A Comprehensive Computational Insight into the PD-L1 Binding to PD-1 and Small Molecules
Abstract
:1. Introduction
1.1. Immune Checkpoints, PD-1, and Its Binders
1.2. The PD-1/PD-L1 Pathway
1.3. Current Drugs
1.4. Small Molecule Binders of PD-L1
2. Structural Depiction of PD-L1 and Its Binders
2.1. PD-L1 Structure in the Apo Form and in Complex with PD-1
PDB ID | Protein | Resolution (Å) | Release | Reference |
---|---|---|---|---|
3BIS | Apo PD-L1 | 2.64 | 2008 | [43] |
4Z18 | Apo PD-L1 | 1.95 | 2015 | Fedorov, A.A., To be published |
5C3T | PD-L1 binding domain | 1.80 | 2015 | [44] |
5JDR | Apo PD-L1 | 2.70 | 2017 | [46] |
6NP9 | Apo mutant PD-L1 (V76T) | 1.27 | 2019 | [47] |
3FN3 | Dimeric structure of PD-L1 | 2.70 | 2009 | [48] |
6L8R | Membrane-bound cytoplasmatic domain PD-L1 | NMR | 2020 | [49] |
7DCV | Transmembrane domain PD-L1 | NMR | 2022 | [50] |
3BIK | Complex mPD-1/hPD-L1 | 2.65 | 2008 | [43] |
3SBW | Complex mPD-1/hPD-L1 | 2.28 | 2011 | Lazar-Molnar, To be published |
4ZQK | Complex hPD-1/hPD-L1 | 2.45 | 2015 | [44] |
5IUS | Complex with high affinity mutated PD-1 | 2.89 | 2016 | [51] |
2.2. PD-L1 in Complex with Small Molecule Binders
3. Computational Studies Contributing to the Binding Mechanism Comprehension
3.1. PD-1 Binding
3.2. Small Molecule Binding
3.3. Dimerization
4. Computational Studies Contributing to the Identification of New Compounds
5. Application of AI-Based Methods to the Study of Immune Checkpoint Inhibition
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Bickels, J.; Kollender, Y.; Merinsky, O.; Meller, I. Coley’s Toxin: Historical Perspective. IMAJ Isr. Med. Assoc. J. 2002, 4, 471–472. [Google Scholar] [PubMed]
- Burnet, F.M. Immunological Surveillance in Neoplasia. Transplant. Rev. 1971, 7, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Vesely, M.D.; Kershaw, M.H.; Schreiber, R.D.; Smyth, M.J. Natural Innate and Adaptive Immunity to Cancer. Annu. Rev. Immunol. 2011, 29, 235–271. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, K.M.; Rennert, P.D.; Freeman, G.J. Combination Cancer Immunotherapy and New Immunomodulatory Targets. Nat. Rev. Drug Discov. 2015, 14, 561–584. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.L.; Smothers, J.; Srinivasan, R.; Hoos, A. Big Opportunities for Small Molecules in Immuno-Oncology. Nat. Rev. Drug Discov. 2015, 14, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Saez-Ibanez, A.R.; Upadhaya, S.; Campbell, J. Immuno-Oncology Clinical Trials Take a Turn beyond PD1/PDL1 Inhibitors. Nat. Rev. Drug Discov. 2023, 22, 442–443. [Google Scholar] [CrossRef]
- Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced Expression of PD-1, a Novel Member of the Immunoglobulin Gene Superfamily, upon Programmed Cell Death. EMBO J. 1992, 11, 3887–3895. [Google Scholar] [CrossRef]
- Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of Lupus-like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor. Immunity 1999, 11, 141–151. [Google Scholar] [CrossRef]
- Shinohara, T.; Taniwaki, M.; Ishida, Y.; Kawaichi, M.; Honjo, T. Structure and Chromosomal Localization of the Human PD-1 Gene (PDCD1). Genomics 1994, 23, 704–706. [Google Scholar] [CrossRef]
- Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a Third Member of the B7 Family, Co-Stimulates T-Cell Proliferation and Interleukin-10 Secretion. Nat. Med. 1999, 5, 1365–1369. [Google Scholar] [CrossRef]
- Latchman, Y.; Wood, C.R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A.J.; Brown, J.A.; Nunes, R.; et al. PD-L2 Is a Second Ligand for PD-1 and Inhibits T Cell Activation. Nat. Immunol. 2001, 2, 261–268. [Google Scholar] [CrossRef]
- Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed Death-1 Ligand 1 Interacts Specifically with the B7-1 Costimulatory Molecule to Inhibit T Cell Responses. Immunity 2007, 27, 111–122. [Google Scholar] [CrossRef]
- Ghiotto, M.; Gauthier, L.; Serriari, N.; Pastor, S.; Truneh, A.; Nunès, J.A.; Olive, D. PD-L1 and PD-L2 Differ in Their Molecular Mechanisms of Interaction with PD-1. Int. Immunol. 2010, 22, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Veverka, V.; Radhakrishnan, A.; Waters, L.C.; Muskett, F.W.; Morgan, S.H.; Huo, J.; Yu, C.; Evans, E.J.; Leslie, A.J.; et al. Structure and Interactions of the Human Programmed Cell Death 1 Receptor. J. Biol. Chem. 2013, 288, 11771–11785. [Google Scholar] [CrossRef] [PubMed]
- Pabon, N.A.; Camacho, C.J. Probing Protein Flexibility Reveals a Mechanism for Selective Promiscuity. eLife 2017, 6, e22889. [Google Scholar] [CrossRef]
- Dai, S.; Jia, R.; Zhang, X.; Fang, Q.; Huang, L. The PD-1/PD-Ls Pathway and Autoimmune Diseases. Cell. Immunol. 2014, 290, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Zuazo, M.; Gato-Cañas, M.; Llorente, N.; Ibañez-Vea, M.; Arasanz, H.; Kochan, G.; Escors, D. Molecular Mechanisms of Programmed Cell Death-1 Dependent T Cell Suppression: Relevance for Immunotherapy. Ann. Transl. Med. 2017, 5, 385. [Google Scholar] [CrossRef] [PubMed]
- Patsoukis, N.; Li, L.; Sari, D.; Petkova, V.; Boussiotis, V.A. PD-1 Increases PTEN Phosphatase Activity While Decreasing PTEN Protein Stability by Inhibiting Casein Kinase 2. Mol. Cell. Biol. 2013, 33, 3091–3098. [Google Scholar] [CrossRef] [PubMed]
- Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; et al. PD-1 Alters T-Cell Metabolic Reprogramming by Inhibiting Glycolysis and Promoting Lipolysis and Fatty Acid Oxidation. Nat. Commun. 2015, 6, 6692. [Google Scholar] [CrossRef]
- Taube, J.M.; Anders, R.A.; Young, G.D.; Xu, H.; Sharma, R.; McMiller, T.L.; Chen, S.; Klein, A.P.; Pardoll, D.M.; Topalian, S.L.; et al. Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape. Sci. Transl. Med. 2012, 4, 127ra37. [Google Scholar] [CrossRef] [PubMed]
- Pedoeem, A.; Azoulay-Alfaguter, I.; Strazza, M.; Silverman, G.J.; Mor, A. Programmed Death-1 Pathway in Cancer and Autoimmunity. Clin. Immunol. 2014, 153, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Upadhaya, S.; Neftelinov, S.T.; Hodge, J.; Campbell, J. Challenges and Opportunities in the PD1/PDL1 Inhibitor Clinical Trial Landscape. Nat. Rev. Drug Discov. 2022, 21, 482–483. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.X.; Hodge, J.P.; Oliva, C.; Neftelinov, S.T.; Hubbard-Lucey, V.M.; Tang, J. Trends in Clinical Development for PD-1/PD-L1 Inhibitors. Nat. Rev. Drug Discov. 2020, 19, 163–164. [Google Scholar] [CrossRef]
- Cheng, J. Review of the Combination Strategies Used in Anti-PD1/PD-L1 Monoclonal Antibody Treatment. E3S Web Conf. 2020, 185, 03009. [Google Scholar] [CrossRef]
- Chupak, L.S.; Zheng, X. Compounds Useful as Immunomodulators. WO 2015/034820A1, 12 March 2015. [Google Scholar]
- Chupak, L.S.; Ding, M.; Martin, S.W.; Zheng, X.; Hewawasam, P.; Connoly, T.P.; Xu, N.; Yeung, K.S.; Zhu, J.; Langley, D.R.; et al. Compounds Useful as Immunomodulators. WO 2015/160641A2, 12 December 2015. [Google Scholar]
- Zak, K.M.; Grudnik, P.; Guzik, K.; Zieba, B.J.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structural Basis for Small Molecule Targeting of the Programmed Death Ligand 1 (PD-L1). Oncotarget 2016, 7, 30323–30335. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Zacharias, M. What Makes a Good Protein–Protein Interaction Stabilizer: Analysis and Application of the Dual-Binding Mechanism. ACS Cent. Sci. 2023, 9, 969–979. [Google Scholar] [CrossRef]
