The Entourage Effect in Cannabis Medicinal Products: A Comprehensive Review
Abstract
:1. Introduction
1.1. Entourage Effects: Concepts and Evolution
1.2. Cannabis Strains, Genetic Variety, and the Role of Minor Cannabinoids
1.3. The Phytocannabinoid Entourage
1.4. The Polyphenol Entourage
2. Physiological Effects of Terpenes and Terpenoids Found in Cannabis
3. Terpenes’ Entourage Effects Studied in Cannabis
3.1. β-Caryophyllene and Terpinolene
3.2. α- and β-Pinenes
3.3. β-Myrcene
3.4. Bisabolol, D-Limonene, ⍺-Pinene, and β-Caryophyllene
3.5. β-Caryophyllene, Humulene, Nerolidol, Linalool, and β-Pinene
4. Future Perspectives
5. Methodology
- (1)
- What are the physiological effects of terpenes and terpenoids found in cannabis?(((Physiological Effects) AND (Terpenes)) AND (Terpenoids)) AND (Cannabis);366 results, only 13 answered objectively to the question.
- (2)
- What are the proven entourage effects of terpenes in cannabis?((Entourage Effects) AND (Terpenes)) AND (Cannabis);49 results, only 16 answering objectively to the question.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ben-Shabat, S.; Fride, E.; Sheskin, T.; Tamiri, T.; Rhee, M.-H.; Vogel, Z.; Bisogno, T.; De Petrocellis, L.; Di Marzo, V.; Mechoulam, R. An Entourage Effect: Inactive Endogenous Fatty Acid Glycerol Esters Enhance 2-Arachidonoyl-Glycerol Cannabinoid Activity. Eur. J. Pharmacol. 1998, 353, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Christensen, C.; Rose, M.; Cornett, C.; Allesø, M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn’t. Biomedicines 2023, 11, 2323. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. In Phytocannabinoids; Springer: Cham, Switzerland, 2017; pp. 1–36. [Google Scholar]
- Worth, T. Unpicking the Entourage Effect. Nature 2019, 572, S12–S13. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef]
- Niu, J.; Straubinger, R.M.; Mager, D.E. Pharmacodynamic Drug–Drug Interactions. Clin. Pharmacol. Ther. 2019, 105, 1395–1406. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy Effects of Herb Extracts: Pharmacokinetics and Pharmacodynamic Basis. Fitoterapia 2014, 92, 133–147. [Google Scholar] [CrossRef]
- Namdar, D.; Anis, O.; Poulin, P.; Koltai, H. Chronological Review and Rational and Future Prospects of Cannabis-Based Drug Development. Molecules 2020, 25, 4821. [Google Scholar] [CrossRef]
- Koltai, H.; Namdar, D. Cannabis Phytomolecule “Entourage”: From Domestication to Medical Use. Trends Plant Sci. 2020, 25, 976–984. [Google Scholar] [CrossRef]
- Turner, C.E.; Elsohly, M.A.; Boeren, E.G. Constituents of Cannabis sativa L. XVII. A Review of the Natural Constituents. J. Nat. Prod. 1980, 43, 169–234. [Google Scholar] [CrossRef]
- Johnson, J.R.; Burnell-Nugent, M.; Lossignol, D.; Ganae-Motan, E.D.; Potts, R.; Fallon, M.T. Multicenter, Double-Blind, Randomized, Placebo-Controlled, Parallel-Group Study of the Efficacy, Safety, and Tolerability of THC:CBD Extract and THC Extract in Patients with Intractable Cancer-Related Pain. J. Pain. Symptom Manag. 2010, 39, 167–179. [Google Scholar] [CrossRef]
- Gallily, R.; Yekhtin, Z.; Hanuš, L.O. Overcoming the Bell-Shaped Dose-Response of Cannabidiol by Using Extract Enriched in Cannabidiol. Pharmacol. Pharm. 2015, 6, 75–85. [Google Scholar] [CrossRef]
- Nallathambi, R.; Mazuz, M.; Namdar, D.; Shik, M.; Namintzer, D.; Vinayaka, A.C.; Ion, A.; Faigenboim, A.; Nasser, A.; Laish, I.; et al. Identification of Synergistic Interaction Between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression. Cannabis Cannabinoid Res. 2018, 3, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Berman, P.; Futoran, K.; Lewitus, G.M.; Mukha, D.; Benami, M.; Shlomi, T.; Meiri, D. A New ESI-LC/MS Approach for Comprehensive Metabolic Profiling of Phytocannabinoids in Cannabis. Sci. Rep. 2018, 8, 14280. [Google Scholar] [CrossRef]
- Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M.; Tundidor, I.; Andradas, C.; García-Taboada, E.; Wade, J.; Smith, S.; Guzmán, M.; Pérez-Gómez, E.; et al. Appraising the “Entourage Effect”: Antitumor Action of a Pure Cannabinoid versus a Botanical Drug Preparation in Preclinical Models of Breast Cancer. Biochem. Pharmacol. 2018, 157, 285–293. [Google Scholar] [CrossRef]
- Castillo-Arellano, J.; Canseco-Alba, A.; Cutler, S.J.; León, F. The Polypharmacological Effects of Cannabidiol. Molecules 2023, 28, 3271. [Google Scholar] [CrossRef]
- Lee, S.; Kim, E.J.; Kwon, E.; Oh, S.J.; Cho, M.; Kim, C.M.; Lee, W.; Hong, J. Identification of Terpene Compositions in the Leaves and Inflorescences of Hybrid Cannabis Species Using Headspace-Gas Chromatography/Mass Spectrometry. Molecules 2023, 28, 8082. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Avula, B.; ElSohly, M.; Radwan, M.; Wang, M.; Wanas, A.; Mehmedic, Z.; Khan, I. Quantitative Determination of Δ9-THC, CBG, CBD, Their Acid Precursors and Five Other Neutral Cannabinoids by UHPLC-UV-MS. Planta Med. 2018, 84, 260–266. [Google Scholar] [CrossRef]
- Classen, A.; Meyer, F.G.; Trueblood, E.E.; Heller, J.L. The Great Herbal of Leonhart Fuchs. De Historia Stirpium Commentarii Insignes, 1542. Ger. Stud. Rev. 2001, 24, 595. [Google Scholar] [CrossRef]
- Linnaeus, C. Species Plantarum; Laurentii Salvii: Holmiae, Germany, 1753. [Google Scholar]
- Lamarck, J.-B.d.M.d. Encyclopédie Méthodique: Botanique; Agasse, H., Agasse, T.-C., Panckoucke, C.-J., Eds.; Chez Panckoucke: Paris, France, 1783. [Google Scholar]
- Piomelli, D.; Russo, E.B. The Cannabis sativa Versus Cannabis indica Debate: An Interview with Ethan Russo, MD. Cannabis Cannabinoid Res. 2016, 1, 44–46. [Google Scholar] [CrossRef]
- Schultes, R.E.; Klein, W.M.; Plowman, T.; Lockwood, T.E. Cannabis: An Example of Taxonomic Neglect. Bot. Mus. Leafl. Harv. Univ. 1974, 23, 337–367. [Google Scholar] [CrossRef]
- Small, E.; Cronquist, A. A Pratical and Natural Taxonomy for Cannabis. Taxon 1976, 25, 405–435. [Google Scholar] [CrossRef]
- Usher, G. The Wordsworth Dictionary of Botany; Wordsworth Edition: Hertfordshire, UK, 1996. [Google Scholar]
- Brickell, C.D.; Alexander, C.; Cubey, J.J.; David, J.C.; Hoffman, M.H.A.; Leslie, A.C.; Malécot, V.; Jin, X. Internacional Code for Nomenclature for Cultivated Plants, 9th ed.; International Society for Horticultural Science: Leuven, Belgium, 2009. [Google Scholar]
- Bailey, L.H.; Bailey, E.Z. Hortus Third: A Concise Dictionary of Plants Cultivated in the United States and Canada; MacMillan Publishing Co.: New York, NY, USA, 1976. [Google Scholar]
- Small, E. Cannabis: A Complete Guide; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781498761642. [Google Scholar]
- Lewis, M.; Russo, E.; Smith, K. Pharmacological Foundations of Cannabis Chemovars. Planta Med. 2018, 84, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Hillig, K.W. A Chemotaxonomic Analysis of Terpenoid Variation in Cannabis. Biochem. Syst. Ecol. 2004, 32, 875–891. [Google Scholar] [CrossRef]
- Elzinga, S.; Fischedick, J. Cannabinoids and Terpenes as Chemotaxonomic Markers in Cannabis. Nat. Prod. Chem. Res. 2015, 3, 181. [Google Scholar] [CrossRef]
- Buchbauer, G.; Jirovetz, L.; Jäger, W.; Plank, C.; Dietrich, H. Fragrance Compounds and Essential Oils with Sedative Effects upon Inhalation. J. Pharm. Sci. 1993, 82, 660–664. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential Cannabis Synergy and Phytocannabinoid-terpenoid Entourage Effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Russo, E.B.; Marcu, J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Adv. Pharmacol. 2017, 80, 67–134. [Google Scholar]
- McPartland, J.M.; Russo, E.B. Non-Phytocannabinoid Constituents of Cannabis and Herbal Synergy. In Handbook of Cannabis; Oxford University Press: Oxford, UK, 2014; pp. 280–295. [Google Scholar]
