Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of CUR-Nanosuspension
2.2. Preparation and Characterization of Microparticles
2.3. Dissolution and Release Profiles
2.4. Aerodynamic Properties of Microparticles
3. Materials and Methods
3.1. Materials
3.2. Preparation of CUR Nanosuspension (CUR-Nanosuspension)
3.3. Characterization of CUR-Nanosuspension
3.4. Preparation of the Microparticle Samples
3.5. Evaluation of Bulk and Tapped Density
3.6. Evaluation of Microparticles’ Morphology and Geometric Diameter (dgeom)
3.7. Drug Loading (DL%) Evaluation
3.8. Differential Scanning Calorimetry (DSC) Analysis
3.9. Dissolution/Release Studies
3.10. HPLC Analysis
3.11. Aerodynamic Behavior
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moldoveanu, B.; Otmishi, P.; Jani, P.; Walker, J.; Sarmiento, X.; Guardiola, J.; Saad, M.; Yu, J. Inflammatory mechanisms in the lung. J. Inflamm. Res. 2008, 2009, 1–11. [Google Scholar] [CrossRef]
- Cho, W.C.S.; Kwan, C.K.; Yau, S.; So, P.P.F.; Poon, P.C.M.; Au, J.S.K. The role of inflammation in the pathogenesis of lung cancer. Expert Opin. Ther. Targets 2011, 15, 1127–1137. [Google Scholar] [CrossRef]
- Santana, F.P.R.; Pinheiro, N.M.; Mernak, M.I.B.; Righetti, R.F.; Martins, M.A.; Lago, J.H.G.; Lopes, F.D.T.Q.D.S.; Tibério, I.F.L.C.; Prado, C.M. Evidences of herbal medicine-derived natural products effects in inflammatory lung diseases. Mediators Inflamm. 2016, 2016, 2348968. [Google Scholar] [CrossRef]
- Rahman, M.M.; Bibi, S.; Rahaman, M.S.; Rahman, F.; Islam, F.; Khan, M.S.; Hasan, M.M.; Parvez, A.; Hossain, M.A.; Maeesa, S.K.; et al. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother. 2022, 150, 113041. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Dehnavi, S.; Asadirad, A.; Xu, S.; Majeed, M.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. Curcumin and chemokines: Mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023, 31, 1069–1093. [Google Scholar] [CrossRef]
- Memarzia, A.; Saadat, S.; Behrouz, S.; Boskabady, M.H. Curcuma longa and curcumin affect respiratory and allergic disorders, experimental and clinical evidence: A comprehensive and updated review. BioFactors 2022, 48, 521–551. [Google Scholar] [CrossRef]
- Karati, D.; Mukherjee, S.; Roy, S. Deciphering the molecular mechanistic paths describing the chemotherapeutic potential and epigenetic regulation of curcumin in lung cancer: A mini review. Naunyn. Schmiedebergs. Arch. Pharmacol. 2024, 397, 2715–2725. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Cai, N.; Xu, T.; He, F. Anti-inflammatory effects of curcumin in acute lung injury: In vivo and in vitro experimental model studies. Int. Immunopharmacol. 2021, 96, 107600. [Google Scholar] [CrossRef]
- Shahid, H.; Shahzad, M.; Shabbir, A.; Saghir, G. Immunomodulatory and Anti-Inflammatory Potential of Curcumin for the Treatment of Allergic Asthma: Effects on Expression Levels of Pro-inflammatory Cytokines and Aquaporins. Inflammation 2019, 42, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.A.; Thapa, R.; Goyal, A.; Subramaniyan, V.; Kumar, D.; Gupta, S.; Singh, S.K.; Dua, K.; Gupta, G. Curcumin-based nanoformulations as an emerging therapeutic strategy for inflammatory lung diseases. Future Med. Chem. 2023, 15, 583–586. [Google Scholar] [CrossRef]
