian Soc. Cell Biol. 2021, 25, 3851–3859. [Google Scholar]
- Hardiningtyas, S.D.; Putri, F.A.; Setyaningsih, I. Antibacterial activity of ethanolic Spirulina platensis extract-water soluble chitosan nanoparticles. IOP Conf. Ser. Earth Environ. Sci. 2022, 1033, 012053. [Google Scholar] [CrossRef]
- Elbialy, Z.I.; Assar, D.H.; Abdelnaby, A.; Asa, S.A.; Abdelhiee, E.Y.; Ibrahim, S.S.; Abdel-Daim, M.M.; Almeer, R.; Atiba, A. Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model. Biomed. Pharmacother. 2021, 137, 111349. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Farahpour, M.R.; Amjadi, S.; Mohammadi, M.; Hamishehkar, H. Nanoliposomal peptides derived from Spirulina platensis protein accelerate full-thickness wound healing. Int. J. Pharm. 2023, 630, 122457. [Google Scholar] [CrossRef]
- Liu, P.; Choi, J.W.; Lee, M.K.; Choi, Y.H.; Nam, T.J. Spirulina protein promotes skin wound repair in a mouse model of full-thickness dermal excisional wound. Int. J. Mol. Med. 2020, 46, 351–359. [Google Scholar] [CrossRef]
- Ghaem Far, Z.; Babajafari, S.; Kojuri, J.; Mohammadi, S.; Nouri, M.; Rostamizadeh, P.; Rahmani, M.H.; Azadian, M.; Ashrafi-Dehkordi, E.; Zareifard, A.; et al. Antihypertensive and antihyperlipemic of spirulina (Arthrospira platensis) sauce on patients with hypertension: A randomized triple-blind placebo-controlled clinical trial. Phytother. Res. 2021, 35, 6181–6190. [Google Scholar] [CrossRef]
- Ahda, M.S.; Permadi, A. Spirulina platensis microalgae as high protein-based products for diabetes treatment. Food Rev. Int. 2023, 284, 1–9. [Google Scholar] [CrossRef]
- Mazloomi, S.M.; Samadi, M.; Davarpanah, H.; Babajafari, S.; Clark, C.C.; Ghaemfar, Z.; Rezaiyan, M.; Mosallanezhad, A.; Shafiee, M.; Rostami, H. The effect of Spirulina sauce, as a functional food, on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease patients: A randomized double-blinded clinical trial. Food Sci. Nutr. 2022, 10, 317–328. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Heidari-soureshjani, R.; Asemi, Z.; Kouchaki, E. The effects of spirulina intake on clinical and metabolic parameters in Alzheimer’s disease: A randomized, double-blind, controlled trial. Phytother. Res. 2023, 37, 2957–2964. [Google Scholar] [CrossRef]
- Abu-Taweel, G.M.; Antonisamy, P.; Arokiyaraj, S.; Kim, H.J.; Kim, S.J.; Park, K.H.; Kim, Y.O. Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. J. Infect. Public Health 2019, 12, 777–782. [Google Scholar] [CrossRef]
- Singh, S.; Dwivedi, V.; Sanyal, D.; Dasgupta, S. Therapeutic and nutritional potential of Spirulina in combating COVID-19 infection. AIJR Prepr. 2020, 49, 2–8. [Google Scholar] [CrossRef]
- Ge, Y.; Kang, Y.K.; Dong, L.; Liu, L.H.; An, G.Y. The efficacy of dietary Spirulina as an adjunct to chemotherapy to improve immune function and reduce myelosuppression in patients with malignant tumors. Transl. Cancer Res. 2019, 8, 1065–1073. [Google Scholar] [CrossRef]
- Hamdy, S.M.; Moawad, B.M.; Mohamed, H.R.; Shabaan, A.M.; Sayed, O.N. Anticancer potential of blue-green algae extract (Spirulina plantesis) and curcumin nanoparticles on ehrlich ascites carcinoma-bearing mice. Egypt. J. Chem. 2024, 67, 335–346. [Google Scholar] [CrossRef]
- Jun, S.Y.; Jang, J.Y.; Yoon, S.J.; Park, J.; Cho, Y.J.; Shin, H.S.; Yang, Y.J. C-Phycocyanin derived from Spirulina maxima attenuates the symptoms of psoriasis in mouse models. Res. Sq. 2020, 1–15. [Google Scholar] [CrossRef]
- Jang, J.Y.; Lee, B.M.; Jun, S.Y.; Yang, Y.J.; Shin, H.S. Attenuation of psoriasis symptoms following treatment with C-phycocyanin from Spirulina maxima in a mouse model. Biotechnol. Bioprocess Eng. 2022, 27, 407–414. [Google Scholar] [CrossRef]
- Józsa, L.; Ujhelyi, Z.; Vasvári, G.; Sinka, D.; Nemes, D.; Fenyvesi, F.; Váradi, J.; Vecsernyés, M.; Szabó, J.; Kalló, G.; et al. Formulation of creams containing Spirulina platensis powder with different nonionic surfactants for the treatment of acne vulgaris. Molecules 2020, 25, 4856. [Google Scholar] [CrossRef]
- Kanjani, V.; Annigeri, R.G.; Revanappa, M.M.; Rani, A. Efficacy of spirulina along with different physiotherapeutic modalities in the management of oral submucous fibrosis. Ann. Maxillofac. Surg. 2019, 9, 23–27. [Google Scholar] [CrossRef]
- Chaitanya, N.C.; Chikte, D.; Kumar, Y.P.; Komali, G.; Yellarthi, S.P.; Reddy, C.S.; Harika, D.P.; Haritha, S.; Al Taie, W.A.; Hatab, N.A.; et al. Efficacy of spirulina 500 mg vs triamcinolone acetonide 0.1% for the treatment of oral lichen planus: A randomized clinical trial. J. Contemp. Dent. Pract. 2022, 23, 553–557. [Google Scholar] [CrossRef]
- Mondal, K.A.; Ahmed, R. Clinical profile of spirulina on skin diseases-a study in tertiary care hospital, Bangladesh. Glob. Acad. J. Med. Sci. 2021, 3, 54–62. [Google Scholar] [CrossRef]
- Costa, G.M.A.; Campos, P.M.B.G.M. Development of cosmetic formulations containing olive extract and Spirulina sp.: Stability and clinical efficacy studies. Cosmetics 2024, 11, 68. [Google Scholar] [CrossRef]
- Yarkent, Ç.; Gürlek, C.; Oncel, S.S. Potential of microalgal compounds in trending natural cosmetics: A review. Sustain. Chem. Pharm. 2020, 17, 100304. [Google Scholar] [CrossRef]
- Fais, G.; Manca, A.; Bolognesi, F.; Borselli, M.; Concas, A.; Busutti, M.; Broggi, G.; Sanna, P.; Castillo-Aleman, Y.M.; Rivero-Jiménez, R.A.; et al. Wide range applications of Spirulina: From earth to space missions. Mar. Drugs 2022, 20, 299. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, T.N.B.T.; Feisal, N.A.S.; Kamaludin, N.H.; Cheah, W.Y.; How, V.; Bhatnagar, A.; Ma, Z.; Show, P.L. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. Bioresour. Technol. 2023, 372, 128661. [Google Scholar] [CrossRef]
- Kazimierska, K.; Kępińska-Pacelik, J.; Biel, W. Arthrospira–nutritional value, health-promoting properties and possible use as an additive in dog nutrition. A review. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2023, 3683, 9–23. [Google Scholar] [CrossRef]
- Pehlivanov, I.; Gentscheva, G.; Nikolova, K.; Andonova, V. Some applications of Arthrospira platensis and algae in pharmaceutical and food technologies. Biointerface Res. Appl. Chem. 2024, 14, 32. [Google Scholar] [CrossRef]
- Uzlaşır, T.; Selli, S.; Kelebek, H. Spirulina platensis and Phaeodactylum tricornutum as sustainable sources of bioactive compounds: Health implications and applications in the food industry. Fut. Posthar. Food 2024, 1, 34–46. [Google Scholar] [CrossRef]
- Nurmukhambetov, Z.; Ibrayeva, T.; Nurmukhambetov, A.; Bazarbekov, Y. Optimization of the treatment of chronic eczema in the elderly. Int. J. Pharma Med. Biol. Sci. 2020, 9, 91–95. [Google Scholar] [CrossRef]
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. J. Food Qual. 2019, 2019, 3707219. [Google Scholar] [CrossRef]
- Cai, B.; Zhao, X.; Luo, L.; Wan, P.; Chen, H.; Pan, J. Structural characterization, and in vitro immunostimulatory and antitumor activity of an acid polysaccharide from Spirulina platensis. Int. J. Biol. Macromol. 2022, 196, 46–53. [Google Scholar] [CrossRef]
- Thevarajah, B.; Nishshanka, G.K.S.H.; Premaratne, M.; Nimarshana, P.H.V.; Nagarajan, D.; Chang, J.S.; Ariyadasa, T.U. Large-scale production of Spirulina—Based proteins and c-phycocyanin: A biorefinery approach. Biochem. Eng. J. 2022, 185, 108541. [Google Scholar] [CrossRef]
