Low-Dose Oral Ginger Improves Daily Symptom Scores in Asthma
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Clinical Asthma Study Protocol
4.2. Baseline Methacholine Challenge Testing
4.3. Randomization
4.4. Pharmacokinetic Study
4.5. Statistical Design and Power
4.6. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACT | Asthma Control Test |
AQLQ | Asthma Quality of Life Questionnaire |
ASHMI | Anti-Asthma Herbal Medicine Intervention |
ASM | airway smooth muscle |
CAM | complementary and alternative medicine |
CTCAE | common terminology criteria for adverse events |
FDA | Food and Drug Administration |
FeNO | fractional exhaled nitric oxide |
FEV1 | forced expiratory volume in one second |
FVC | forced vital capacity |
IFNγ | interferon gamma |
IL | interleukin |
MLC | myosin light chain |
NCCIH | National Center for Complementary and Integrated Health |
NCI | National Cancer Institute |
NIH | National Institutes of Health |
PD20 | dose of methacholine that causes a 20% fall in FEV1 |
TNFα | tumor necrosis factor alpha |
V3 | visit 3 |
V4 | visit 4 |
V5 | visit 5 |
References
- CDC. Most Recent National Asthma Data. Available online: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm (accessed on 1 February 2023).
- Martin, R.J.; Szefler, S.J.; King, T.S.; Kraft, M.; Boushey, H.A.; Chinchilli, V.M.; Craig, T.J.; DiMango, E.A.; Deykin, A.; Fahy, J.V.; et al. The Predicting Response to Inhaled Corticosteroid Efficacy (PRICE) trial. J. Allergy Clin. Immunol. 2007, 119, 73–80. [Google Scholar] [CrossRef] [PubMed]
- AsthmaStats: Uncontrolled Asthma Among Persons with Current Asthma. 2014. Available online: https://archive.cdc.gov/www_cdc_gov/asthma/asthma_stats/uncontrolled_asthma.htm (accessed on 1 February 2023).
- Nair, P.; Wenzel, S.; Rabe, K.F.; Bourdin, A.; Lugogo, N.L.; Kuna, P.; Barker, P.; Sproule, S.; Ponnarambil, S.; Goldman, M.; et al. Oral Glucocorticoid-Sparing Effect of Benralizumab in Severe Asthma. N. Engl. J. Med. 2017, 376, 2448–2458. [Google Scholar] [CrossRef] [PubMed]
- Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D.; Investigators, S. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Engl. J. Med. 2014, 371, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Corren, J.; Bourdin, A.; Chupp, G.; Israel, E.; Wechsler, M.E.; Brightling, C.E.; Griffiths, J.M.; Hellqvist, A.; Bowen, K.; et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N. Engl. J. Med. 2021, 384, 1800–1809. [Google Scholar] [CrossRef]
- Busse, P.J.; Schofield, B.; Birmingham, N.; Yang, N.; Wen, M.C.; Zhang, T.; Srivastava, K.; Li, X.M. The traditional Chinese herbal formula ASHMI inhibits allergic lung inflammation in antigen-sensitized and antigen-challenged aged mice. Ann. Allergy Asthma Immunol. 2010, 104, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Kelly-Pieper, K.; Patil, S.P.; Busse, P.; Yang, N.; Sampson, H.; Li, X.M.; Wisnivesky, J.P.; Kattan, M. Safety and tolerability of an antiasthma herbal Formula (ASHMI) in adult subjects with asthma: A randomized, double-blinded, placebo-controlled, dose-escalation phase I study. J. Altern. Complement. Med. 2009, 15, 735–743. [Google Scholar] [CrossRef]
- Srivastava, K.; Zhang, T.; Yang, N.; Sampson, H.; Li, X.M. Anti-Asthma Simplified Herbal Medicine Intervention-induced long-lasting tolerance to allergen exposure in an asthma model is interferon-gamma, but not transforming growth factor-beta dependent. Clin. Exp. Allergy 2010, 40, 1678–1688. [Google Scholar] [CrossRef]