- Obiedallah, M.M.; Mironov, M.A.; Belyaev, D.V.; Ene, A.; Vakhrusheva, D.V.; Krasnoborova, S.Y.; Bershitsky, S.Y.; Shchepkin, D.V.; Minin, A.S.; Ishmetova, R.I.; et al. Optimization, characterization, and cytotoxicity studies of novel anti-tubercular agent-loaded liposomal vesicles. Sci. Rep. 2024, 14, 524. [Google Scholar] [CrossRef]
- Aman, A.; Ali, S.; Mahalapbutr, P.; Krusong, K.; Wolschann, P.; Rungrotmongkol, T. Enhancing solubility and stability of sorafenib through cyclodextrin-based inclusion complexation: In silico and in vitro studies. RSC Adv. 2023, 13, 27244–27254. [Google Scholar] [CrossRef] [PubMed]
- Narisepalli, S.; Salunkhe, S.A.; Chitkara, D.; Mittal, A. Asiaticoside polymeric nanoparticles for effective diabetic wound healing through increased collagen biosynthesis: In-vitro and in-vivo evaluation. Int. J. Pharm. 2023, 631, 122508. [Google Scholar] [CrossRef] [PubMed]
- Fornasier, M.; Krautforst, K.; Kulbacka, J.; Jönsson, P.; Murgia, S.; Bazylińska, U. Cubosomes and hexosomes stabilized by sorbitan monooleate as biocompatible nanoplatforms against skin metastatic human melanoma. J. Colloid Interface Sci. 2025, 677, 842–852. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, N.P.; de Souza, A.; Yukuyama, M.N.; Barreto, T.L.; Macedo, L.D.O.; Löbenberg, R.; de Araújo, G.L.B.; Ishida, K.; Bou-Chacra, N.A. Highly water-soluble dapsone nanocrystals: Towards innovative preparations for an undermined drug. Int. J. Pharm. 2023, 630, 122428. [Google Scholar] [CrossRef]
- Seo, S.R.; Kim, G.Y.; Kim, M.H.; Lee, K.W.; Kim, M.J.; Chaudhary, M.; Bikram, K.; Kim, T.; Choi, S.; Yang, H.; et al. Nanocrystal Formulation to Enhance Oral Absorption of Silybin: Preparation, In Vitro Evaluations, and Pharmacokinetic Evaluations in Rats and Healthy Human Subjects. Pharmaceutics 2024, 16, 1033. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ruan, B.; Sun, X.; Yu, Z. Preparation and optimization of surface stabilized cryptotanshinone nanocrystals with enhanced bioavailability. Front. Pharmacol. 2023, 14, 1122071. [Google Scholar] [CrossRef] [PubMed]
- Schlich, M.; Casula, L.; Musa, A.; Pireddu, R.; Pitzanti, G.; Cardia, M.C.; Valenti, D.; Marceddu, S.; Fadda, A.M.; De Luca, M.A.; et al. Needle-Free Jet Injectors and Nanosuspensions: Exploring the Potential of an Unexpected Pair. Pharmaceutics 2022, 14, 1085. [Google Scholar] [CrossRef]
- Kayser, O.; Jacobs, C.; Müller, R.H. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 2001, 47, 3–19. [Google Scholar]
- Ni, R.; Zhao, J.; Liu, Q.; Liang, Z.; Muenster, U.; Mao, S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur. J. Pharm. Sci. 2017, 99, 137–146. [Google Scholar] [CrossRef]
- Party, P.; Bartos, C.; Farkas, Á.; Szabó-Révész, P.; Ambrus, R. Formulation and in vitro and in silico characterization of “nano-in-micro” dry powder inhalers containing meloxicam. Pharmaceutics 2021, 13, 211. [Google Scholar] [CrossRef]