- Zhang, J.; Yan, J.; Huang, S.; Pan, G.; Chang, L.; Li, J.; Zhang, C.; Tang, H.; Chen, A.; Peng, D.; et al. Genetic Diversity and Population Structure of Cannabis Based on the Genome-Wide Development of Simple Sequence Repeat Markers. Front. Genet. 2020, 11, 958. [Google Scholar] [CrossRef]
- Shirley, N.; Allgeier, L.; LaNier, T.; Coyle, H.M. Analysis of the NMI01 Marker for a Population Database of Cannabis Seeds. J. Forensic Sci. 2013, 58 (Suppl. S1), S176–S182. [Google Scholar] [CrossRef]
- Sawler, J.; Stout, J.M.; Gardner, K.M.; Hudson, D.; Vidmar, J.; Butler, L.; Page, J.E.; Myles, S. The Genetic Structure of Marijuana and Hemp. PLoS ONE 2015, 10, e0133292. [Google Scholar] [CrossRef]
- Gao, C.; Xin, P.; Cheng, C.; Tang, Q.; Chen, P.; Wang, C.; Zang, G.; Zhao, L. Diversity Analysis in Cannabis sativa Based on Large-Scale Development of Expressed Sequence Tag-Derived Simple Sequence Repeat Markers. PLoS ONE 2014, 9, e110638. [Google Scholar] [CrossRef] [PubMed]
- Soler, S.; Gramazio, P.; Figàs, M.R.; Vilanova, S.; Rosa, E.; Llosa, E.R.; Borràs, D.; Plazas, M.; Prohens, J. Genetic Structure of Cannabis sativa Var. Indica Cultivars Based on Genomic SSR (GSSR) Markers: Implications for Breeding and Germplasm Management. Ind. Crop. Prod. 2017, 104, 171–178. [Google Scholar] [CrossRef]
- Ioannidis, K.; Tomprou, I.; Mitsis, V.; Koropouli, P. Genetic Evaluation of In Vitro Micropropagated and Regenerated Plants of Cannabis sativa L. Using SSR Molecular Markers. Plants 2022, 11, 2569. [Google Scholar] [CrossRef]
- Pereira da Silva Oliveira, A.; do Céu Costa, M.; Pires Bicho, M. Use of Medicinal Plants: Interindividual Variability of Their Effects from a Genetic and Anthropological Perspective. In Medicinal Plants—Chemical, Biochemical, and Pharmacological Approaches [Working Title]; IntechOpen: London, UK, 2023. [Google Scholar]
- Maccarrone, M.; Di Marzo, V.; Gertsch, J.; Grether, U.; Howlett, A.C.; Hua, T.; Makriyannis, A.; Piomelli, D.; Ueda, N.; van der Stelt, M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol. Rev. 2023, 75, 885–958. [Google Scholar] [CrossRef]
- Morales, P.; Hurst, D.P.; Reggio, P.H. Molecular Targets of the Phytocannabinoids: A Complex Picture. In Phytocannabinoids; Springer: Cham, Switzerland, 2017; pp. 103–131. [Google Scholar]
- Vitale, R.M.; Iannotti, F.A.; Amodeo, P. The (Poly)Pharmacology of Cannabidiol in Neurological and Neuropsychiatric Disorders: Molecular Mechanisms and Targets. Int. J. Mol. Sci. 2021, 22, 4876. [Google Scholar] [CrossRef]
- Zagzoog, A.; Mohamed, K.A.; Kim, H.J.J.; Kim, E.D.; Frank, C.S.; Black, T.; Jadhav, P.D.; Holbrook, L.A.; Laprairie, R.B. In Vitro and in Vivo Pharmacological Activity of Minor Cannabinoids Isolated from Cannabis sativa. Sci. Rep. 2020, 10, 20405. [Google Scholar] [CrossRef]
- Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.M.; Denovan-Wright, E.M. Cannabidiol Is a Negative Allosteric Modulator of the Cannabinoid CB1 Receptor. Br. J. Pharmacol. 2015, 172, 4790–4805. [Google Scholar] [CrossRef]
- Russo, E.; Guy, G.W. A Tale of Two Cannabinoids: The Therapeutic Rationale for Combining Tetrahydrocannabinol and Cannabidiol. Med. Hypotheses 2006, 66, 234–246. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Ligresti, A.; Moriello, A.S.; Allarà, M.; Bisogno, T.; Petrosino, S.; Stott, C.G.; Di Marzo, V. Effects of Cannabinoids and Cannabinoid-enriched Cannabis Extracts on TRP Channels and Endocannabinoid Metabolic Enzymes. Br. J. Pharmacol. 2011, 163, 1479–1494. [Google Scholar] [CrossRef]
- Ferber, S.G.; Namdar, D.; Hen-Shoval, D.; Eger, G.; Koltai, H.; Shoval, G.; Shbiro, L.; Weller, A. The “Entourage Effect”: Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders. Curr. Neuropharmacol. 2020, 18, 87–96. [Google Scholar] [CrossRef]