- Wen, M.C.; Wei, C.H.; Hu, Z.Q.; Srivastava, K.; Ko, J.; Xi, S.T.; Mu, D.Z.; Du, J.B.; Li, G.H.; Wallenstein, S.; et al. Efficacy and tolerability of anti-asthma herbal medicine intervention in adult patients with moderate-severe allergic asthma. J. Allergy Clin. Immunol. 2005, 116, 517–524. [Google Scholar] [CrossRef]
- Zhang, T.; Srivastava, K.; Wen, M.C.; Yang, N.; Cao, J.; Busse, P.; Birmingham, N.; Goldfarb, J.; Li, X.M. Pharmacology and immunological actions of a herbal medicine ASHMI on allergic asthma. Phytother. Res. 2010, 24, 1047–1055. [Google Scholar] [CrossRef]
- Singh, B.B.; Khorsan, R.; Vinjamury, S.P.; Der-Martirosian, C.; Kizhakkeveettil, A.; Anderson, T.M. Herbal treatments of asthma: A systematic review. J. Asthma 2007, 44, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.O.; Hughes, H.W.; Stuart, A.G. Herbals and asthma: Usage patterns among a border population. Ann. Pharmacother. 2004, 38, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Clement, Y.N.; Williams, A.F.; Aranda, D.; Chase, R.; Watson, N.; Mohammed, R.; Stubbs, O.; Williamson, D. Medicinal herb use among asthmatic patients attending a specialty care facility in Trinidad. BMC Complement. Altern. Med. 2005, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Gong, C.C.; Chen, J.L.; Mak, O.T. Inhibitory effects of inhaled complex traditional Chinese medicine on early and late asthmatic responses induced by ovalbumin in sensitized guinea pigs. BMC Complement. Altern. Med. 2011, 11, 80. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.R.; Kim, J.O.; Lee, Y.C. The roles of phytochemicals in bronchial asthma. Molecules 2010, 15, 6810–6834. [Google Scholar] [CrossRef]
- Ghayur, M.N.; Gilani, A.H.; Janssen, L.J. Ginger attenuates acetylcholine-induced contraction and Ca2+ signalling in murine airway smooth muscle cells. Can. J. Physiol. Pharmacol. 2008, 86, 264–271. [Google Scholar] [CrossRef]
- Podlogar, J.A.; Verspohl, E.J. Antiinflammatory effects of ginger and some of its components in human bronchial epithelial (BEAS-2B) cells. Phytother. Res. 2012, 26, 333–336. [Google Scholar] [CrossRef]
- Kuo, P.L.; Hsu, Y.L.; Huang, M.S.; Tsai, M.J.; Ko, Y.C. Ginger suppresses phthalate ester-induced airway remodeling. J. Agric. Food Chem. 2011, 59, 3429–3438. [Google Scholar] [CrossRef]
- Townsend, E.A.; Siviski, M.E.; Zhang, Y.; Xu, C.; Hoonjan, B.; Emala, C.W. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am. J. Respir. Cell Mol. Biol. 2013, 48, 157–163. [Google Scholar] [CrossRef]
- Townsend, E.A.; Zhang, Y.; Xu, C.; Wakita, R.; Emala, C.W. Active components of ginger potentiate beta-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins. Am. J. Respir. Cell Mol. Biol. 2014, 50, 115–124. [Google Scholar] [CrossRef]
- Zick, S.M.; Turgeon, D.K.; Ren, J.; Ruffin, M.T.; Wright, B.D.; Sen, A.; Djuric, Z.; Brenner, D.E. Pilot clinical study of the effects of ginger root extract on eicosanoids in colonic mucosa of subjects at increased risk for colorectal cancer. Mol. Carcinog. 2014, 54, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Zick, S.M.; Turgeon, D.K.; Vareed, S.K.; Ruffin, M.T.; Litzinger, A.J.; Wright, B.D.; Alrawi, S.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Phase II study of the effects of ginger root extract on eicosanoids in colon mucosa in people at normal risk for colorectal cancer. Cancer Prev. Res. (Phila Pa) 2011, 4, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.D.; Marcussen, K.C. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum. 2001, 44, 2531–2538. [Google Scholar] [CrossRef] [PubMed]
- Yocum, G.T.; Hwang, J.J.; Mikami, M.; Danielsson, J.; Kuforiji, A.S.; Emala, C.W. Ginger and its Bioactive Component 6-Shogaol Mitigate Lung Inflammation in a Murine Asthma Model. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 318, L296–L303. [Google Scholar] [CrossRef]