- Purdi, T.S.; Setiowati, A.D.; Ningrum, A. Ultrasound-assisted extraction of Spirulina platensis protein: Physicochemical characteristic and techno-functional properties. J. Food Meas. Charact. 2023, 17, 5474–5486. [Google Scholar] [CrossRef]
- Masten Rutar, J.; Hudobivnik, M.J.; Nečemer, M.; Mikuš, K.V.; Arčon, I.; Ogrinc, N. Nutritional quality and safety of the spirulina dietary supplements sold on the Slovenian market. Foods 2022, 11, 849. [Google Scholar] [CrossRef] [PubMed]
- Raczyk, M.; Polanowska, K.; Kruszewski, B.; Grygier, A.; Michałowska, D. Effect of spirulina (Arthrospira platensis) supplementation on physical and chemical properties of semolina (Triticum durum) based fresh pasta. Molecules 2022, 27, 355. [Google Scholar] [CrossRef]
- Zhou, N.; Long, H.; Wang, C.; Zhu, Z.; Yu, L.; Yang, W.; Ren, X.; Liu, X. Characterization of selenium-containing polysaccharide from Spirulina platensis and its protective role against Cd-induced toxicity. Int. J. Biol. Macromol. 2020, 164, 2465–2476. [Google Scholar] [CrossRef]
- Thangaraj, M.; Saravana, B.P.; Thanasekaran, J.; Joen-Rong, S.; Manubolu, M.; Pathakoti, K. Phytochemicals of algae, Arthospira platensis (spirulina), Chlorella vulgaris (chlorella) and Azolla pinnata (azolla). GSC Biol. Pharm. Sci. 2022, 19, 023–043. [Google Scholar] [CrossRef]
- Bellahcen, T.O.; AAmiri, A.; Touam, I.; Hmimid, F.; Amrani, A.E.; Cherif, A.; Cherki, M. Evaluation of Moroccan microalgae: Spirulina platensis as a potential source of natural antioxidants. J. Complement. Integr. Med. 2020, 17, 20190036. [Google Scholar] [CrossRef]
- Bartkiene, E.; Tolpeznikaite, E.; Klupsaite, D.; Starkute, V.; Bartkevics, V.; Skrastina, A.; Pavlenko, R.; Mockus, E.; Lele, V.; Batkeviciute, G.; et al. Bio-converted Spirulina for nutraceutical chewing candy formulations rich in L-glutamic and gamma-aminobutyric acids. Microorganisms 2023, 11, 441. [Google Scholar] [CrossRef] [PubMed]
- Alshuniaber, M.A.; Krishnamoorthy, R.; AlQhtani, W.H. Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens. Saudi J. Biol. Sci. 2021, 28, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, K.; Petkova, N.; Antova, G.; Petkova, Z.; Gentscheva, G.; Gerasimova, A.; Karadjova, I. Evaluation of some chemical characteristics of spirulina from different manufacturers. J. Chem. Technol. Metall. 2024, 59, 805–811. [Google Scholar] [CrossRef]
- Minchev, I.; Petkova, N.; Milkova-Tomova, I. Ultrasound-assisted extraction of chlorophylls and phycocyanin from Spirulina platensis. Biointerface Res. Appl. Chem. 2020, 11, 9296–9304. [Google Scholar] [CrossRef]
- Gogna, S.; Kaur, J.; Sharma, K.; Prasad, R.; Singh, J.; Bhadariya, V.; Kumar, P.; Jarial, S. Spirulina-an edible cyanobacterium with potential therapeutic health benefits and toxicological consequences. J. Am. Nutr. Assoc. 2023, 42, 559–572. [Google Scholar] [CrossRef]
- Patel, P.; Jethani, H.; Radha, C.; Vijayendra, S.V.N.; Mudliar, S.N.; Sarada, R.; Chauhan, V.S. Development of a carotenoid enriched probiotic yogurt from fresh biomass of Spirulina and its characterization. J. Food Sci. Technol. 2019, 56, 3721–3731. [Google Scholar] [CrossRef] [PubMed]
- Marzorati, S.; Schievano, A.; Idà, A.; Verotta, L. Carotenoids, chlorophylls and phycocyanin from Spirulina: Supercritical CO2 and water extraction methods for added value products cascade. Green Chem. 2020, 22, 187–196. [Google Scholar] [CrossRef]
- Ma, J.; Yan, H.H.; Qin, C.Q.; Liang, Y.X.; Ren, D.F. Accumulation of astaxanthin by co-fermentation of Spirulina platensis and recombinant Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2022, 194, 988–9991. [Google Scholar] [CrossRef]
- Kannaujiya, V.K.; Singh, P.R.; Kumar, D.; Sinha, R.P. Phycobiliproteins in microalgae: Occurrence, distribution, and biosynthesis. In Pigments From Microalgae Handbook, 1st ed.; Jacob-Lopes, E., Queiroz, M.I., Zepka, L.Q., Eds.; Elsevier: London, UK, 2020; Volume 3, pp. 43–68. [Google Scholar] [CrossRef]
- Qiang, X.; Wang, L.; Niu, J.; Gong, X.; Wang, G. Phycobiliprotein as fluorescent probe and photosensitizer: A systematic review. Int. J. Biol. Macromol. 2021, 193, 1910–1917. [Google Scholar] [CrossRef]
- Madhubalaji, C.K.; Rashmi, V.; Chauhan, V.S.; Shylaja, M.D.; Sarada, R. Improvement of vitamin B12 status with Spirulina supplementation in Wistar rats validated through functional and circulatory markers. J. Food Bioch. 2019, 43, e13038. [Google Scholar] [CrossRef]
- Hamouda, R.A.; El-Boraey, N.G.; El Bialy, B.E.; Alrdahe, S.S.; Darwish, D.B.E. Vitamin supplements enhance Spirulina platensis biomass and phytochemical contents. Green Process. Synth. 2022, 11, 266–274. [Google Scholar] [CrossRef]
- Jeong, S.J.; Choi, J.W.; Lee, M.K.; Choi, Y.H.; Nam, T.J. Spirulina crude protein promotes the migration and proliferation in IEC-6 cells by activating EGFR/MAPK signaling pathway. Mar. Drug. 2019, 17, 205. [Google Scholar] [CrossRef]
- Naeini, F.; Zarezadeh, M.; Mohiti, S.; Tutunchi, H.; Mamaghani, M.E.; Ostadrahimi, A. Spirulina supplementation as an adjuvant therapy in enhancement of antioxidant capacity: A systematic review and meta-analysis of controlled clinical trials. Int. J. Clin. Pract. 2021, 75, e14618. [Google Scholar] [CrossRef]
- De Luca, M.; Pappalardo, I.; Limongi, A.R.; Viviano, E.; Radice, R.P.; Todisco, S.; Martelli, G.; Infantino, V.; Vassallo, A. Lipids from microalgae for cosmetic applications. Cosmetics 2021, 8, 52. [Google Scholar] [CrossRef]
- Wils, L.; Leman-Loubière, C.; Bellin, N.; Clément-Larosière, B.; Pinault, M.; Chevalier, S.; Enguehard-Gueiffier, C.; Bodet, C.; Boudesocque-Delaye, L. Natural deep eutectic solvent formulations for spirulina: Preparation, intensification, and skin impact. Algal Res. 2021, 56, 102317. [Google Scholar] [CrossRef]
- Priyan, S.F.I.; Kim, K.N.; Kim, D.; Jeon, Y.J. Algal polysaccharides: Potential bioactive substances for cosmeceutical applications. Crit. Rev. Biotechnol. 2019, 39, 99–113. [Google Scholar] [CrossRef]
- Tseng, C.C.; Yeh, H.Y.; Liao, Z.H.; Hung, S.W.; Chen, B.; Lee, P.T.; Nan, F.H.; Shih, W.L.; Chang, C.C.; Lee, M.C. An in vitro study shows the potential of Nostoc commune (Cyanobacteria) polysaccharides extract for wound-healing and anti-allergic use in the cosmetics industry. J. Funct. Foods 2021, 87, 104754. [Google Scholar] [CrossRef]
- Yadav, A.R.; Mohite, S.K. Potential role of peptides for development of cosmeceutical skin products. Res. J. Top. Cosmet. Sci. 2020, 11, 77–82. [Google Scholar] [CrossRef]
- Cunha, S.A.; Pintado, M.E. Bioactive peptides derived from marine sources: Biological and functional properties. Trends Food Sci. Technol. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Li, X.; Xia, C.; Kong, D.; Xu, M.; Zhu, J.; He, C.; Wang, B.; Li, J. Application of Euglena gracilis—Derived peptides as a cosmetic ingredient to prevent allergic skin inflammation. J. Cosmet. Sci. 2022, 73, 84–95. [Google Scholar]
- Wani, H.M.U.D.; Chen, C.W.; Huang, C.Y.; Singhania, R.R.; Sung, Y.J.; Dong, C.D.; Patel, A.K. Development of bioactive peptides derived from red algae for dermal care applications: Recent advances. Sustainability 2023, 15, 8506. [Google Scholar] [CrossRef]