- Pertwee, R.G. The Diverse CB1 and CB2 Receptor Pharmacology of Three Plant Cannabinoids: Δ9-tetrahydrocannabinol, Cannabidiol and Δ9-Tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Durbin, D.J.; King, J.M.; Stairs, D.J. Behavioral Effects of Vaporized Delta-8 Tetrahydrocannabinol, Cannabidiol, and Mixtures in Male Rats. Cannabis Cannabinoid Res. 2024, 9, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Cascio, M.G.; Zamberletti, E.; Marini, P.; Parolaro, D.; Pertwee, R.G. The Phytocannabinoid, Δ9-tetrahydrocannabivarin, Can Act through 5-HT1A Receptors to Produce Antipsychotic Effects. Br. J. Pharmacol. 2015, 172, 1305–1318. [Google Scholar] [CrossRef]
- Wong, H.; Cairns, B.E. Cannabidiol, Cannabinol and Their Combinations Act as Peripheral Analgesics in a Rat Model of Myofascial Pain. Arch. Oral. Biol. 2019, 104, 33–39. [Google Scholar] [CrossRef]
- Wong, H.; Hossain, S.; Cairns, B.E. Delta-9-tetrahydrocannabinol Decreases Masticatory Muscle Sensitization in Female Rats through Peripheral Cannabinoid Receptor Activation. Eur. J. Pain 2017, 21, 1732–1742. [Google Scholar] [CrossRef]
- Stone, N.L.; Murphy, A.J.; England, T.J.; O’Sullivan, S.E. A Systematic Review of Minor Phytocannabinoids with Promising Neuroprotective Potential. Br. J. Pharmacol. 2020, 177, 4330–4352. [Google Scholar] [CrossRef]
- Santiago, M.; Sachdev, S.; Arnold, J.C.; McGregor, I.S.; Connor, M. Absence of Entourage: Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Functional Activity of Δ9-THC at Human CB1 and CB2 Receptors. Cannabis Cannabinoid Res. 2019, 4, 165–176. [Google Scholar] [CrossRef]
- Heblinski, M.; Santiago, M.; Fletcher, C.; Stuart, J.; Connor, M.; McGregor, I.S.; Arnold, J.C. Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Actions of Phytocannabinoids or Endocannabinoids on TRPA1 and TRPV1 Channels. Cannabis Cannabinoid Res. 2020, 5, 305–317. [Google Scholar] [CrossRef]
- Bautista, J.L.; Yu, S.; Tian, L. Flavonoids in Cannabis sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS Omega 2021, 6, 5119–5123. [Google Scholar] [CrossRef]
- Duggan, P.J. The Chemistry of Cannabis and Cannabinoids. Aust. J. Chem. 2021, 74, 369–387. [Google Scholar] [CrossRef]
- Ross, S.A.; ElSohly, M.A. The Volatile Oil Composition of Fresh and Air-Dried Buds of Cannabis sativa. J. Nat. Prod. 1996, 59, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Wanas, A.S.; Radwan, M.M.; Chandra, S.; Lata, H.; Mehmedic, Z.; Ali, A.; Baser, K.; Demirci, B.; ElSohly, M.A. Chemical Composition of Volatile Oils of Fresh and Air-Dried Buds of Cannabis c Hemovars, Their Insecticidal and Repellent Activities. Nat. Prod. Commun. 2020, 15, 1934578X2092672. [Google Scholar] [CrossRef]
- Rice, S.; Koziel, J.A. Characterizing the Smell of Marijuana by Odor Impact of Volatile Compounds: An Application of Simultaneous Chemical and Sensory Analysis. PLoS ONE 2015, 10, e0144160. [Google Scholar] [CrossRef] [PubMed]
- Ternelli, M.; Brighenti, V.; Anceschi, L.; Poto, M.; Bertelli, D.; Licata, M.; Pellati, F. Innovative Methods for the Preparation of Medical Cannabis Oils with a High Content of Both Cannabinoids and Terpenes. J. Pharm. Biomed. Anal. 2020, 186, 113296. [Google Scholar] [CrossRef]
- Abdollahi, M.; Sefidkon, F.; Calagari, M.; Mousavi, A.; Mahomoodally, M.F. Impact of Four Hemp (Cannabis sativa L.) Varieties and Stage of Plant Growth on Yield and Composition of Essential Oils. Ind. Crop. Prod. 2020, 155, 112793. [Google Scholar] [CrossRef]
- Hanuš, L.O.; Hod, Y. Terpenes/Terpenoids in Cannabis: Are They Important? Med. Cannabis Cannabinoids 2020, 3, 25–60. [Google Scholar] [CrossRef]
- Costa, M.d.C.; Duarte, P.; Neng, N.R.; Nogueira, J.M.F.; Costa, F.; Rosado, C. Novel Insights for Permeant Lead Structures through in Vitro Skin Diffusion Assays of Prunus lusitanica L., the Portugal Laurel. J. Mol. Struct. 2015, 1079, 327–336. [Google Scholar] [CrossRef]
- Peterson, B.; Weyers, M.; Steenekamp, J.H.; Steyn, J.D.; Gouws, C.; Hamman, J.H. Drug Bioavailability Enhancing Agents of Natural Origin (Bioenhancers) That Modulate Drug Membrane Permeation and Pre-Systemic Metabolism. Pharmaceutics 2019, 11, 33. [Google Scholar] [CrossRef]