- Chen, Y.; Gui, Y.; Luo, Y.; Liu, Y.; Tu, L.; Ma, Y.; Yue, P.; Yang, M. Design and evaluation of inhalable nanocrystals embedded microparticles with enhanced redispersibility and bioavailability for breviscapine. Powder Technol. 2021, 377, 128–138. [Google Scholar] [CrossRef]
- Huang, G.; Shuai, S.; Zhou, W.; Chen, Y.; Shen, B.; Yue, P. To Enhance Mucus Penetration and Lung Absorption of Drug by Inhalable Nanocrystals-In-Microparticles. Pharmaceutics 2022, 14, 538. [Google Scholar] [CrossRef] [PubMed]
- Malamatari, M.; Charisi, A.; Malamataris, S.; Kachrimanis, K.; Nikolakakis, I. Spray drying for the preparation of nanoparticle-based drug formulations as dry powders for inhalation. Processes 2020, 8, 788. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Y.; Liao, W.; Tong, Z.; Wang, Y.; Liu, J.; Gao, Y. Impact of trehalose on physicochemical stability of β-carotene high loaded microcapsules fabricated by wet-milling coupled with spray drying. Food Hydrocoll. 2021, 121, 106977. [Google Scholar] [CrossRef]
- Kumar, S.; Gokhale, R.; Burgess, D.J. Sugars as bulking agents to prevent nano-crystal aggregation during spray or freeze-drying. Int. J. Pharm. 2014, 471, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Casula, L.; Lai, F.; Pini, E.; Valenti, D.; Sinico, C.; Cardia, M.C.; Marceddu, S.; Ailuno, G.; Fadda, A.M. Pulmonary delivery of curcumin and beclomethasone dipropionate in a multicomponent nanosuspension for the treatment of bronchial asthma. Pharmaceutics 2021, 13, 1300. [Google Scholar] [CrossRef] [PubMed]
- Moloughney, J.G.; Weisleder, N. Poloxamer 188 (P188) as a Membrane Resealing Reagent in Biomedical Applications. Recent Pat. Biotechnol. 2013, 6, 200–211. [Google Scholar] [CrossRef]
- He, Y.; Liang, Y.; Mak, J.C.W.; Liao, Y.; Li, T.; Yan, R.; Li, H.F.; Zheng, Y. Size effect of curcumin nanocrystals on dissolution, airway mucosa penetration, lung tissue distribution and absorption by pulmonary delivery. Colloids Surf. B Biointerfaces 2020, 186, 110703. [Google Scholar] [CrossRef]
- Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J. Control. Release 2014, 183, 51–66. [Google Scholar] [CrossRef]
- Ruggeri, M.; Sánchez-Espejo, R.; Casula, L.; Sandri, G.; Perioli, L.; Cardia, M.C.; Lai, F.; Viseras, C. Bentonite- and Palygorskite-Based Gels for Topical Drug Delivery Applications. Pharmaceutics 2023, 15, 1253. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.H.L.; Tong, H.H.Y.; Chattopadhyay, P.; Shekunov, B.Y. Particle engineering for pulmonary drug delivery. Pharm. Res. 2007, 24, 411–437. [Google Scholar] [CrossRef]
- Weers, J.G.; Tarara, T.E.; Clark, A.R. Design of fine particles for pulmonary drug delivery. Expert Opin. Drug Deliv. 2007, 4, 297–313. [Google Scholar] [CrossRef] [PubMed]
- Torge, A.; Grützmacher, P.; Mücklich, F.; Schneider, M. The influence of mannitol on morphology and disintegration of spray-dried nano-embedded microparticles. Eur. J. Pharm. Sci. 2017, 104, 171–179. [Google Scholar] [CrossRef]