- Favas, R.; Morone, J.; Martins, R.; Vasconcelos, V.; Lopes, G. Cyanobacteria and microalgae bioactive compounds in skin-ageing: Potential to restore extracellular matrix filling and overcome hyperpigmentation. J. Enzyme Inhib. Med. Chem. 2021, 36, 1829–1838. [Google Scholar] [CrossRef]
- Favas, R.; Morone, J.; Martins, R.; Vasconcelos, V.; Lopes, G. Cyanobacteria secondary metabolites as biotechnological ingredients in natural anti-aging cosmetics: Potential to overcome hyperpigmentation, loss of skin density and UV radiation-deleterious effects. Mar. Drug. 2022, 20, 183. [Google Scholar] [CrossRef]
- Pagels, F.; Almeida, C.; Vasconcelos, V.; Guedes, A.C. Cosmetic potential of pigments extracts from the marine cyanobacterium Cyanobium sp. Marine Drug. 2022, 20, 481. [Google Scholar] [CrossRef] [PubMed]
- Gager, L.; Lalegerie, F.; Connan, S.; Stiger-Pouvreau, V. Marine algal derived phenolic compounds and their biological activities for medicinal and cosmetic applications. In Recent Advances in Micro and Macroalgal Processing: Food And Health Perspectives, 1st ed.; Rajauria, G., Yuan, Y.V., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 11, pp. 278–334. [Google Scholar] [CrossRef]
- Ghazi, S. Do the polyphenolic compounds from natural products can protect the skin from ultraviolet rays? Res. Chem. 2022, 4, 100428. [Google Scholar] [CrossRef]
- Jayawardhana, H.H.A.C.K.; Jayawardena, T.U.; Sanjeewa, K.K.A.; Liyanage, N.M.; Nagahawatta, D.P.; Lee, H.G.; Kim, J.I.; Jeon, Y.J. Marine algal polyphenols as skin protective agents: Current status and future prospectives. Mar. Drug. 2023, 21, 285. [Google Scholar] [CrossRef]
- Anekthanakul, K.; Senachak, J.; Hongsthong, A.; Charoonratana, T.; Ruengjitchatchawalya, M. Natural ACE inhibitory peptides discovery from Spirulina (Arthrospira platensis) strain C1. Peptides 2019, 118, 170107. [Google Scholar] [CrossRef]
- Zhang, N.; Li, F.; Zhang, T.; Li, C.Y.; Zhu, L.; Yan, S. Isolation, identification, and molecular docking analysis of novel ACE inhibitory peptides from Spirulina platensis. Eur. Food Res. Technol. 2022, 248, 1107–1115. [Google Scholar] [CrossRef]
- Wąsik, A.; Klimowicz, A. Extracts from Corylus avellana as a source of antioxidants useful in cosmetic preparations. Pomeranian J. Life. Sci. 2022, 68, 56–66. [Google Scholar] [CrossRef]
- Machaliński, B.; Oszutowska-Mazurek, D.; Mazurek, P.; Parafiniuk, M.; Szumilas, P.; Zawiślak, A.; Zaremba, M.; Stecewicz, I.; Zawodny, P.; Wiszniewska, B. Assessment of extracellular matrix fibrous elements in male dermal aging: A ten-year follow-up preliminary case study. Biology 2024, 13, 636. [Google Scholar] [CrossRef]
- Yazısız, H.; Çekin, Y.; Koçlar, F.G. The Presence of Demodex mites in patients with dermatologic symptoms of the face. Turkiye Parazitol. Derg. 2019, 43, 143–148. [Google Scholar] [CrossRef]
- Lund, T.T.; Ebbehøj, N.E.; Agner, T. Hand eczema and wet work. Ugeskr. Laeger 2020, 182, V05200393. [Google Scholar]
- Ścisłowska-Czarnecka, A.; Matuła, A.; Bac, A.; Lizak, A.; Wilk, M. Selected therapeutic methods affecting the health and quality of life of chronically dermatologically ill people. Health. Prom. Phys. Act. 2020, 13, 51–61. [Google Scholar] [CrossRef]
- Paichitrojjana, A. Demodicosis associated with wearing a face mask: A case report. Case Rep. Dermatol. 2022, 14, 19–23. [Google Scholar] [CrossRef]
- Vâță, D.; Stanciu, D.E.; Temelie-Olinici, D.; Porumb-Andrese, E.; Tarcău, B.M.; Grecu, V.B.; Gheucă-Solovăstru, L. Cutaneous manifestations associated with diabetes mellitus-a retrospective study. Diseases 2023, 11, 106. [Google Scholar] [CrossRef]
- Montalvo, G.E.B.; Vandenberghe, L.P.D.S.; Soccol, V.T.; Carvalho, J.C.D.; Soccol, C.R. The antihypertensive, antimicrobial and anticancer peptides from Arthrospira with therapeutic potential: A mini review. Curr. Mol. Med. 2020, 20, 593–606. [Google Scholar] [CrossRef]
- García-Beltrán, J.M.; Arizcun, M.; Chaves-Pozo, E. Antimicrobial peptides from photosynthetic marine organisms with potential application in aquaculture. Mar. Drugs 2023, 21, 290. [Google Scholar] [CrossRef]
- Vasquez-Moscoso, C.A.; Merlano, J.A.R.; Gálvez, O.A.; Volcan, A.D. Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture. Prep. Biochem. Biotech. 2024, 1–10. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Kumaresan, V.; Anilkumar, S.; Pasupuleti, M.; Ganesh, M.R.; Mala, K.; Paray, B.A.; Al-Sadoon, M.K.; Albeshr, M.F.; Arockiaraj, J. Design and characterization of a novel Arthrospira platensis glutathione oxido-reductase-derived antioxidant peptide GM15 and its potent anti-cancer activity via caspase-9 mediated apoptosis in oral cancer cells. Free Radic. Biol. Med. 2019, 135, 198–209. [Google Scholar] [CrossRef]
- Subramaiam, H.; Chu, W.L.; Radhakrishnan, A.K.; Chakravarthi, S.; Selvaduray, K.R.; Kok, Y.Y. Evaluating anticancer and immunomodulatory effects of Spirulina (Arthrospira) platensis and gamma-tocotrienol supplementation in a syngeneic mouse model of breast cancer. Nutrients 2021, 13, 2320. [Google Scholar] [CrossRef]
- Mahedi, M.R.A. Current status and prospects of microalgae bioactive compounds for anticancer and antiviral actions. Biomater. J. 2022, 1, 28–36. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Ramani, M.; Paray, B.A.; Pasupuleti, M.; Al-Sadoon, M.K.; Alagumuthu, T.S.; Al-Mfarij, A.R.; Arshad, A.; Mala, K.; Arockiaraj, J. Arthrospira platensis transglutaminase derived antioxidant peptide-packed electrospun chitosan/poly (vinyl alcohol) nanofibrous mat accelerates wound healing, in vitro, via inducing mouse embryonic fibroblast proliferation. Colloids Surf. B Biointerfaces 2020, 193, 111124. [Google Scholar] [CrossRef]
- Agustina, S.; Aidha, N.N.; Oktarina, E.; Kurniati, N.F. Evaluation of antioxidant and wound healing activities of Spirulina sp. extract. Egypt. J. Chem. 2021, 64, 4601–4610. [Google Scholar] [CrossRef]
- Ismail, G.A.; El-Sheekh, M.M.; Samy, R.M.; Gheda, S.F. Antimicrobial, antioxidant, and antiviral activities of biosynthesized silver nanoparticles by phycobiliprotein crude extract of the cyanobacteria Spirulina platensis and Nostoc linckia. Bionanoscience 2021, 11, 355–370. [Google Scholar] [CrossRef]
- Aydi, S.S.; Aydi, S.; Bkhairia, I.; Rahmani, R.; Ktari, N.; Salah, R.B.; Bouajila, J. Polysaccharides in CO2 enriched Arthrospira platensis: Structure, physico-chemical properties, antioxidant and cytotoxicity activities and laser burn wound healing in rats. Cell Mol. Biol. 2022, 68, 191–201. [Google Scholar] [CrossRef]
- Morone, J.; Lopes, G.; Oliveira, B.; Vasconcelos, V.; Martins, R. Cyanobacteria in cosmetics: A natural alternative for anti-aging ingredients. In The Pharmacological Potential of Cyanobacteria, 1st ed.; Lopes, G., Silva, M., Vasconcelos, V., Eds.; Academic Press: London, UK, 2022; pp. 257–286. [Google Scholar]
- Zinurov, M.R.; Manzhelei, O.A.; Sametova, I.N.; Bagaeva, T.V. Assessment of the effect of the extract Arthrospira platensis on human skin microbiota. GSC Adv. Res. Rev. 2023, 15, 216–221. [Google Scholar] [CrossRef]