- Zafar, N. Herbal Bioenhancers: A Revolutionary Concept in Modern Medicine. World J. Pharm. Res. 2017, 16, 381–397. [Google Scholar]
- Boggs, D.L.; Nguyen, J.D.; Morgenson, D.; Taffe, M.A.; Ranganathan, M. Clinical and Preclinical Evidence for Functional Interactions of Cannabidiol and Δ9-Tetrahydrocannabinol. Neuropsychopharmacology 2018, 43, 142–154. [Google Scholar] [CrossRef]
- Johnson, A.L.; Verbitsky, R.; Hudson, J.; Dean, R.; Hamilton, T.J. Cannabinoid Type-2 Receptors Modulate Terpene Induced Anxiety-Reduction in Zebrafish. Biomed. Pharmacother. 2023, 168, 115760. [Google Scholar] [CrossRef] [PubMed]
- European Scientific Cooperative on Phytotherapy. ESCOP Monographs: The Scientific Foundation for Herbal. Medicinal Products. Second. Edition, Supplement 2009; Thieme Medical Publishers: New York, NY, USA, 2009. [Google Scholar]
- Weiss, R.F.; Fintelmann, V. Herbal Medicine; Complementary Medicine; Thieme: New York, NY, USA, 2000; ISBN 9783131263322. [Google Scholar]
- European Medicines Agency. EMA/HMPC/143181/2010 Community Herbal. Monograph on Lavandula Angustifolia Miller, Aetheroleum; European Medicines Agency: London, UK, 2012. [Google Scholar]
- dos Santos, É.R.Q.; Maia, J.G.S.; Fontes-Júnior, E.A.; do Socorro Ferraz Maia, C. Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review. Curr. Neuropharmacol. 2022, 20, 1073–1092. [Google Scholar] [CrossRef] [PubMed]
- Linck, V.d.M.; da Silva, A.L.; Figueiró, M.; Luis Piato, Â.; Paula Herrmann, A.; Dupont Birck, F.; Bastos Caramão, E.; Sávio Nunes, D.; Moreno, P.R.H.; Elisabetsky, E. Inhaled Linalool-Induced Sedation in Mice. Phytomedicine 2009, 16, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Dobetsberger, C.; Buchbauer, G. Actions of Essential Oils on the Central Nervous System: An Updated Review. Flavour Fragr. J. 2011, 26, 300–316. [Google Scholar] [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-Inflammatory Activity of Linalool and Linalyl Acetate Constituents of Essential Oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef]
- Shen, J.; Niijima, A.; Tanida, M.; Horii, Y.; Nakamura, T.; Nagai, K. Mechanism of Changes Induced in Plasma Glycerol by Scent Stimulation with Grapefruit and Lavender Essential Oils. Neurosci. Lett. 2007, 416, 241–246. [Google Scholar] [CrossRef]
- Elisabetsky, E.; Silva Brum, L.F.; Souza, D.O. Anticonvulsant Properties of Linalool in Glutamate-Related Seizure Models. Phytomedicine 1999, 6, 107–113. [Google Scholar] [CrossRef]
- Silva Brum, L.F.; Emanuelli, T.; Souza, D.O.; Elisabetsky, E. Effects of Linalool on Glutamate Release and Uptake in Mouse Cortical Synaptosomes. Neurochem. Res. 2001, 26, 191–194. [Google Scholar] [CrossRef]
- Laws, J.S.; Smid, S.D. Characterizing Cannabis-Prevalent Terpenes for Neuroprotection Reveal a Role for α and β-Pinenes in Mitigating Amyloid β-Evoked Neurotoxicity and Aggregation in Vitro. Neurotoxicology 2024, 100, 16–24. [Google Scholar] [CrossRef]
- da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of A-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef]
- McDougall, J.J.; McKenna, M.K. Anti-Inflammatory and Analgesic Properties of the Cannabis Terpene Myrcene in Rat Adjuvant Monoarthritis. Int. J. Mol. Sci. 2022, 23, 7891. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, B.W.; Moore, C.F.; Covey, D.; McDonald, J.D.; Lefever, T.W.; Bonn-Miller, M.O.; Weerts, E.M. Evaluating Potential Anxiolytic Effects of Minor Cannabinoids and Terpenes After Acute and Chronic Oral Administration in Rats. Cannabis Cannabinoid Res. 2023, 8, S11–S24. [Google Scholar] [CrossRef] [PubMed]