- Ahui, M.L.; Champy, P.; Ramadan, A.; Pham Van, L.; Araujo, L.; Brou Andre, K.; Diem, S.; Damotte, D.; Kati-Coulibaly, S.; Offoumou, M.A.; et al. Ginger prevents Th2-mediated immune responses in a mouse model of airway inflammation. Int. Immunopharmacol. 2008, 8, 1626–1632. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Uddandrao, V.V.S.; Ponnusamy, P.; Balakrishnan, S.; Brahmanaidu, P.; Vadivukkarasi, S.; Ganapathy, S. Asthma-Alleviating Potential of 6-Gingerol: Effect on Cytokines, Related mRNA and c-Myc, and NFAT1 Expression in Ovalbumin-Sensitized Asthma in Rats. J. Environ. Pathol. Toxicol. Oncol. 2019, 38, 41–50. [Google Scholar] [CrossRef]
- Kardan, M.; Rafiei, A.; Ghaffari, J.; Valadan, R.; Morsaljahan, Z.; Haj-Ghorbani, S.T. Effect of ginger extract on expression of GATA3, T-bet and ROR-gammat in peripheral blood mononuclear cells of patients with Allergic Asthma. Allergol. Immunopathol. (Madr) 2019, 47, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Zick, S.M.; Ruffin, M.T.; Lee, J.; Normolle, D.P.; Siden, R.; Alrawi, S.; Brenner, D.E. Phase II trial of encapsulated ginger as a treatment for chemotherapy-induced nausea and vomiting. Support. Care Cancer 2009, 17, 563–572. [Google Scholar] [CrossRef]
- Joyce, D.P.; Jackevicius, C.; Chapman, K.R.; McIvor, R.A.; Kesten, S. The placebo effect in asthma drug therapy trials: A meta-analysis. J. Asthma 2000, 37, 303–318. [Google Scholar] [CrossRef]
- Hynes, G.M.; Hinks, T.S.C. The role of interleukin-17 in asthma: A protective response? ERJ Open Res. 2020, 6, 00364–2019. [Google Scholar] [CrossRef]
- Choy, D.F.; Hart, K.M.; Borthwick, L.A.; Shikotra, A.; Nagarkar, D.R.; Siddiqui, S.; Jia, G.; Ohri, C.M.; Doran, E.; Vannella, K.M.; et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med. 2015, 7, 301ra129. [Google Scholar] [CrossRef] [PubMed]
- Busse, W.W.; Holgate, S.; Kerwin, E.; Chon, Y.; Feng, J.; Lin, J.; Lin, S.L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 2013, 188, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Brightling, C.E.; Nair, P.; Cousins, D.J.; Louis, R.; Singh, D. Risankizumab in Severe Asthma—A Phase 2a, Placebo-Controlled Trial. N. Engl. J. Med. 2021, 385, 1669–1679. [Google Scholar] [CrossRef] [PubMed]
- Amgen. Study of Efficacy and Safety of Brodalumab Compared with Placebo in Adults With Inadequately Controlled Asthma with High Bronchodilator Reversibility. Available online: https://clinicaltrials.gov/study/NCT01902290 (accessed on 26 November 2024).
- Novartis. Safety, Tolerability, and Efficacy of AIN457 in Patients with Uncontrolled Asthma. Available online: https://www.clinicaltrials.gov/study/NCT01478360 (accessed on 21 July 2024).
- Citronberg, J.; Bostick, R.; Ahearn, T.; Turgeon, D.K.; Ruffin, M.T.; Djuric, Z.; Sen, A.; Brenner, D.E.; Zick, S.M. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: Results from a pilot, randomized, and controlled trial. Cancer Prev. Res. (Phila Pa) 2013, 6, 271–281. [Google Scholar] [CrossRef]
- Chen, H.; Soroka, D.N.; Hu, Y.; Chen, X.; Sang, S. Characterization of thiol-conjugated metabolites of ginger components shogaols in mouse and human urine and modulation of the glutathione levels in cancer cells by [6]-shogaol. Mol. Nutr. Food Res. 2013, 57, 447–458. [Google Scholar] [CrossRef]
- Chen, H.; Soroka, D.; Zhu, Y.; Sang, S. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human. Mol. Nutr. Food Res. 2013, 57, 865–876. [Google Scholar] [CrossRef]