- Carbone, D.A.; Pellone, P.; Lubritto, C.; Ciniglia, C. Evaluation of microalgae antiviral activity and their bioactive compounds. Antibiotics 2021, 10, 746. [Google Scholar] [CrossRef]
- Liang, S.X.T.; Wong, L.S.; Balu, P.; Djearamane, S. Therapeutic applications of Spirulina against human pathogenic viruses. J. Exp. Biol. Agric. Sci. 2021, 9, S38–S42. [Google Scholar] [CrossRef]
- Sibiya, T.; Ghazi, T.; Chuturgoon, A. The potential of Spirulina platensis to ameliorate the adverse effects of highly active antiretroviral therapy (HAART). Nutrients 2022, 14, 3076. [Google Scholar] [CrossRef]
- Manogar, M.; Devaraj, N.; Mahalingam, P. A review on medical properties on Spirulina and their futuristic applications. Asian J. Biotechnol. Bioresour. Technol. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Arslan, R.; Eroglu, E.C.; Aksay, S. Determination of bioactive properties of protein and pigments obtained from Spirulina platensis. J. Food Process. Preserv. 2021, 45, e15150. [Google Scholar] [CrossRef]
- Sun, D.; Wu, S.; Li, X.; Ge, B.; Zhou, C.; Yan, X.; Ruan, R.; Cheng, P. The structure, functions and potential medicinal effects of chlorophylls derived from microalgae. Mar. Drugs 2024, 22, 65. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Mohammady, E.Y.; Soaudy, M.R.; Sabae, S.A.; Mahmoud, A.M.; El-Haroun, E.R. Comparative study on the effect of dietary β-carotene and phycocyanin extracted from Spirulina platensis on immune-oxidative stress biomarkers, genes expression and intestinal enzymes, serum biochemical in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2021, 108, 63–72. [Google Scholar] [CrossRef]
- Piovan, A.; Battaglia, J.; Filippini, R.; Dalla Costa, V.; Facci, L.; Argentini, C.; Pagetta, A.; Giusti, P.; Zusso, M. Pre-and early post-treatment with Arthrospira platensis (Spirulina) extract impedes lipopolysaccharide-triggered neuroinflammation in microglia. Front. Pharmacol. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.H.; Liao, Y.C.; Huang, X.W.; Lu, T.J.; Shih, S.R. Effect of hot water extracts of Arthrospira maxima (spirulina) against respiratory syncytial virus. Phytomedicine 2023, 10, 154611. [Google Scholar] [CrossRef]
- Ribeiro, M.C.M.; Salles, T.S.; Moreira, M.F.; Barbarino, E.; do Valle, A.F.; Couto, M.A.P.G. Antiviral activity of microalgae extracts against Mayaro virus. Algal Res. 2022, 61, 102577. [Google Scholar] [CrossRef]
- Besednova, N.N.; Andryukov, B.G.; Kuznetsova, T.A.; Zaporozhets, T.S.; Kryzhanovsky, S.P.; Ermakova, S.P. Shchelkanov MY. Antiviral effects and mechanisms of action of water extracts and polysaccharides of microalgae and cyanobacteria. J. Pharm. Nutr. Sci. 2022, 12, 54–73. [Google Scholar] [CrossRef]
- Winahyu, D.A.; Primadiamanti, A. Formulation and evaluation of the exopolysaccharide compound extract lotion from the microalgae Spirulina sp. J. Phys. Conf. Ser. 2021, 1882, 012107. [Google Scholar] [CrossRef]
- Elzoughby, M.A.E. In vitro evaluation of Spirulina platensis extracts against pathogenic bacteria isolated from some cosmetic products. Ann. Agric. Sci. Moshtohor 2022, 60, 895–912. [Google Scholar] [CrossRef]
- Dianursanti, D.; Ramadhanti, D. Utilization of microalgae Spirulina platensis as anti-bacterial compound in soap. AIP Conf. Proc. 2020, 2255, 040020. [Google Scholar] [CrossRef]
- Fransisca, M.; Dianursanti, D. The effect of adding microalgae Spirulina platensis in making antibacterial soap. AIP Conf. Proc. 2019, 2193, 020010. [Google Scholar] [CrossRef]
- Montalvo, G.E.B.; Thomaz-Soccol, V.; Vandenberghe, L.P.; Carvalho, J.C.; Faulds, C.B.; Bertrand, E.; Pradoc, M.R.M.; Bonattod, S.J.R.; Carlos, R.; Soccol, C.R. Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production. Bioresour. Technol. 2019, 273, 103–113. [Google Scholar] [CrossRef]
- Hlima, H.B.; Bohli, T.; Kraiem, M.; Ouederni, A.; Mellouli, L.; Michaud, P.; Abdelkafi, S.; Smaoui, S. Combined effect of Spirulina platensis and Punica granatum peel extacts: Phytochemical content and antiphytophatogenic activity. Appl. Sci. 2019, 9, 5475. [Google Scholar] [CrossRef]
- Fernandes, R.; Campos, J.; Serra, M.; Fidalgo, J.; Almeida, H.; Casas, A.; Toubarro, B.; Barros, A.I. Exploring the benefits of phycocyanin: From Spirulina cultivation to its widespread applications. Pharmaceuticals 2023, 16, 592. [Google Scholar] [CrossRef]
- Pannindrya, P.; Safithri, M.; Tarman, K. Antibacterial activity of ethanol extract of Spirulina platensis. Curr. Biochem. 2020, 7, 47. [Google Scholar] [CrossRef]
- Dranseikienė, D.; Balčiūnaitė-Murzienė, G.; Karosienė, J.; Morudov, D.; Juodžiukynienė, N.; Hudz, N.; Gerbutavičienė, R.J.; Savickienė, N. Cyano-phycocyanin: Mechanisms of action on human skin and future perspectives in medicine. Plants 2022, 11, 1249. [Google Scholar] [CrossRef]
- Tambe, T.; Bhosale, M.; Sonawane, P.; Shinde, S. A review on: Therapeutic activities of Spirulina on skin. Asian J. Pharm. Res. 2022, 12, 235–240. [Google Scholar] [CrossRef]
- Setyaningsih, I.; Sari, N.I.; Tarman, K.; Manurung, N.; Safithri, M. In vitro evaluation of face mask containing extract and biomass of Spirulina platensis and its antibacterial activity. Environ. Earth Sci. 2020, 404, 012054. [Google Scholar] [CrossRef]
- Bui, H.T.H.; Pham, T.T.; Nguyen, H.T.T.; Do, T.M.; Nga, V.T.; Bac, N.D.; Huyen, V.T.B.; Le, H.M.; Tran, Q.C. Transformation chlorophyll a of Spirulina platensis to chlorin e6 derivatives and several applications. Maced J. Med. Sci. 2019, 7, 4372–4377. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef]
- Khaleghi, S.; Majedi, Z.; Lohrasbi, A.; Rahbar, M.; Hajrasouliha, S. Application of spirulina–chitosan nano hydrogel for enhanced wound healing through alteration of expression pattern of TGF-ß and PDGF genes. J. Biomed. Eng. Med. Dev. 2021, 6, 185. [Google Scholar] [CrossRef]
- Boruah, T.; Devi, B.; Gogoi, N.; Mili, C. Algal and Microalgal Compounds in Cosmeceuticals. In Bioprospecting of Natural Sources for Cosmeceuticals; Kathuria, D., Sharma, A., Verma, M., Nayik, G.A., Eds.; Royal Society of Chemistry: London, UK, 2024; Volume 7, pp. 144–171. [Google Scholar] [CrossRef]
- Lemoine, V.; Bernard, C.; Leman-Loubière, C.; Clément-Larosière, B.; Girardot, M.; Boudesocque-Delaye, L.; Munnier, E.; Imbert, C. Nanovectorized microalgal extracts to fight Candida albicans and Cutibacterium acnes biofilms: Impact of dual-species conditions. Antibiotics 2020, 9, 279. [Google Scholar] [CrossRef]
- Permadi, A.; Suhendra, S.; Ahda, M.; Padya, S.A.; Bachtiar, A.R.; Rahma, A.N.; Syafitri, E.N.; Harmony, V.I.S.; Triwidyastuti, Y. Pemanfaatan Spirulina platensis sebagai masker gel peel-off. J. Pendidik. Konseling 2022, 4, 2260–2268. [Google Scholar] [CrossRef]
- Ioannou, E.; Labrou, N.E. Development of enzyme-based cosmeceuticals: Studies on the proteolytic activity of Arthrospira platensis and its efficient incorporation in a hydrogel formulation. Cosmetics 2022, 9, 106. [Google Scholar] [CrossRef]
- Miguel, S.P.; Ribeiro, M.P.; Otero, A.; Coutinho, P. Application of microalgae and microalgal bioactive compounds in skin regeneration. Algal Res. 2021, 58, 102395. [Google Scholar] [CrossRef]