- Britton, E.R.; Kellogg, J.J.; Kvalheim, O.M.; Cech, N.B. Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study with Hydrastis Canadensis (Goldenseal). J. Nat. Prod. 2018, 81, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Vigil, J.M.; Stith, S.S.; Brockelman, F.; Keeling, K.; Hall, B. Systematic Combinations of Major Cannabinoid and Terpene Contents in Cannabis Flower and Patient Outcomes: A Proof-of-Concept Assessment of the Vigil Index of Cannabis Chemovars. J. Cannabis Res. 2023, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Piomelli, D. Waiting for the Entourage. Cannabis Cannabinoid Res. 2019, 4, 137–138. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Fischedick, J.T.; Hazekamp, A.; Erkelens, T.; Choi, Y.H.; Verpoorte, R. Metabolic Fingerprinting of Cannabis sativa L., Cannabinoids and Terpenoids for Chemotaxonomic and Drug Standardization Purposes. Phytochemistry 2010, 71, 2058–2073. [Google Scholar] [CrossRef]
- Hazekamp, A.; Fischedick, J.T. Cannabis—From Cultivar to Chemovar. Drug Test. Anal. 2012, 4, 660–667. [Google Scholar] [CrossRef]
- Casano, S.; Grassi, G.; Martini, V.; Michelozzi, M. Variations in Terpene Profiles of Different Strains of Cannabis sativa L. Acta Hortic. 2011, 925, 115–121. [Google Scholar] [CrossRef]
- Milay, L.; Berman, P.; Shapira, A.; Guberman, O.; Meiri, D. Metabolic Profiling of Cannabis Secondary Metabolites for Evaluation of Optimal Postharvest Storage Conditions. Front. Plant Sci. 2020, 11, 583605. [Google Scholar] [CrossRef]
- Russo, E.B. The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain”, No Gain. Front. Plant Sci. 2019, 9, 1969. [Google Scholar] [CrossRef] [PubMed]
- Kohlert, C.; van Rensen, I.; März, R.; Schindler, G.; Graefe, E.U.; Veit, M. Bioavailability and Pharmacokinetics of Natural Volatile Terpenes in Animals and Humans. Planta Med. 2000, 66, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Kulkarni, K.; Basu, S.; Zhang, S.; Hu, M. First-Pass Metabolism via UDP-Glucuronosyltransferase: A Barrier to Oral Bioavailability of Phenolics. J. Pharm. Sci. 2011, 100, 3655–3681. [Google Scholar] [CrossRef] [PubMed]
- Mediavilla, V.; Steinemann, S. Essential Oil of Cannabis sativa L. Strains. J. Int. Hemp Assoc. 1997, 4, 80–82. [Google Scholar]
- Freitas, J.C.; Presgrave, O.A.; Fingola, F.F.; Menezes, M.A.; Paumgartten, F.J. Effect of Beta-Myrcene on Pentobarbital Sleeping Time. Braz. J. Med. Biol. Res. 1993, 26, 519–523. [Google Scholar]
- Marchini, M.; Charvoz, C.; Dujourdy, L.; Baldovini, N.; Filippi, J.-J. Multidimensional Analysis of Cannabis Volatile Constituents: Identification of 5,5-Dimethyl-1-Vinylbicyclo[2.1.1]Hexane as a Volatile Marker of Hashish, the Resin of Cannabis sativa L. J. Chromatogr. A 2014, 1370, 200–215. [Google Scholar] [CrossRef]
- López, V.; Nielsen, B.; Solas, M.; Ramírez, M.J.; Jäger, A.K. Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets. Front. Pharmacol. 2017, 8, 280. [Google Scholar] [CrossRef]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a Natural Monoterpene: A Review of Its Biological Properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Rehman, M.U.; Tahir, M.; Khan, A.Q.; Khan, R.; Oday-O-Hamiza; Lateef, A.; Hassan, S.K.; Rashid, S.; Ali, N.; Zeeshan, M.; et al. D-Limonene Suppresses Doxorubicin-Induced Oxidative Stress and Inflammation via Repression of COX-2, INOS, and NFκB in Kidneys of Wistar Rats. Exp. Biol. Med. 2014, 239, 465–476. [Google Scholar] [CrossRef]
- Yang, H.; Woo, J.; Pae, A.N.; Um, M.Y.; Cho, N.-C.; Park, K.D.; Yoon, M.; Kim, J.; Lee, C.J.; Cho, S. α-Pinene, a Major Constituent of Pine Tree Oils, Enhances Non-Rapid Eye Movement Sleep in Mice through GABA A-Benzodiazepine Receptors. Mol. Pharmacol. 2016, 90, 530–539. [Google Scholar] [CrossRef]
- Ormeño, E.; Baldy, V.; Ballini, C.; Fernandez, C. Production and Diversity of Volatile Terpenes from Plants on Calcareous and Siliceous Soils: Effect of Soil Nutrients. J. Chem. Ecol. 2008, 34, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Buchbauer, G.; Ngassoum, M.B.; Geissler, M. Aroma Compound Analysis of Piper Nigrum and Piper Guineense Essential Oils from Cameroon Using Solid-Phase Microextraction–Gas Chromatography, Solid-Phase Microextraction–Gas Chromatography–Mass Spectrometry and Olfactometry. J. Chromatogr. A 2002, 976, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, I.; Fiorenzani, P.; Pessina, F.; Pinassi, J.; Aglianò, M.; Miragliotta, V.; Aloisi, A.M. The CB2 Agonist β-Caryophyllene in Male and Female Rats Exposed to a Model of Persistent Inflammatory Pain. Front. Neurosci. 2020, 14, 850. [Google Scholar] [CrossRef] [PubMed]
