Antibacterial Effects of Essential Oils on P. aeruginosa, Methicillin-Resistant S. aureus, and Staphylococcus spp. Isolated from Dog Wounds
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Composition
2.2. Antibacterial Susceptibility
2.2.1. Disk Diffusion Tests
2.2.2. MIC, MBC, and MBC/MIC Values of EOs
2.2.3. Biofilm Inhibition
2.2.4. Inhibition of Protease, Elastase, and Gelatinase
2.3. Cell Viability Test
3. Discussion
4. Materials and Methods
4.1. Essential Oils
4.2. Gas Chromatography–Mass Spectrometry (GC-MS)
4.3. Bacterial Strains
4.4. Determination of Antibacterial Activities of EOs by Disk Diffusion Method
4.5. Determination of Minimal Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) of EOs by Broth Microdilution Method
4.6. Inhibition of Biofilm Formation
4.7. Inhibition of Protease Activity
4.8. Inhibition of Elastase Activity
4.9. Inhibition of Gelatinase Activity
4.10. Primary Canine Fibroblast Culture
4.11. WST-8 Test
4.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebani, V.V.; Mancianti, F. Use of essential oils in veterinary medicine to combat bacterial and fungal infections. Vet. Sci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Nocera, F.P.; Mancini, S.; Najar, B.; Bertelloni, F.; Pistelli, L.; De Filippis, A.; Fiorito, F.; De Martino, L.; Fratini, F. Antimicrobial activity of some essential oils against Methicillin-Susceptible and Methicillin-Resistant Staphylococcus pseudintermedius-associated pyoderma in dogs. Animals 2020, 10, 1782. [Google Scholar] [CrossRef] [PubMed]
- Arbab, S.; Ullah, H.; Bano, I.; Li, K.; Ul Hassan, I.; Wang, W.; Qadeer, A.; Zhang, J. Evaluation of in vitro antibacterial effect of essential oil and some herbal plant extract used against mastitis pathogens. Vet. Med. Sci. 2022, 8, 2655–2661. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential oils: Chemistry and pharmacological activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Prashar, A.; Hili, P.; Veness, R.G.; Evans, C.S. Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae. Phytochemistry 2003, 63, 569–575. [Google Scholar] [CrossRef]
- Jummes, B.; Sganzerla, W.G.; da Rosa, C.G.; Noronha, C.M.; Nunes, M.R.; Bertoldi, F.C.; Barreto, P.L.M. Antioxidant and antimicrobial poly-ε-caprolactone nanoparticles loaded with Cymbopogon martinii essential oil. Biocatal. Agric. Biotechnol. 2020, 23, 101499. [Google Scholar] [CrossRef]
- Bombarda, I.; Raharivelomanana, P.; Ramanoelina, P.A.; Faure, R.; Bianchini, J.P.; Gaydou, E.M. Spectrometric identifications of sesquiterpene alcohols from niaouli (Melaleuca quinquenervia) essential oil. Anal. Chim. Acta. 2001, 447, 113–123. [Google Scholar] [CrossRef]
- Llopis, M.J.; Baixauli, V. La Formulación Magistral en la Oficina de Farmacia; Distribuciones Cid: Valencia, Spain, 1981; p. 54. [Google Scholar]
- Monti, D.; Chetoni, P.; Burgalassi, S.; Najarro, M.; Saettone, M.F.; Boldrini, E. Effect of different terpene-containing essential oils on permeation of estradiol through hairless mouse skin. Int. J. Pharm. 2002, 237, 209–214. [Google Scholar] [CrossRef]
- Jang, H.N.; Park, S.N. Antimicrobial activity of Niaouli (Melaleuca quinquenervia) leaf extracts against skin flora. J. Soc. Cosmet. Sci. Korea 2014, 40, 313–320. [Google Scholar] [CrossRef]
- Gürer, E.S.; Tunç, T. In Vitro of Melaleuca viridiflora Sol. ex gaertn plant ınvestigation of antimicrobial, anticancer and cytotoxic activities. Turk. J. Agric.-Food Sci. Technol. 2020, 10, 2056–2060. [Google Scholar] [CrossRef]
- Özdemir, E.; Aslan, İ.; Çakıcı, B.; Türker, B.; Çelik, C.E. Microbiological property evaluation of natural essential oils used in green cosmetic industry. Curr. Perspect. Med. Aromat. Plants 2018, 1, 111–116. [Google Scholar]
- Nuñez, L.; Aquino, M.D. Microbicide activity of clove essential oil (Eugenia caryophyllata). Braz. J. Microbiol. 2012, 43, 1255–1260. [Google Scholar] [CrossRef]