- Daviskas, E.; Anderson, S.D.; Young, I.H. Effect of mannitol and repetitive coughing on the sputum properties in bronchiectasis. Respir. Med. 2010, 104, 371–377. [Google Scholar] [CrossRef]
- Alhajj, N.; O’Reilly, N.J.; Cathcart, H. Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. Powder Technol. 2021, 384, 313–331. [Google Scholar] [CrossRef]
- Craparo, E.F.; Cabibbo, M.; Emanuele Drago, S.; Casula, L.; Lai, F.; Cavallaro, G. Inhalable polymeric microparticles as pharmaceutical porous powder for drug administration. Int. J. Pharm. 2022, 628, 122325. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Sol, V.; Saavedra-Leos, M.Z. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning. Polymers 2019, 12, 5. [Google Scholar] [CrossRef]
- Casula, L.; Pireddu, R.; Cardia, M.C.; Pini, E.; Valenti, D.; Schlich, M.; Sinico, C.; Marceddu, S.; Dragićević, N.; Fadda, A.M.; et al. Nanosuspension-Based Dissolvable Microneedle Arrays to Enhance Diclofenac Skin Delivery. Pharmaceutics 2023, 15, 2308. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Kwok, P.C.L.; Fukushige, K.; Prud’Homme, R.K.; Chan, H.K. Enhanced dissolution of inhalable cyclosporine nano-matrix particles with mannitol as matrix former. Int. J. Pharm. 2011, 420, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Sham, J.O.H.; Zhang, Y.; Finlay, W.H.; Roa, W.H.; Löbenberg, R. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int. J. Pharm. 2004, 269, 457–467. [Google Scholar] [CrossRef]
- Craparo, E.F.; Cabibbo, M.; Scialabba, C.; Laselva, O.; Daniello, V.; Di Gioia, S.; Conese, M.; Cavallaro, G. Lung Disease Management by Iloprost-Loaded Nanoparticles to Address Hyperinflammation Associated with Cystic Fibrosis. ACS Appl. Nano Mater. 2024, 7, 14077–14089. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, L.; Su, J.; Sun, Y.; Zhang, L.; Li, J.; Beck-Broichsitter, M.; Muenster, U.; Chen, L.; Mao, S. Engineering large porous microparticles with tailored porosity and sustained drug release behavior for inhalation. Eur. J. Pharm. Biopharm. 2020, 155, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Ahookhosh, K.; Yaqoubi, S.; Mohammadpourfard, M.; Hamishehkar, H.; Aminfar, H. Experimental investigation of aerosol deposition through a realistic respiratory airway replica: An evaluation for MDI and DPI performance. Int. J. Pharm. 2019, 566, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.; Ghanbarzadeh, S.; Nokhodchi, A.; Hamishehkar, H. The effect of different coating materials on the prevention of powder bounce in the next generation impactor. Res. Pharm. Sci. 2018, 13, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Baghdan, E.; Duse, L.; Schüer, J.J.; Pinnapireddy, S.R.; Pourasghar, M.; Schäfer, J.; Schneider, M.; Bakowsky, U. Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. Eur. J. Pharm. Sci. 2019, 132, 63–71. [Google Scholar] [CrossRef]