- Alberti, T.; Barbosa, W.; Vieira, J.; Raposo, N.; Dutra, R. (−)-β-Caryophyllene, a CB2 Receptor-Selective Phytocannabinoid, Suppresses Motor Paralysis and Neuroinflammation in a Murine Model of Multiple Sclerosis. Int. J. Mol. Sci. 2017, 18, 691. [Google Scholar] [CrossRef] [PubMed]
- Hashiesh, H.M.; Sharma, C.; Goyal, S.N.; Sadek, B.; Jha, N.K.; Al Kaabi, J.; Ojha, S. A Focused Review on CB2 Receptor-Selective Pharmacological Properties and Therapeutic Potential of β-Caryophyllene, a Dietary Cannabinoid. Biomed. Pharmacother. 2021, 140, 111639. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Meng, C.; He, Y.; Xu, H.; Qu, Y.; Wang, Y.; Fan, Y.; Huang, X.; You, H. An in Vitro and in Vivo Study: Valencene Protects Cartilage and Alleviates the Progression of Osteoarthritis by Anti-Oxidative Stress and Anti-Inflammatory Effects. Int. Immunopharmacol. 2023, 123, 110726. [Google Scholar] [CrossRef]
- Abdelhalim, A.; Hanrahan, J. Biologically Active Compounds from Lamiaceae Family: Central Nervous System Effects. Stud. Nat. Prod. Chem. 2021, 68, 255–315. [Google Scholar]
- European Medicines Agency. European Union Herbal Monograph on Eucalyptus Globulus Labill; Eucalyptus Polybractea R.T. Baker; Eucalyptus Smithii R.T. Baker, Aetheroleum EMA/HMPC/320292/2023; European Medicines Agency: Amsterdam, The Netherlands, 2023. [Google Scholar]
Terpene | Potential Effect | Type of Evidence |
---|---|---|
Myrcene (14) Hashishene (109) | Relaxation | Cannabis sativa is known to contain β-myrcene (29.4–65.8%) of the steam-distilled essential oil from various fiber and drug strains tested in modern cannabis cultivars within North America [97]. When administered orally, a single dose of β-myrcene has been shown to extend the duration of pentobarbital-induced sleep when administered 60 min before a barbiturate [98]. Additionally, β-myrcene undergoes photo-oxidation to form “hashishene”, a compound notable for its high concentration in hashish [99]. |
Linalool (20) | Anxiolytic and antidepressant | Linalool, a major compound of lavender essential oil, is traditionally used and has been approved by the EMA as an herbal medicinal product for alleviating mild symptoms of mental stress and exhaustion and aiding sleep [74]. Some animal and clinical studies have shown positive outcomes in models of anxiety and depression; however, research into the molecular mechanisms underlying these effects remains limited [100]. |
Terpineol (39) | Uplifting | Terpineol exists in four isomer forms: α-, β-, and γ-terpineol and terpinen-4-ol. β- and γ-terpineol differ only in the position of the double bond. Typically, terpineol is a mixture of these isomers, with α-terpineol being the most prevalent. Terpineol is noted for its anticancer, anticonvulsant, antihypertensive, antioxidant, antinociceptive, and antiulcer effects [101]. |
Limonene (17) | Stress relief | D-limonene has demonstrated protective effects against the nephrotoxic side effects of the anticancer drug doxorubicin (Dox) [102]. |
α-Pinene (18) | Soothing | α-Pinene (60% human pulmonary bioavailability) is an anti-inflammatory and an acetylcholinesterase inhibitor, aiding memory [33]. It also interacts with the benzodiazepine binding site [103]. However, the hypothesis that α-pinene may mitigate memory deficits associated with THC consumption due to its acetylcholinesterase inhibition remains unproven. However, ongoing studies propose that potential role as an influencer. |