- Cortés-Rojas, D.F.; de Souza, C.R.; Oliveira, W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef]
- Neves, P.R.; Mc Culloch, J.A.; Mamizuka, E.M.; Lincopan, N. Pseudomonas aeruginosa. In Encyclopedia of Food Microbiology, 1st ed.; Batt, C.A., Mary-Lou, T., Eds.; Academic Press: Oxford, UK, 2014; pp. 253–360. [Google Scholar]
- de Bentzmann, S.; Plésiat, P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ. Microbiol. 2011, 13, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Piva, S.; Mariella, J.; Cricca, M.; Giacometti, F.; Brunetti, B.; Mondo, E.; De Castelli, L.; Romano, A.; Ferrero, I.; Ambretti, S.; et al. Epidemiologic case investigation on the zoonotic transmission of Staphylococcus aureus infection from goat to veterinarians. Zoonoses Public Health 2021, 68, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Reichling, J. Anti-biofilm and virulence factor-reducing activities of essential oils and oil components as a possible option for bacterial infection control. Planta Med. 2020, 86, 520–537. [Google Scholar] [CrossRef]
- Ribeiro, S.M.; Felício, M.R.; Boas, E.V.; Gonçalves, S.; Costa, F.F.; Samy, R.P.; Santos, N.C.; Franco, O.L. New frontiers for anti-biofilm drug development. Pharmacol. Ther. 2013, 160, 133–144. [Google Scholar] [CrossRef]
- Srinivasan, R.; Santhakumari, S.; Poonguzhali, P.; Geetha, M.; Dyavaiah, M.; Xiangmin, L. Bacterial biofilm inhibition: A focused review on recent therapeutic strategies for combating the biofilm mediated infections. Front. Microbiol. 2021, 12, 676458. [Google Scholar] [CrossRef]
- Nain, Z.; Sayed, S.B.; Karim, M.M.; Islam, M.A.; Adhikari, U.K. Energy-optimized pharmacophore coupled virtual screening in the discovery of quorum sensing inhibitors of LasR protein of Pseudomonas aeruginosa. J. Biomol. Struct. Dyn. 2020, 38, 5374–5388. [Google Scholar] [CrossRef]
- Kwiecinski, J.; Eick, S.; Wojcik, K. Effect of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. Int. J. Antimicrob. Agents 2009, 33, 343–447. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Chae, S.W.; Im, G.J.; Chung, J.W.; Song, J.J. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE 2015, 10, e0119564. [Google Scholar] [CrossRef] [PubMed]
- Al-Shabib, N.A.; Husaina, F.M.; Ahmad, I.; Baigc, M.H. Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnol. Biotechnol. Equip. 2017, 31, 387–396. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, X.; Luo, M.; Li, H.; Dong, J. Subinhibitory concentrations of perilla oil affect the expression of secreted virulence factor genes in Staphylococcus aureus. PLoS ONE 2011, 6, e16160. [Google Scholar] [CrossRef]
- Kolar, S.L.; Antonio Ibarra, J.; Rivera, F.E.; Mootz, J.M.; Davenport, J.E.; Stevens, S.M.; Horswill, A.R.; Shaw, L.N. Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen 2013, 2, 18–34. [Google Scholar] [CrossRef]
- Rathinam, P.; Kumar, H.S.V.; Viswanathan, P. Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. Biofouling 2017, 33, 624–639. [Google Scholar] [CrossRef]
- El-Tarabily, K.A.; El-Saadony, M.T.; Alagawany, M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Elwan, H.A.M.; Elnesr, S.S.; Abd El-Hack, M.E. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J. Biol. Sci. 2021, 28, 5145–5156. [Google Scholar] [CrossRef]
- Abinaya, M.; Gayathri, M. Inhibition of biofilm formation quorum sensing activity and molecular docking study of isolated 3,5,7-Trihydroxyflavone from Alstonia scholaris leaf against P. aeruginosa. Bioorg. Chem. 2019, 87, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Lodhia, M.H.; Bhatt, K.R.; Thaker, V.S. Antibacterial activity of essential oils from palmarosa evening primrose lavender and tuberose. Indian J. Pharm. Sci. 2009, 71, 134–136. [Google Scholar] [CrossRef]
- Vijayaraghavan, P.; Vincent, S.G.P. A simple method for the detection of protease activity on agar plates using bromocresolgreen dye. J. Biochem. Technol. 2013, 4, 628–630. [Google Scholar]