- Banat, H.; Csóka, I.; Paróczai, D.; Burian, K.; Farkas, Á.; Ambrus, R. A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro–In Silico Characterization, and Cell Line Evaluation. Pharmaceuticals 2024, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, M.; Sánchez-Espejo, R.; Casula, L.; Barbosa, R.d.M.; Sandri, G.; Cardia, M.C.; Lai, F.; Viseras, C. Clay-Based Hydrogels as Drug Delivery Vehicles of Curcumin Nanocrystals for Topical Application. Pharmaceutics 2022, 14, 2836. [Google Scholar] [CrossRef]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated biologic fluids with possible application in dissolution testing. Dissolution Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Cardia, M.C.; Palmas, M.F.; Casula, L.; Pisanu, A.; Marceddu, S.; Valenti, D.; Sinico, C.; Pini, E.; Scerba, M.T.; Tweedie, D.; et al. Nanocrystals as an effective strategy to improve Pomalidomide bioavailability in rodent. Int. J. Pharm. 2022, 625, 122079. [Google Scholar] [CrossRef]
- Buttini, F.; Colombo, G.; Kwok, P.C.L.; Wui, W.T. Aerodynamic Assessment for Inhalation Products: Fundamentals and Current Pharmacopoeial Methods. In Inhalation Drug Delivery: Techniques and Products; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 91–119. ISBN 9781118397145. [Google Scholar]
- Craparo, E.F.; Cabibbo, M.; Scialabba, C.; Casula, L.; Lai, F.; Cavallaro, G. Rapamycin-based inhaled therapy for potential treatment of COPD-related in fl ammation: Production and characterization of aerosolizable. Biomater. Sci. 2024, 12, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Lam, I.C.H.; Lin, H.H.S.; Wan, L.T.L.; Lo, J.C.K.; Tai, W.; Kwok, P.C.L.; Lam, J.K.W. Effect of formulation and inhaler parameters on the dispersion of spray freeze dried voriconazole particles. Int. J. Pharm. 2020, 584, 119444. [Google Scholar] [CrossRef]
- Taki, M.; Marriott, C.; Zeng, X.M.; Martin, G.P. Aerodynamic deposition of combination dry powder inhaler formulations in vitro: A comparison of three impactors. Int. J. Pharm. 2010, 388, 40–51. [Google Scholar] [CrossRef]
- Yu, H.; Teo, J.; Chew, J.W.; Hadinoto, K. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: Spray drying versus spray freeze drying preparation. Int. J. Pharm. 2016, 499, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Gillespie, S.R.; Kauffman, J.; Doub, W.H. Comparison of delivery characteristics from a combination metered-dose inhaler using the Andersen cascade impactor and the next generation pharmaceutical impactor. J. Pharm. Sci. 2008, 97, 3321–3334. [Google Scholar] [CrossRef] [PubMed]
- Casula, L.; Zidar, A.; Kristl, J.; Jeras, M.; Kralj, S.; Fadda, A.M.; Zupančič, Š. Development of Nanofibers with Embedded Liposomes Containing an Immunomodulatory Drug Using Green Electrospinning. Pharmaceutics 2023, 15, 1245. [Google Scholar] [CrossRef] [PubMed]
- FDA/CDER. Dissolution Testing of Immediate Release Solid Oral Dosage Forms; Food and Drug Administration: Rockville, MD, USA, 1997; Volume 4, pp. 15–22. [Google Scholar]
- EMA CPMP/EWP/QWP/1401/98 Rev. 1. Guideline on the Investigation of Bioequivalence; European Medicines Agency: London, UK, 2010; Volume 1, pp. 1–27. [Google Scholar]
Samples | dgeom (µm) |
ρtapp (g/mL) |
ρbulk (g/mL) |
Hausner Index (H) |
Yield (% w/w) |