Caryophyllene (21) | Pain relief Anti-inflammatory action, caryophyllene improves cold tolerance and acts as a potential adjuvant for human colorectal cell growth inhibition | β-Caryophyllene acts as a full agonist of cannabinoid receptor type 2 in rats with a binding affinity of Ki = 155 nM. [104] and exhibits anti-inflammatory effects. In comparison, cannabinol (CBN) binds to CB2 receptors as a partial agonist with an affinity of Ki = 126.4 Nm [105], and THC binds as a partial agonist with an affinity of Ki = 36 nM [106]. β-Caryophyllene has been shown to enhance cold tolerance at low ambient temperatures. For example, wild giant pandas frequently use β-caryophyllene and caryophyllene oxide found in horse manure to inhibit transient receptor potential melastatin 8 (TRPM8), an archetypical cold-activated ion channel in mammals [107]. Additionally, in an in vitro human colorectal adenocarcinoma study, a combination of β-caryophyllene (10 μg/mL) and paclitaxel (0.025 μg/mL) resulted in greater inhibition of cancer cell growth than paclitaxel used alone [108]. |
Valencene (108) | Protection of cartilage and alleviation of the progression of osteoarthritis | Valence demonstrates protective effects on cartilage and alleviation of the progression of osteoarthritis by anti-inflammatory anti-oxidative stress effects [109]. |
Borneol (60) | “Sedative” Anticonvulsant and antinociceptive properties | Borneol, known for its ability to cross the blood–brain barrier, modulates GABAergic activity in the central nervous system, exhibiting anticonvulsant and antinociceptive properties [110]. |
Eucalyptol (49) | “Relaxation” Relief of symptoms of localized muscle pain | Eucalyptol, comprising approximately 70–90% of eucalyptus oil, has been endorsed by the Committee on Herbal Medicinal Products (HMPC) of the EMA for its long-standing use in reliving cough associated with the common cold and localized muscle pain [111]. |
Terpene | Search Keywords | N. Publications |
---|---|---|
Myrcene (relaxing) | (myrcene) AND (cannabis) | 58 None for relaxation 1 showing no effect |
Linalool (sedative) | (linalool) AND (cannabis) | 6 31 for sedative effects alone |
Terpinolene (uplifting) | (terpinolene) AND (cannabis) | 1133 Terpinolene x effect: no uplifting-related studies |
Limonene (stress relief) | (limonene) AND (cannabis) | 42 3 for stress relief |
Pinene (soothing) | (pinene) AND (cannabis) | 48 0 for soothing |
Caryophyllene (pain relief) | (caryophyllene) AND (cannabis) | 95 5 for analgesic synergies/cannabis terpenes and CBD |
Valencene (euphoria) | (valencene) AND (cannabis) | 0—no study on cannabis |
Borneol (sedative) | (borneol) AND (cannabis) | 2 with cannabis 10 references for borneol AND as a sedative |
Eucalyptol (relaxing) | (eucalyptol) AND (cannabis) | 6~3/5 on eucalyptol AND relaxation but in mixtures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
André, R.; Gomes, A.P.; Pereira-Leite, C.; Marques-da-Costa, A.; Monteiro Rodrigues, L.; Sassano, M.; Rijo, P.; Costa, M.d.C. The Entourage Effect in Cannabis Medicinal Products: A Comprehensive Review. Pharmaceuticals 2024, 17, 1543. https://doi.org/10.3390/ph17111543
André R, Gomes AP, Pereira-Leite C, Marques-da-Costa A, Monteiro Rodrigues L, Sassano M, Rijo P, Costa MdC. The Entourage Effect in Cannabis Medicinal Products: A Comprehensive Review. Pharmaceuticals. 2024; 17(11):1543. https://doi.org/10.3390/ph17111543
Chicago/Turabian StyleAndré, Rebeca, Ana Patrícia Gomes, Catarina Pereira-Leite, António Marques-da-Costa, Luis Monteiro Rodrigues, Michael Sassano, Patricia Rijo, and Maria do Céu Costa. 2024. "The Entourage Effect in Cannabis Medicinal Products: A Comprehensive Review" Pharmaceuticals 17, no. 11: 1543. https://doi.org/10.3390/ph17111543
APA StyleAndré, R., Gomes, A. P., Pereira-Leite, C., Marques-da-Costa, A., Monteiro Rodrigues, L., Sassano, M., Rijo, P., & Costa, M. d. C. (2024). The Entourage Effect in Cannabis Medicinal Products: A Comprehensive Review. Pharmaceuticals, 17(11), 1543. https://doi.org/10.3390/ph17111543