- Ajayi, E.I.; Oladele, J.O.; Nkumah, A.O. Application of algae in wound healing next-generation algae. In Next Generation Algae: Applications in Medicine and the Pharmaceutical Industry, 1st ed.; Adetunji, C.O., Oloke, J.K., Dwivedi, N., Ummalyma, S.B., Dwivedi, S., Hefft, D.I., Adetunji, J.B., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2023; Volume 2, pp. 251–284. [Google Scholar]
- Vazquez-Ayala, L.; Del Ángel-Olarte, C.; Escobar-García, D.M.; Rosales-Mendoza, S.; Solis-Andrade, I.; Pozos-Guillén, A.; Palestino, G. Chitosan sponges loaded with metformin and microalgae as dressing for wound healing: A study in diabetic bio-models. Int. J. Biol. Macromol. 2024, 254, 127691. [Google Scholar] [CrossRef]
- Refai, H.; El-Gazar, A.A.; Ragab, G.M.; Hassan, D.H.; Ahmed, O.S.; Hussein, R.A.; Shabana, S.; Waffo-Téguo, P.; Valls, J.; Al-Mokaddem, A.K.; et al. Enhanced wound healing potential of Spirulina platensis nanophytosomes: Metabolomic profiling, molecular networking, and modulation of HMGB-1 in an excisional wound rat model. Marine Drug. 2023, 21, 149. [Google Scholar] [CrossRef]
- Vahlepy, J.; Hendarto, Y.A.; Karina, V.M. The effect of Spirulina platensis gel on angiogenesis and collagen fiber density in gingival wound healing. Mal. J. Med. Health Sci. 2023, 19 (Suppl. 4), 71–78. [Google Scholar]
- de Andrade, A.F.; Porto, A.L.F.; Bezerra, R.P. Photosynthetic microorganisms and their bioactive molecules as new product to healing wounds. Appl. Microbiol. Biotechnol. 2022, 106, 497–504. [Google Scholar] [CrossRef]
- Pham, T.; Nguyen, T.T.; Nguyen, N.H.; Hayles, A.; Li, W.; Pham, D.Q.; Nguyen, C.K.; Nguyen, T.; Vongsvivut, J.; Ninan, N.; et al. Transforming Spirulina maxima biomass into ultrathin bioactive coatings using an atmospheric plasma jet: A new approach to healing of infected wounds. Small 2023, 20, 2305469. [Google Scholar] [CrossRef]
- Hassan, S.; Meenatchi, R.; Pachillu, K.; Bansal, S.; Brindangnanam, P.; Arockiaraj, J.; Kiran, G.S.; Selvin, J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J. Basic Microbiol. 2022, 62, 999–1029. [Google Scholar] [CrossRef]
- Biswal, A.; Swain, S.; Swain, S.K. Natural products based antibacterial and antiviral materials. In Antibacterial And Antiviral Functional Materials, 1st ed.; Deshmukh, K., Hussain, C.M., Eds.; American Chemical Society: Washington, DC, USA, 2023; Volume 1, pp. 251–291. [Google Scholar] [CrossRef]
- Singh, M.; Gupta, N.; Gupta, P.; Doli Mishra, P.; Yadav, A. Discovery of novel and biologically active compounds from algae. In Next-Generation Algae: Applications in Medicine And The Pharmaceutical Industry, 1st ed.; Adetunji, C.O., Oloke, J.K., Dwivedi, N., Ummalyma, S.B., Dwivedi, S., Hefft, D.I., Adetunji, J.B., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2023; Volume 2, pp. 1–40. [Google Scholar] [CrossRef]
- Singh, S.K.; Shukla, L.; Yadav, N.; Singh, P.K.; Singh, S.M.; Yadav, M.K.; Kaushalendra, K.A. Spirulina: From ancient food to innovative super nutrition of the future and its market scenario as a source of nutraceutical. In Cyanobacterial Biotechnology in The 21st Century, 1st ed.; Neilan, B., Passarini, M.R.Z., Singh, P.K., Kumar, A., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 51–61. [Google Scholar] [CrossRef]
- Parvizi Fara, M.; Kakoolaki, S.; Asghari, A.; Sharifpour, I.; Kazempoor, R. Wound healing by functional compounds of Echinodermata, spirulina and chitin products: A review. Iranian J. Aquat. Anim. Health 2020, 6, 23–38. [Google Scholar] [CrossRef]
- Irenesia, B.; Yuniarti, R.; Mahati, E. Effectiveness cream and ointment of Spirulina platensis extract against amount of fibroblast and wound area: Study on white rats whose skin is incised. Indonesian J. Environ. Manag. Sustain. 2020, 4, 39–42. [Google Scholar] [CrossRef]
- Liu, P.; Lee, M.K.; Choi, J.W.; Choi, Y.H.; Nam, T.J. Crude protein from spirulina increases the viability of CCD-986sk cells via the EGFR/MAPK signalling pathway. Int. J. Mol. Med. 2019, 43, 771–778. [Google Scholar] [CrossRef]
- Edirisinghe, S.L.; Rajapaksha, D.C.; Nikapitiya, C.; Oh, C.; Lee, K.A.; Kang, D.H.; De Zoysa, M. Spirulina maxima derived marine pectin promotes the in vitro and in vivo regeneration and wound healing in zebrafish. Fish Shellfish Immunol. 2020, 107, 414–425. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Li, Y.; Ye, D.; Yuan, L.; Sun, Y.; Han, D.; Hu, Q. Solid matrix-supported supercritical CO2 enhances extraction of γ-linolenic acid from the cyanobacterium Arthrospira (Spirulina) platensis and bioactivity evaluation of the molecule in zebrafish. Mar. Drugs 2019, 17, 203. [Google Scholar] [CrossRef]
- Putri, R.A. The differences between giving topical therapy of extract etanol 96% and 70% Spirulina platensis on density of collagen fiber in traumatic ulcer healing. Dent. J. Ked. Gigi 2019, 13, 25–33. [Google Scholar]
- Zamani, N.; Fazilati, M.; Salavati, H.; Izadi, M.; Koohi-Dehkordi, M. The topical cream produced from phycocyanin of Spirulina platensis accelerates wound healing in mice infected with Candida albicans. Appl. Biochem. Microbiol. 2020, 56, 583–589. [Google Scholar] [CrossRef]
- Mehdinezhad, N.; Aryaeian, N.; Vafa, M.; Saeedpour, A.; Ebrahimi, A.; Mobaderi, T.; Fahimi, R.; Hezaveh, Z.S. Effect of Spirulina and Chlorella alone and combined on the healing process of diabetic wounds: An experimental model of diabetic rats. J. Diabetes Metab. 2021, 20, 161–169. [Google Scholar] [CrossRef]
- Seghiri, R.; Essamri, A. In vivo wound healing activity of Spirulina platensis. Phytothérapie 2020, 18, 6–16. [Google Scholar] [CrossRef]
- Mapoung, S.; Arjsri, P.; Thippraphan, P.; Semmarath, W.; Yodkeeree, S.; Chiewchanvit, S.; Piyamongkol, W.; Limtrakul, P. Photochemoprotective effects of Spirulina platensis extract against UVB irradiated human skin fibroblasts. S. Afr. J. Bot. 2020, 130, 198–207. [Google Scholar] [CrossRef]
- Morone, J.; Alfeus, A.; Vasconcelos, V.; Martins, R. Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals–a new bioactive approach. Algal Res. 2019, 41, 101541. [Google Scholar] [CrossRef]
- Rincón-Valencia, S.; Mejía-Giraldo, J.C.; Puertas-Mejía, M.Á. Algae metabolites as an alternative in prevention and treatment of skin problems associated with solar radiation and conventional photo-protection. Braz. J. Pharm. Sci. 2022, 58, e201046. [Google Scholar] [CrossRef]
- Zewail, M.; Gaafar, P.M.; Youssef, N.A.H.A.; Ali, M.E.; Ragab, M.F.; Kamal, M.F.; Noureldin, M.H.; Abbas, H. Novel Siprulina platensis bilosomes for combating UVB induced skin damage. Pharmaceuticals 2022, 16, 36. [Google Scholar] [CrossRef]
- Machihara, K.; Oki, S.; Maejima, Y.; Kageyama, S.; Onda, A.; Koseki, Y.; Namba, T. Restoration of mitochondrial function by Spirulina polysaccharide via upregulated SOD2 in aging fibroblasts. iScience 2023, 26, 107113. [Google Scholar] [CrossRef]
- To, Q.M.; Tran, N.D.; Pham, P.T.K.; Ho, M.T.N.; Lai, B.D.; Le, T.Q.; Hoang, S.N. Study on extracting crude phycocyanin from spirulina algae and determining its ability in protecting fibroblasts from oxidative stress of hydroxyl peroxide. In 8th International Conference on the Development of Biomedical Engineering in Vietnam, IFMBE Proceedings 85, Vietnam; Van Toi, V., Nguyen, T.H., Long, V.B., Huong, H.T.T., Eds.; Springer: Cham, Switzerland, 2020; Volume 85, pp. 657–668. [Google Scholar] [CrossRef]