DL (%) |
EE (%) |
---|---|---|---|---|---|---|---|
M10 | 3.2 ± 0.3 | 0.46 ± 0.01 | 0.26 ± 0.02 | 1.77 | 51.6 | - | - |
M10_AB1 | 5.4 ±1.3 | 0.36 ± 0.01 | 0.21 ± 0.01 | 1.71 | 50.7 | - | - |
M15 | 4.8 ± 0.6 | 0.45 ± 0.04 | 0.31 ± 0.02 | 1.45 | 53.6 | - | - |
C0.5_M10 | 2.9 ± 1.2 | 0.34 ± 0.01 | 0.26 ± 0.02 | 1.31 | 48.4 | 3.5 ± 0.1 | 75 ± 2 |
C0.5_M15 | 3.2 ± 1.3 | 0.36 ± 0.02 | 0.27 ± 0.01 | 1.33 | 49.0 | 2.4 ± 0.2 | 75 ± 6 |
C1_M10 | 3.8 ± 0.4 | 0.33 ± 0.01 | 0.21 ± 0.01 | 1.57 | 36.7 | 8.6 ± 0.5 | 98 ± 5 |
C1_M15 | 4.5 ± 0.7 | 0.35 ± 0.01 | 0.23 ± 0.01 | 1.52 | 41.8 | 6.0 ± 0.1 | 100 ± 1 |
C1_M10_AB1 | N.D. 1 | 0.37 ± 0.04 | 0.21 ± 0.01 | 1.76 | 38.1 | 8.4 ± 0.2 | 97 ± 2 |
vs | C0.5_M10 | C0.5_M15 | C1_M10 | C1_M15 | C1_M10_AB1 | CUR-Nanosuspension 1% | CUR-Nanosuspension 0.5% |
---|---|---|---|---|---|---|---|
C0.5_M10 | 58 | 20 | 20 | 18 | 1 | 0 | |
C0.5_M15 | 17 | 18 | 16 | 0 | 0 | ||
C1_M10 | 47 | 53 | 13 | 10 | |||
C1_M15 | 35 | 11 | 9 | ||||
C1_M10_AB1 | 13 | 11 | |||||
CUR-nanosuspension 1% | 51 | ||||||
CUR-nanosuspension 0.5% |
Parameters | M10 | M15 | M10_AB10 |
---|---|---|---|
ED% | 95.3 ± 3.6 | 89.0 ± 5.0 | 94.8 ± 3.8 |
FPF (%) | 35.3 ± 2.2 a | 36.6 ± 1.4 b | 29 ± 1.2 ab |
MMAD (µm) | 3.3 ± 0.7 | 3.3 ± 0.3 a | 4.4 ± 0.1 a |
GSD | 2.7 ± 0.1 | 2.8 ± 0.4 | 2.9 ± 0 |
Parameters | C0.5_M10 | C0.5_M15 | C1_M10 | C1_M15 | C1_M10_AB1 |
---|---|---|---|---|---|
ED% | 61.4 ± 2.8 cf | 49.3 ± 4.3 bdfg | 60.8 ± 5.7 ab | 40.9 ± 3.9 acde | 63.3 ± 0.9 eg |
FPF (%) | 16.2 ± 1.4 ace | 16.5 ± 1.8 bdf | 11.7 ± 0.3 ab | 11.9 ± 2.2 cd | 10.8 ± 0.7 ef |
MMAD (µm) | 4.5 ± 0.2 | 4.8 ± 0.1 | 4.7 ± 0.3 | 5.2 ± 0.6 | 4.9 ± 0.1 |
GSD | 2.9 ± 0.3 | 2.7 ± 0.2 a | 3.1 ± 0.3 | 3.6 ± 1.2 | 3.3 ± 0.1 a |
Sample | Composition (% w/v) | ||
---|---|---|---|
Curcumin | Mannitol | Ammonium Bicarbonate | |
M10 | - | 10 | - |
M10_AB1 | - | 10 | 1 |
M15 | - | 15 | - |
C0.5_M10 | 0.5 | 10 | - |
C0.5_M15 | 0.5 | 15 | - |
C1_M10 | 1 | 10 | - |
C1_M15 | 1 | 15 | - |
C1_M10_AB1 | 1 | 10 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casula, L.; Craparo, E.F.; Lai, E.; Scialabba, C.; Valenti, D.; Schlich, M.; Sinico, C.; Cavallaro, G.; Lai, F. Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin. Pharmaceuticals 2024, 17, 1708. https://doi.org/10.3390/ph17121708
Casula L, Craparo EF, Lai E, Scialabba C, Valenti D, Schlich M, Sinico C, Cavallaro G, Lai F. Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin. Pharmaceuticals. 2024; 17(12):1708. https://doi.org/10.3390/ph17121708
Chicago/Turabian StyleCasula, Luca, Emanuela Fabiola Craparo, Eleonora Lai, Cinzia Scialabba, Donatella Valenti, Michele Schlich, Chiara Sinico, Gennara Cavallaro, and Francesco Lai. 2024. "Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin" Pharmaceuticals 17, no. 12: 1708. https://doi.org/10.3390/ph17121708
APA StyleCasula, L., Craparo, E. F., Lai, E., Scialabba, C., Valenti, D., Schlich, M., Sinico, C., Cavallaro, G., & Lai, F. (2024). Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin. Pharmaceuticals, 17(12), 1708. https://doi.org/10.3390/ph17121708