- Lukovic, E.; Perez-Zoghbi, J.F.; Zhang, Y.; Zhu, Y.; Sang, S.; Emala, C.W. Ginger metabolites and metabolite-inspired synthetic products modulate intracellular calcium and relax airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321, L912–L924. [Google Scholar] [CrossRef]
- Zhang, S.; DiMango, E.; Zhu, Y.; Saroya, T.K.; Emala, C.W.; Sang, S. Pharmacokinetics of Gingerols, Shogaols, and Their Metabolites in Asthma Patients. J. Agric. Food Chem. 2022, 70, 9674–9683. [Google Scholar] [CrossRef]
Ginger (n = 20) | Placebo (n = 12) | p-Value t-Test | |
---|---|---|---|
Age (years) | 53.9 ± 17.5 | 56.1 ± 13.0 | 0.71 |
Sex (female n, %) | 11, 55 | 7, 58 | |
BMI (kg/m2) | 29.4 ± 5.5 | 30.6 ±6.4 | 0.60 |
Hispanic Ethnicity (%) | 55 | 42 | |
Race (Black, White, Asian, more than one race, %) | 20, 45, 15, 20 | 33, 25, 9, 33 | |
Pre-albuterol FEV1 (L) (% predicted) | 2.13 ± 0.82, 73.8 ± 18.8 | 2.19 ± 0.52, 75.2 ± 19.5 | 0.65, 0.60 |
Post-albuterol FEV1 (L) (% predicted) | 2.12 ± 0.85, 71.3 ± 16.7 | 2.06 ± 0.51, 71.5 ± 20.8 | 0.99, 0.71 |
Pre-albuterol FEV1/FVC | 0.71 ± 0.10 | 0.74 ± 0.11 | 0.27 |
Post-albuterol FEV1/FVC | 0.71 ± 0.92 | 0.72± 0.09 | 0.49 |
PD20 methacholine | 9.24 ± 12.09 | 9.44 ± 15.0 | 0.94 |
FeNO (ppb) | 30.5 ± 28.78 | 72.7 ± 83.8 | 0.20 |
ACT | 14.2 ± 3.23 | 15.8 ± 2.52 | 0.13 |
Mini AQLQ | 65.1 ± 16.0 | 58.1 ± 17.6 | 0.35 |
Two-week symptom score | 6.55 ± 2.48 | 5.17 ± 3.10 | 0.17 |
Eosinophil count (×109/L) | 0.24 ± 0.23 | 0.30 ± 0.28 | 0.57 |
Eosinophil % of total WBC | 3.8 ± 3.3 | 4.1 ± 3.6 | 0.83 |
IL-4 (pg/mL) | 0.42 ± 0.37 | 0.46 ± 0.37 | 0.75 |
IL-5 (pg/mL) | 3.56 ± 7.58 | 8.82 ± 20.2 | 0.30 |
IL-13 (pg/mL) | 30.0 ± 40.3 | 42.1 ± 40.6 | 0.47 |
Measure | Group | N | Baseline | 1 h After Drug | Paired t-Test p-Value |
---|---|---|---|---|---|
FEV1% | Ginger | 20 | 73.75 ± 4.2 | 71.33 ± 3.94 | 0.58 |
FEV1% | Placebo | 12 | 75.17 ± 5.62 | 71.45 ± 6.28 | 0.52 |
FVC% | Ginger | 20 | 81.35 ± 2.8 | 80.37 ± 3.34 | 0.37 |
FVC% | Placebo | 12 | 80.58 ± 4.63 | 77.27 ± 5.19 | 0.26 |
FEV1/FVC | Ginger | 20 | 0.71 ± 0.02 | 0.71 ± 0.02 | 0.43 |
FEV1/FVC | Placebo | 12 | 0.74 ± 0.03 | 0.72 ± 0.03 | 0.76 |
FEV1 (L) | Ginger | 20 | 2.12 ± 0.18 | 2.12 ± 0.2 | 0.49 |
FEV1 (L) | Placebo | 12 | 2.18 ± 0.15 | 2.06 ± 0.15 | 0.46 |
FVC (L) | Ginger | 20 | 2.98 ± 0.21 | 2.95 ± 0.21 | 0.14 |
FVC (L) | Placebo | 12 | 3.02 ± 0.2 | 2.9 ± 0.22 | 0.14 |
Measure | Term | Estimate (95% CI) | p-Value |
---|---|---|---|
FEV1% | Ginger Group | −0.71 (−7.95, 6.52) | 0.82 |
FEV1 (L) | Ginger Group | −0.02 (−0.22, 0.18) | 0.86 |
FVC (L) | Ginger Group | −0.04 (−0.24, 0.15) | 0.65 |
FVC% | Ginger Group | −0.38 (−6.16, 5.4) | 0.89 |
FEV1/FVC | Ginger Group | 0.01 (−0.02, 0.04) | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emala, C.W.; Saroya, T.K.; Miao, Y.; Wang, S.; Sang, S.; DiMango, E.A. Low-Dose Oral Ginger Improves Daily Symptom Scores in Asthma. Pharmaceuticals 2024, 17, 1651. https://doi.org/10.3390/ph17121651
Emala CW, Saroya TK, Miao Y, Wang S, Sang S, DiMango EA. Low-Dose Oral Ginger Improves Daily Symptom Scores in Asthma. Pharmaceuticals. 2024; 17(12):1651. https://doi.org/10.3390/ph17121651
Chicago/Turabian StyleEmala, Charles W., Tarnjot K. Saroya, Yuqi Miao, Shuang Wang, Shengmin Sang, and Emily A. DiMango. 2024. "Low-Dose Oral Ginger Improves Daily Symptom Scores in Asthma" Pharmaceuticals 17, no. 12: 1651. https://doi.org/10.3390/ph17121651
APA StyleEmala, C. W., Saroya, T. K., Miao, Y., Wang, S., Sang, S., & DiMango, E. A. (2024). Low-Dose Oral Ginger Improves Daily Symptom Scores in Asthma. Pharmaceuticals, 17(12), 1651. https://doi.org/10.3390/ph17121651