- Sharafeldein, K.; Ayesh, H.; Salama, S.; Marei, A.M. The collagen enhancement by Spirulina extract in intrinsic and extrinsic skin aging in albino rat. J. Basic Appl. Zool. 2023, 84, 25. [Google Scholar] [CrossRef]
- Nowruzi, B.; Zakerfirouzabad, M. Anti-inflammatory activities of phycoerythrin and phycocyanin on human fibroblast cells. Phytomed. Plus 2024, 4, 100604. [Google Scholar] [CrossRef]
- Zeng, Q.; Jiang, J.; Wang, J.; Zhou, Q.; Zhang, X. N-terminal acetylation and c-terminal amidation of Spirulina platensis-derived hexapeptide: Anti-photoaging activity and proteomic analysis. Mar. Drugs 2019, 17, 520. [Google Scholar] [CrossRef]
- Yu, Z.; Lv, H.; Zhou, M.; Fu, P.; Zhao, W. Identification and molecular docking of tyrosinase inhibitory peptides from allophycocyanin in Spirulina platensis. J. Sci. Food Agric. 2024, 104, 3648–3653. [Google Scholar] [CrossRef]
- Silva, L.N.; Leite, M.G.A.; Campos, P.M.B.G.M. Development of hair care formulations containing Spirulina platensis and Ascophyllum nodosum extracts. Int. J. Phytocosmet. Nat. Ingred. 2019, 6, 13. [Google Scholar] [CrossRef]
- Maddiboyina, B.; Vanamamalai, H.K.; Roy, H.; Ramaiah Gandhi, S.; Kavisri, M.; Moovendhan, M. Food and drug industry applications of microalgae Spirulina platensis: A review. J. Basic Microbiol. 2023, 63, 573–583. [Google Scholar] [CrossRef]
- Stefanutti, D.; Tonin, G.; Morelli, G.; Zampieri, R.M.; La Rocca, N.; Ricci, R. Oral palatability and owners’ perception of the effect of increasing amounts of spirulina (Arthrospira platensis) in the diet of a cohort of healthy dogs and cats. Animals 2023, 13, 1275. [Google Scholar] [CrossRef]
- Papadimitriou, T.; Kormas, K.; Vardaka, E. Cyanotoxin contamination in commercial Spirulina food supplements. J. Consum. Prot. Food Saf. 2021, 16, 227–235. [Google Scholar] [CrossRef]
- Błaszczyk, A.; Siedlecka-Kroplewska, K.; Woźniak, M.; Mazur-Marzec, H. Presence of ß-N-methylamino-L-alanine in cyanobacteria and aquatic organisms from waters of Northern Poland; BMAA toxicity studies. Toxicon 2021, 194, 90–97. [Google Scholar] [CrossRef]
- Pinchart, P.E.; Leruste, A.; Pasqualini, V.; Mastroleo, F. Microcystins and cyanobacterial contaminants in the french small-scale productions of Spirulina (Limnospira sp.). Toxins 2023, 15, 354. [Google Scholar] [CrossRef]
- Pimblett, P. Spirulina allergy; a case history of two patients. World Allergy Organ. J. 2020, 13, 100149. [Google Scholar] [CrossRef]
- Pescosolido, E.; Yerly, D.; Caubet, J.C.; Bergmann, M.M. Delayed IgE–mediated hypersensitivity to Arthrospira platensis (spirulina). Ann. Allergy Asthma Immunol. 2022, 129, 522–524. [Google Scholar] [CrossRef]
- Javid, Z.; Santos, H.O.; Norouzi, M.; Taghavi, M.; Hatami, M.; Nazari, M.; Qomi, M.S.M.; Bakhshandeh, H.; Mikaniki, F.; Chaharmahali, A.; et al. The effects of Spirulina platensis supplementation on COVID-19 severity in critically ill patients: A randomized clinical trial. Rea. Sq. 2023, 1–18. [Google Scholar] [CrossRef]
- Wan, D.; Wu, Q.; Kuča, K. Spirulina. In Nutraceuticals. Efficacy, Safety and Toxicity, 2nd ed.; Gupta, R.C., Lall, R., Srivastava, A., Ramesh, C., Eds.; Academic Press: London, UK, 2021; Volume 57, pp. 959–974. [Google Scholar] [CrossRef]
- Kerna, N.A.; Nwokorie, U.; Ortigas, M.A.C.; Chawla, S.; Pruitt, K.D.; Flores, J.V.; Holets, H.M.; Carsrud, N.D.V.; Waugh, S.; Anderson, I.I.J. Spirulina consumption: Concerns regarding contaminants and uncommon but possible adverse reactions and interactions. EC Pharmacol. Toxicol. 2022, 10, 69–78. [Google Scholar] [CrossRef]
- Paramanya, A.; Siddiqui, S.A.; Poojari, P.; Jamkhedkar, S.; Khan, J.; da Silva Almeida, J.R.G.; Ali, A. Spirulina: Ethnic food and potential health applications in ethnic knowledge and perspectives of medicinal plants. In Ethnic Knowledge And Perspectives Of Medicinal Plants, 1st ed.; Additiya, P., Shahida, A.S., Payal, P., Suruchi, J., Johra, K., Jackson, R.G., da Silva, A., Ahmad, A., Eds.; Apple Academic Press: Toronto, ON, Canada, 2024; pp. 251–269. [Google Scholar]
- AlFadhly, N.K.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F. Tendencies affecting the growth and cultivation of genus Spirulina: An investigative review on current trends. Plants 2022, 11, 3063. [Google Scholar] [CrossRef]
- Maulana, G.D.; Risjani, Y.; Taqiyyah, A.M. The growth, biomass and phycocyanin of Spirulina platensis cultured with liquid organic (POC) and NPK fertilizers. IOP Conf. Series: Earth. Environ. Sci. 2023, 1191, 012012. [Google Scholar] [CrossRef]
- Kerna, N.; Nwokorie, U.; Ortigas, M.; Chawla, S.; Pruitt, K.; Flores, J.V.; Holets, H.M.; Carsrud, N.D.V.; Waugh, S.; Anderson, J. Spirulina miscellany: Medicinal benefits and adverse effects of Spirulina. EC Nutr. 2022, 17, 25–36. [Google Scholar] [CrossRef]
- Citi, V.; Torre, S.; Flori, L.; Usai, L.; Aktay, N.; Dunford, N.T.; Lutzu, G.A.; Nieri, P. Nutraceutical features of the phycobiliprotein c-phycocyanin: Evidence from Arthrospira platensis (Spirulina). Nutrients 2024, 16, 1752. [Google Scholar] [CrossRef]
- Abreu, A.P.; Rodrigo, M.; João, N. Emerging applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering 2023, 10, 955. [Google Scholar] [CrossRef]
- Kraseasintra, O.; Tragoolpua, Y.; Pandith, H.; Khonkarn, R.; Pathom-aree, W.; Pekkoh, J.; Pumas, C. Application of phycocyanin from Arthrospira (Spirulina) platensis as a hair dye. Front. Mar. Sci. 2022, 9, 1024988. [Google Scholar] [CrossRef]
- Nowruzi, B.; Sarvari, G.; Blanco, S. The cosmetic application of cyanobacterial secondary metabolites. Algal Res. 2020, 49, 101959. [Google Scholar] [CrossRef]
- Martínez-Ruiz, M.; Martínez-González, C.A.; Kim, D.H.; Santiesteban-Romero, B.; Reyes-Pardo, H.; Villaseñor-Zepeda, K.R.; Meléndez-Sánchez, E.R.; Ramírez-Gamboa, D.; Díaz-Zamorano, A.L.; Sosa-Hernández, J.E.; et al. Microalgae bioactive compounds to topical applications products—A review. Molecules 2022, 27, 3512. [Google Scholar] [CrossRef]
- Zhuang, D.; He, N.; Khoo, K.S.; Ng, E.P.; Chew, K.W.; Ling, T.C. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere 2022, 291, 132932. [Google Scholar] [CrossRef]
- Pangestuti, R.; Noerdjito, D.R.; Siahaan, E.A.; Sapulete, S.; Kim, S.K. Marine microalgae in food and health applications. In Encyclopedia of Marine Biotechnology, 1st ed.; Se-Kwon, K., Ed.; John Wiley & Sons Ltd.: Pukyong, South Korea, 2020; Volume 1, pp. 445–458. [Google Scholar] [CrossRef]
- Morone, J.; Lopes, G.; Preto, M.; Vasconcelos, V.; Martins, R. Exploitation of filamentous and picoplanktonic cyanobacteria for cosmetic applications: Potential to improve skin structure and preserve dermal matrix components. Mar. Drugs 2020, 18, 486. [Google Scholar] [CrossRef]
- Adamiak-Giera, U.; Nowak, A.; Duchnik, W.; Ossowicz-Rupniewska, P.; Czerkawska, A.; Machoy-Mokrzyńska, A.; Sulikowski, T.; Kucharski, Ł.; Białecka, M.; Klimowicz, A.; et al. Evaluation of the in vitro permeation parameters of topical ketoprofen and lidocaine hydrochloride from transdermal Pentravan® products through human skin. Front. Pharmacol. 2023, 14, 1157977. [Google Scholar] [CrossRef]
- Ahuja, K.; An, M.; Lio, P. A brief review of vehicles for topical therapies. Skin Pharmacol. Physiol. 2024, 12, 1–9. [Google Scholar] [CrossRef]