- Stewart, D.J. The role of elastase in the differentiation of Bacteroides nodosus infections in sheep and cattle. Res. Vet. Sci. 1979, 27, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Dela Cruz, T.E.E.; Torres, J.M.O. Gelatin hydrolysis test protocol. Am. Soc. Microbiol. 2016, 1–10. [Google Scholar]
- Aguilera-Rojas, M.; Badewien-Rentzsch, B.; Plendl, J.; Kohn, B.; Einspanier, R. Exploration of serum-and cell culture-derived exosomes from dogs. BMC Vet. Res. 2018, 14, 179. [Google Scholar] [CrossRef]
- Cohen, J. Statistical power analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Da Silva, G.S.; De Souza, M.E.; Quatrin, P.M.; Klein, B.; Wagner, R.; Gündel, A.; Vaucher, R.A.; Santos, R.C.V.; Ourique, A.F. Nanoemulsions containing Cymbopogon flexuosus essential oil: Development characterization stability study and evaluation of antimicrobial and antibiofilm activities. Microb. Pathog. 2018, 118, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Mukhia, S.; Kapoor, S.; Bhatt, V.; Kumar, R.; Kumar, R. Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya. Sci. Rep. 2022, 12, 3305. [Google Scholar] [CrossRef]
- Faujdar, S.S.; Bisht, D.; Sharma, A. Antibacterial activity of Syzygium aromaticum (clove) against uropathogens producing ESBL, MBL, and AmpC beta-lactamase: Are we close to getting a new antibacterial agent? J. Fam. Med. Prim. Care 2020, 9, 180–186. [Google Scholar] [CrossRef]
- Diallo, A.; Tine, Y.; Diop, A.; Ndoye, I.; Traoré, F.; Boye, C.S.B.; Costa, J.; Paolini, J.; Wélé, A. Chemical com-position and antibacterial activity of essential oil of Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtaceae). Asian J. Appl. Chem. Res. 2020, 5, 46–52. [Google Scholar] [CrossRef]
- Şimşek, M.; Duman, R. Investigation of effect of 1,8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharm. Res. 2017, 9, 234–237. [Google Scholar] [CrossRef]
- Gürer, E.S.; Tunç, T. Investigation of antimicrobial and cytotoxic activities of palmarosa (Cymbopogon martinii) essential oil. Cumhur. Sci. J. 2022, 43, 594–599. [Google Scholar] [CrossRef]
- Önem, E. New green solutions against bacterial resistance: Palmarosa (Cymbopogon martini) essential oil and quorum sensing. Sustain. Chem. Pharm. 2022, 25, 100587. [Google Scholar] [CrossRef]
- Millezi, A.; Schuh, V.; Schuh, J.; Amaral, T. Anti-biofilm property of essential oils from Cymbopogon ssp. against pathogenic bacteria in single-culture and co-culture. Ciência Nat. 2020, 42, 1–7. [Google Scholar] [CrossRef]
- Coelho, F.L.; Pereira, M.O. Exploring new treatment strategies for Pseudomonas aeruginosa biofilm infections based on plant essential oils. Formatex Res. 2013, 15, 83–89. [Google Scholar]
- Kuete, V. Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Med. 2010, 76, 1479–1491. [Google Scholar] [CrossRef]
- Filipe, G.A.; Bigotto, B.G.; Baldo, C.; Gonçalves, M.C.; Kobayashi, R.K.T.; Lonni, A.A.S.G.; Celligoi, M.A.P.C. Development of a multifunctional and self-preserving cosmetic formulation using sophorolipids and palmarosa essential oil against acne-causing bacteria. J. Appl. Microbiol. 2022, 133, 1534–1542. [Google Scholar] [CrossRef] [PubMed]
- Merghni, A.; Noumi, E.; Hadded, O.; Dridi, N.; Panwar, H.; Ceylan, O.; Mastouri, M.; Snoussi, M. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb. Pathog. 2018, 11, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Millezi, A.F.; Cardoso, M.D.G.; Alves, E.; Piccoli, R.H. Reduction of Aeromonas hidrophyla biofilm on stainless stell surface by essential oils. Braz. J. Microbiol. 2013, 44, 73–80. [Google Scholar] [CrossRef]
- Melo, R.S.; Albuquerque Azevedo, Á.M.; Gomes Pereira, A.M.; Rocha, R.R.; Bastos Cavalcante, R.M.; Carneiro Matos, M.N.; Carneiro, V.A. Chemical composition and antimicrobial effectiveness of Ocimum gratissimum L. essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019, 24, 3864. [Google Scholar] [CrossRef]