- Yang, D.; Chen, M.; Sun, Y.; Jin, Y.; Lu, C.; Pan, X.; Quan, G.; Wu, C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 2021, 121, 119–133. [Google Scholar] [CrossRef]
- Shukla, S.; Huston, R.H.; Cox, B.D.; Satoskar, A.R.; Narayan, R.J. Transdermal delivery via medical device technologies. Expert Opin. Drug Deliv. 2022, 19, 1505–1519. [Google Scholar] [CrossRef]
- Jafernik, K.; Ładniak, A.; Blicharska, E.; Czarnek, K.; Ekiert, H.; Wiącek, A.E.; Szopa, A. Chitosan-based nanoparticles as effective drug delivery systems-a review. Molecules 2023, 28, 1963. [Google Scholar] [CrossRef]
- Otlewska, A.; Baran, W.; Batycka-Baran, A. Adverse events related to topical drug treatments for acne vulgaris. Expert Opin. Drug Saf. 2020, 19, 513–521. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Kupriyanova, E.V.; Los, D.A. Spirulina/Arthrospira/Limnospira—Three names of the single organism. Foods 2024, 13, 2762. [Google Scholar] [CrossRef]
- Huh, J.; Zhang, J.; Hauerová, R.; Lee, J.; Haider, S.; Wang, M.; Hauer, T.; Khan, I.A.; Chittiboyina, A.G.; Pugh, N.D.; et al. Utility of fatty acid profile and in vitro immune cell activation for chemical and biological standardization of Arthrospira/Limnospira. Sci. Rep. 2022, 12, 15657. [Google Scholar] [CrossRef]
- Dąbrowska, N.K.; Marcinkowski, K.; Mazur, A.; Mazur, S.; Madera, M.; Strus, K.; Bizan, A.; Nagórska, E.; Zdunek, R.; Kublińska, A. Spirulina maxima supplementation: Benefits and limitations–results of latest studies. J. Pre. Clin. Clin. Res. 2024, 18, 195–200. [Google Scholar] [CrossRef]
- Moradi, S.; Ziaei, R.; Foshati, S.; Mohammadi, H.; Nachvak, S.M.; Rouhani, M.H. Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2019, 47, 102211. [Google Scholar] [CrossRef]
- Zarezadeh, M.; Faghfouri, A.H.; Radkhah, N.; Foroumandi, E.; Khorshidi, M.; Rasouli, A.; Zarei, M.; Mohammadzadeh, N.H.; Karzar, N.K.; Mamaghani, M.E. Spirulina supplementation and anthropometric indicators: A systematic review and meta-analysis of controlled clinical trials. Phytother. Res. 2021, 35, 577–586. [Google Scholar] [CrossRef]
- Conde, T.; Lopes, D.; Maurício, T.; Łuczaj, W.; Neves, B.; Pinto, B.; Neves, B.; Skrzydlewska, E.; Pinto, B.; Domingues, P.; et al. Algal lipids as modulators of skin disease: A critical review. Metabolite 2022, 12, 96. [Google Scholar] [CrossRef]
- Chaouachi, M.; Vincent, S.; Groussard, C. A review of the health-promoting properties of Spirulina with a focus on athletes’ performance and recovery. J. Diet. Suppl. 2024, 21, 210–241. [Google Scholar] [CrossRef]
- Ceylan, B.; Sezen, G. Determination of biological activity of some macro/micro algae. Kastamonu Univ. J. For. Eng. Sci. 2024, 10, 1–6. [Google Scholar] [CrossRef]
- Dai, N.; Wang, Q.; Xu, B.; Chen, H. Remarkable natural biological resource of algae for medical applications. Front. Mar. Sci. 2022, 9, 912924. [Google Scholar] [CrossRef]
- Thiyagarasaiyar, K.; Goh, B.H.; Jeon, Y.J.; Yow, Y.Y. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Mar. Drugs. 2020, 18, 323. [Google Scholar] [CrossRef]
- Shao, W.; Ebaid, R.; El-Sheekh, M.; Abomohra, A.; Eladel, H. Pharmaceutical applications and consequent environmental impacts of Spirulina (Arthrospira): An overview. Gras. Aceites 2019, 70, e292. [Google Scholar] [CrossRef]
Spirulina/ Extract | Concentration/Mass | Bacterial Isolates | Main Conclusions | References |
---|---|---|---|---|
Acne–in vitro studies | ||||
Methanol and hexane dry S. platensis extracts | 100 µg in 100 µL H2O; concentrations: 25; 50, and 100 µL | Micrococcus aureus, Propionibacterium acnes, Staphylococcus aureus, and S. epidermidis, bacteria were isolated from the skin of acne patients (20 patients aged 15–20 years). Samples of bacterial isolates were prepared on nutrient agar with S. platensis extracts. | The hexane and methanol S. platensis extracts had antibacterial activity against Aerococcus spp. and Enterococcus. The following substances were involved in this activity: hexadecene, heptadecane, octadecene, 2-bromopropionic acid, methyl-1-docosene, benzenedicarboxylic acid, and tetradecanol. | [42] |
Lyophilised S. platensis powder (SPP) | (i) 0.25% solution of S. platensis (SPP) in phosphate-buffered saline. (ii) S. platensis-containing creams with one of two different nonionic surfactants Tefose 63 (TFS) or sucrose ester SP 70 (SP70) incorporated in creams as emulsifying agents. (iii) Cream compositions (g): lyophilised S. platensis powder SPP (5), Transcutol HP (14.2), TFS or SP70 (3), cetostearyl alcohol (4.6), stearic acid (10), glycerol (5), IPM (5), propylene glycol (5), and purified water (ad 100). | Staphylococcus aureus, American Type Culture Collection (ATCC)® 43300™) and Cutibacterium (formerly Propionibacterium acnes (ATCC® 33169™) | S. platensis effectively reduced cell viability of S. aureus (66%) and C. acne (64%). S. platensis formulations with various surfactants, but especially the preparation containing the sucrose ester SP 70 emulsifying agent, were active against C. acnes and S. aureus comparably to Aknemycin™, and showed low toxicity on immortalized human keratinocyte Ha-CaT cells. Creams containing S. platensis can be an alternative option to treat acne with fewer side effects and without antibiotic resistance. | [57] |
Anti-acne topical ointment of C-phycocyanin (C-PC) extracted from S. platensis | (i) formulation—oleaginous base (%): paraffin hard (5), wool fat (10), cetostearyl alcohol (10), white soft paraffin (50), liquid paraffin (15), extract C-PC (10), (ii) formulation—water base (%): PEG400 (12), PEG4000 (18), stearyl alcohol (28), extract C-PC (10), glycerine (17), and water q. s. | P. acnes, S. epidermidis | Spirulina has an anti-acne effect. Both of the topical C-PC ointment formulations can be employed in the treatment of acne against P. acnes and S. epidermidis. The formulation comprising the water-soluble base was superior to the oleaginous base due to the complete solubility of the extract in water. | [147] |
Ethanolic S. platensis extract | Dried spirulina biomass was extracted with 96% ethanol using the reflux method and partitioned with hexane, distilled water, and ethyl acetate. The active compound fractions were analysed using thin layer chromatography and column chromatography. | P. acnes, S. epidermidis, and Enterobacter aerogenes | The highest activity was exhibited by ethyl acetate extracts against P. acnes, S. epidermidis, and E. aerogenes and ethanol extracts against P. acne and S. epidermidis. The ethyl acetate fraction of the S. platensis microalgae has the potential as a natural antibacterial agent. | [28] |
Ethyl acetate and dimethyl carbonate A. platensis extracts; extract-loaded copper alginate-based nanocarriers | 500 mg of S. platensis biomass, alginate-based nanocarriers (ANCs) were prepared using ultrasound oil-in-water emulsification followed by surface gelation with cupric ions. | Cutibacterium acnes ATCC® 6919 | A. platensis extracts prevented the growth of C. acnes single-species biofilms (inhibition > 75% at 0.2 mg/mL). Nanovectorised extracts reduced the growth of both single-species (inhibition > 43% at 0.2 mg/mL) and preformed (55–77%) C. albicans ATCC® 28367™ biofilms | [153] |