- Tang, C.; Chen, J.; Zhang, L.; Zhang, R.; Zhang, S.; Ye, S.; Yang, D. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant Staphylococcus aureus. Int. J. Med. Microbiol. 2020, 31, 151435. [Google Scholar] [CrossRef]
- Gu, K.; Ouyang, P.; Hong, Y.; Dai, Y.; Tang, T.; He, C.; Yin, L. Geraniol inhibits biofilm formation of methicillin-resistant Staphylococcus aureus and increase the therapeutic effect of vancomycin in vivo. Front. Microbiol. 2022, 13, 960728. [Google Scholar] [CrossRef]
- Alanazi, A.K.; Alqasmi, M.H.; Alrouji, M.; Kuriri, F.A.; Almuhanna, Y.; Joseph, B.; Asad, M. Antibacterial activity of Syzygium aromaticum (Clove) bud oil and its interaction with imipenem in controlling wound infections in rats caused by methicillin-resistant Staphylococcus aureus. Molecules 2022, 27, 8551. [Google Scholar] [CrossRef] [PubMed]
Clove EO | Palmarosa EO | Niaouli EO |
---|---|---|
Eugenol (88.013%) | Geraniol (84.152%) | 1,8-Cineole (70.382%) |
Eugenol acetate (9.488%) | Gerenayl acetate (8.343%) | α-Terpineol (6.265%) |
Caryophyllene (1.878%) | Linalool (3.090%) | α-Pinene (6.686%) |
1-octanol (0.321%) | Cis Beta Ocimene (0.972%) | dl-Limonene (5.413%) |
α-capaene (0.215%) | trans-Caryophyllene (0.773%) | Veridiflorol (2.053%) |
Methyl salicylate (0.078%) | Geranial (0.768%) | β-pinene (1.847%) |
Geranyl isobutyrate/Geranyl Hexanoate (0.574%) | α-Terpinene (1.056%) | |
trans-Farnesol (0.403%) | γ-Terpinene (1.037%) | |
β Ocimene (0.280%) | trans-Caryophyllene (0.903%) |
Essential Oil | Staphylococcus spp. | S. aureus | P. aeruginosa |
---|---|---|---|
Clove | 17 ± 4.6 a | 14.25 ± 3.5 | 7 ± 5.4 a |
Palmarosa | 20.5 ± 6.6 b | 24.75 ± 9.5 | 16.4 ± 2.3 b |
Niaouli | 19.5 ± 4.4 a,b | 23.25 ± 4.5 | Resistant c |
S. aureus ATCC 25923 | S. aureus ATCC 43300 | P. aeruginosa ATCC 27853 | PAO1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | P | N | AMC | GN | C | P | N | AMC | GN | C | P | N | GN | C | P | N | GN |
17 | 18 | 18 | 28 | 16 | 16 | 15 | 15 | 16 | 15 | 15 | 12 | 18 | 16 | 13 | 14 | 16 | 15 |
Essential Oil | Staphylococci | P. aeruginosa | S. aureus ATCC 25923 | S. aureus ATCC 43300 | P. aeruginosa ATCC 27853 | PAO1 |
---|---|---|---|---|---|---|
Clove | 0.015 a | 0.015–0.5 a | 0.015 | 0.015 | 0.015 | 0.015 |
Palmarosa | 0.015–0.0625 b | 0.015–0.5 b,c | 0.015 | 0.015 | 0.5 | 0.5 |
Niaouli | 0.0039 b,c | 0.5 c | 0.0039 | 0.0039 | 0.5 | 0.5 |
Concentration | Cell Viability % | |||
---|---|---|---|---|
Palmarosa | Niaouli | Clove | DMSO | |
1000 µg/mL | 75.4 a | 96.3 b | 75.3 a | 103.9 b,c |
500 µg/mL | 82.8 a | 107.0 | 111.1 | 106.6 |
250 µg/mL | 82.9 a | 103.1 | 106.5 | 102.7 |
100 µg/mL | 83.8 a | 101.6 | 100.8 | 101.5 |
75 µg/mL | 81.9 a | 100.9 | 96.2 | 102.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sezener Kabay, M.G.; Inal, S.; Gökmen, S.; Ergüden, V.E.; Fındık, A.; Güvenç, T.; Kayhan, H.; Güvenç, D. Antibacterial Effects of Essential Oils on P. aeruginosa, Methicillin-Resistant S. aureus, and Staphylococcus spp. Isolated from Dog Wounds. Pharmaceuticals 2024, 17, 1494. https://doi.org/10.3390/ph17111494
Sezener Kabay MG, Inal S, Gökmen S, Ergüden VE, Fındık A, Güvenç T, Kayhan H, Güvenç D. Antibacterial Effects of Essential Oils on P. aeruginosa, Methicillin-Resistant S. aureus, and Staphylococcus spp. Isolated from Dog Wounds. Pharmaceuticals. 2024; 17(11):1494. https://doi.org/10.3390/ph17111494
Chicago/Turabian StyleSezener Kabay, Merve Gizem, Sinem Inal, Sedat Gökmen, Volkan Enes Ergüden, Arzu Fındık, Tolga Güvenç, Hülya Kayhan, and Dilek Güvenç. 2024. "Antibacterial Effects of Essential Oils on P. aeruginosa, Methicillin-Resistant S. aureus, and Staphylococcus spp. Isolated from Dog Wounds" Pharmaceuticals 17, no. 11: 1494. https://doi.org/10.3390/ph17111494