Spirulina/Extract | Research Model | Animal Age | Number of Experimental Groups | Number of Animals | Duration of EXPERIMENTS (Days) | Main Conclusions | References |
---|---|---|---|---|---|---|---|
Healing effects | |||||||
Spirulina protein (SPCP) | C57BL/6 mice | n.d. | 1G. Control 2G. Treated with Vaseline containing 10 μg/g of epidermal growth factor (EGF) 3G. Treated with Vaseline containing 2% of SPCP 4G Treated with Vaseline containing 4% of SPCP and EGF | 20 | 5 | SPCP proved to be an effective phytotherapeutic ingredient supporting wound healing. The ERK, Akt, and TGF β1 signalling pathways played a major role in this process. | [46] |
Spirulina ethanol extract | Wistar rats | 2–3 months | 1G. Negative control—physiological saline solution 2G. Positive control—0.1% Gentamicin ointment 3G. S. platensis extract and 0.1% cream 4G. S. platensis extract and 0.1% ointment | 30 | 14 | Ointments with S. platensis extract (0.1%) increased the number of fibroblasts and accelerated the wound healing process. | [168] |
Phycocyanin S. platensis | Candida-infected mice | 10 weeks | 1G. Control treated with cream with no active substance 2G. Treated with cream with 1.5% of phycocyanin 1G. Treated with cream with 3% of phycocyanin | 15 | 14 | The wound size was calculated using an appropriate equation. | [173] |
Spirulina (5%) | Wistar rats | 3–4 months | 1G. Control 2G. Diabetic rats receiving standard diet 3G. Diabetic rats with spirulina supplementation (50 g/kg/day) 4G. Diabetic rats with chlorella supplementation (50 g/kg/day) 5G. Diabetic rats with chlorella and spirulina supplementation (25 g/kg/day of chlorella and 25 g/kg/day of spirulina) | 65 | 21 | The diet of diabetic rats supplemented with spirulina, chlorella, and their combination had a beneficial effect on wound healing, e.g., it improved the formation of granulation tissue, vascularisation, and regeneration of epithelium tissue. Spirulina and chlorella were recommended for use in phytotherapy of various types of wounds. | [174] |
S. platensis water extract | ‘Swiss Albino’ mice | 8–10 weeks | 1G. Control 2G. Treatment with 125 mg/kg of biafine ointment (trolamine 0.67 g/100 g) 3G. Aqueous solution of spirulina paste (0.5%) | n.d. | 35 | The extract accelerated the healing of mechanical, chemical, and thermal burns and hair growth. Spirulina can be used as a therapeutic wound healing agent in complementary therapy and conventional medicine. | [175] |
‘White’ rabbits | 2–3 months | 9 |
Spirulina/Extracts | Concentration/Mass | Number of Patients | Patient Age (Years) | Application | Duration of Application | Main Conclusions | References |
---|---|---|---|---|---|---|---|
Pro-health-promoting effects on the skin—clinical trials | |||||||
Spirulina extract | 0.1% | 25 males 25 females | 18–65 | twice a day | 1 year | Spirulina in skin care strengthened the skin barrier and exhibited moisturising and anti-aging properties. | [60] |
Gel-cream formula (carrier—FGV with 0.1% spirulina extract (FGA) | 0.1% extract | 50 females 50 males | 18–65 | twice a day | 1 year | The treatment resulted in an increase in water content in the stratum corneum, a reduction in TEWL, a significant reduction in sebum content, improvement in skin microrelief via reduction in surface roughness, and more even distribution and homogeneity of keratinocytes. | [60] |
Scalp and hair—clinical trials | |||||||
S. platensis and Ascophyllum nodosum dry extract | Dry extract of 0.1% of S. platensis and 2% of A. nodosum | 26 | 18–35 | twice a day | n.d | The treatment resulted in a decrease in sebum content, combing force, and improved mechanical properties and hair gloss. Spirulina can be a beneficial ingredient of an innovative hair-conditioner recipe. | [186] |
Keywords | Years | Number of Publications | Percentage of Publications | |
---|---|---|---|---|
Spirulina | archived in the database | 1967–2024 | 3691 | 100 |
analysed in the review | 2019–2024 | 1766 | 45.41 | |
Spirulina, skin | archived in the database | 1981–2024 | 81 | 100 |
analysed in the review | 2019–2024 | 49 | 60.5 | |
Spirulina, dermatology | archived in the database | 2004–2024 | 16 | 100 |
analysed in the review | 2019–2024 | 10 | 62.5 |
Year of Publication | Number of Publications in Each Year | Bibliographic Number of Cited Publications | Number of Citations | Total Number of Citations in Each Year |
---|---|---|---|---|
2019 | 27 | [9,16,17,21,51,53,58,69,83,88,90, 94,106,110,118,141,142,143,149,169,171, 172,177,184,186,218,225] | 79, 142, 13, 1, 34, 20, 12, 140, 44, 27, 11, 148, 54, 13, 60, nc, 69, 27, 6, 17, 33, 1, 115, 11, 7, 72, 95 | 1251 |
2020 | 40 | [1,13,26,30,38,46,52,55,57,62,68, 75,77,81,84,86,96,111,112,115,121, 130,140,145,148,150,153,167,168,170,173, 175,176,181,192,204,207,208,214,224] | 6, 4, 4, 37, 3, 13, 21, 1, 13, 124, 2, 31, 28, 2, 93, 25, 20, 1, nc, 21, 13, 2, 2, 4, 11, 408, 8, 2, 2, 28, 9, 5, 35, 3, 6, 93, 5, 44, 44, 143 | 1314 |
2021 | 37 | [2,7,8,12,22,27,39,40,42,44,47, 60,79,87,91,92,93,95,100,103,119, 122,123,127,128,131,133,134,138,151,156, 174,189,190,195,211,219] | 58, 64, 1, 8, 40, 51, 24, 57, 2, 90, 10, nc, 45, 25, 16, 73, 43, 31, 32, 16, 18, 5, 57, 51, 2, 11, 92, 25, 1, nc, 51, 11, 18, 14, 4, 138, 24 | 1208 |
2022 | 57 | [3,11,14,15,18,23,28,32,34,35,43, 49,56,59,63,70,71,73,74,76,85,89, 97,98,101,102,104,107,108,113,120,124, 125,129,136,137,139,146,147,154,155,161, 163,178,179,193,196,198,200,205,206,212, 216,217,220,223] | 11, 22, nc, 1, 92, 38, 9, 11, 5, 96, 8, 19, 2, 2, 55, 33, 71, 32, 49, 15, 6, 2, 129, nc, 23, 13, 3, 23, 2, 5, nc, 1, 4, 10, 14, 2, nc, 16, nc, 1, 8, 15, 48, 3, 4, 3, 2, 40, 4, 9, 50, 81, 7, 10, nc, 22, 3 | 1134 |
2023 | 44 | [4,5,6,10,19,24,25,29,31,33,36, 37,45,48,50,64,65,75,78,82,99,105, 114,116,126,135,144,157,159,160,162,164, 165,166,180,182,187,188,191,194,199,202, 209,213] | 7, 18, 2, 12, 31, 1, 7, 8, 2, 5, 5, 13, 21, 5, 10, 35, 2, 12, 4, 37, 4, 7, 7, 10, nc, 9, 65, 2, 8, nc, 3, nc, 2, 4, 3, nc, 28, 3, 4, 1, 2, 16,4, 106 | 525 |
2024 | 20 | [20,41,54,61,66,67,80,109,117,132,152, 158,183,185,197,201,210,215,217,221,222] | 4, 2, 1, 1, 1, 2, nc, nc, 2, 4, nc, 5, 1, 3, 1, 3, nc, nc, nc, 9, nc | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chwil, M.; Mihelič, R.; Matraszek-Gawron, R.; Terlecka, P.; Skoczylas, M.M.; Terlecki, K. Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin. Pharmaceuticals 2024, 17, 1321. https://doi.org/10.3390/ph17101321
Chwil M, Mihelič R, Matraszek-Gawron R, Terlecka P, Skoczylas MM, Terlecki K. Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin. Pharmaceuticals. 2024; 17(10):1321. https://doi.org/10.3390/ph17101321
Chicago/Turabian StyleChwil, Mirosława, Rok Mihelič, Renata Matraszek-Gawron, Paulina Terlecka, Michał M. Skoczylas, and Karol Terlecki. 2024. "Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin" Pharmaceuticals 17, no. 10: 1321. https://doi.org/10.3390/ph17101321
APA StyleChwil, M., Mihelič, R., Matraszek-Gawron, R., Terlecka, P., Skoczylas, M. M., & Terlecki, K. (2024). Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin. Pharmaceuticals, 17(10), 1321. https://doi.org/10.3390/ph17101321