- Skalniak, L.; Zak, K.M.; Guzik, K.; Magiera, K.; Musielak, B.; Pachota, M.; Szelazek, B.; Kocik, J.; Grudnik, P.; Tomala, M.; et al. Small-Molecule Inhibitors of PD-1/PD-L1 Immune Checkpoint Alleviate the PD-L1-Induced Exhaustion of T-Cells. Oncotarget 2017, 8, 72167. [Google Scholar] [CrossRef]
- Sasikumar, P.G.; Ramachandra, M. Small Molecule Agents Targeting PD-1 Checkpoint Pathway for Cancer Immunotherapy: Mechanisms of Action and Other Considerations for Their Advanced Development. Front. Immunol. 2022, 13, 752065. [Google Scholar] [CrossRef]
- Lin, X.; Lu, X.; Luo, G.; Xiang, H. Progress in PD-1/PD-L1 Pathway Inhibitors: From Biomacromolecules to Small Molecules. Eur. J. Med. Chem. 2020, 186, 111876. [Google Scholar] [CrossRef]
- Wu, X.; Meng, Y.; Liu, L.; Gong, G.; Zhang, H.; Hou, Y.; Liu, C.; Wu, D.; Qin, M. Insights into Non-Peptide Small-Molecule Inhibitors of the PD-1/PD-L1 Interaction: Development and Perspective. Bioorg. Med. Chem. 2021, 33, 116038. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Stanslas, J. Peptide-Based and Small Molecule PD-1 and PD-L1 Pharmacological Modulators in the Treatment of Cancer. Pharmacol. Ther. 2021, 227, 107870. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yuan, D.; Ma, J. Advances of Biphenyl Small-Molecule Inhibitors Targeting PD-1/PD-L1 Interaction in Cancer Immunotherapy. Future Med. Chem. 2022, 14, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Cheng, Z.; Long, J.; Dömling, A.; Tortorella, M.; Wang, Y. Small Molecule Inhibitors of Programmed Cell Death Ligand 1 (PD-L1): A Patent Review (2019–2021). Expert Opin. Ther. Pat. 2022, 32, 575–589. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Yan, H. Progress on Biphenyl Derivatives as PD-1/PD-L1 Inhibitors. Med. Chem. Res. 2023, 32, 2089–2115. [Google Scholar] [CrossRef]
- Sobral, P.S.; Luz, V.C.C.; Almeida, J.M.G.C.F.; Videira, P.A.; Pereira, F. Computational Approaches Drive Developments in Immune-Oncology Therapies for PD-1/PD-L1 Immune Checkpoint Inhibitors. Int. J. Mol. Sci. 2023, 24, 5908. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Sadybekov, A.V.; Katritch, V. Computational Approaches Streamlining Drug Discovery. Nature 2023, 616, 673–685. [Google Scholar] [CrossRef]
- Lin, D.Y.-W.; Tanaka, Y.; Iwasaki, M.; Gittis, A.G.; Su, H.-P.; Mikami, B.; Okazaki, T.; Honjo, T.; Minato, N.; Garboczi, D.N. The PD-1/PD-L1 Complex Resembles the Antigen-Binding Fv Domains of Antibodies and T Cell Receptors. Proc. Natl. Acad. Sci. USA 2008, 105, 3011–3016. [Google Scholar] [CrossRef]
- Zak, K.M.; Kitel, R.; Przetocka, S.; Golik, P.; Guzik, K.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Structure 2015, 23, 2341–2348. [Google Scholar] [CrossRef] [PubMed]
- Boisgerault, N.; Bertrand, P. Inside PD-1/PD-L1,2 with Their Inhibitors. Eur. J. Med. Chem. 2023, 256, 115465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wei, H.; Wang, X.; Bai, Y.; Wang, P.; Wu, J.; Jiang, X.; Wang, Y.; Cai, H.; Xu, T.; et al. Structural Basis of a Novel PD-L1 Nanobody for Immune Checkpoint Blockade. Cell Discov. 2017, 3, 17004. [Google Scholar] [CrossRef]
- Perry, E.; Mills, J.J.; Zhao, B.; Wang, F.; Sun, Q.; Christov, P.P.; Tarr, J.C.; Rietz, T.A.; Olejniczak, E.T.; Lee, T.; et al. Fragment-Based Screening of Programmed Death Ligand 1 (PD-L1). Bioorg. Med. Chem. Lett. 2019, 29, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, P.; Gao, F.; Cheng, H.; Qi, J.; Gao, G.F. A Dimeric Structure of PD-L1: Functional Units or Evolutionary Relics? Protein Cell 2010, 1, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Cao, Y.; Wu, B.; Xiao, T.; Cao, R.; Wang, Q.; Liu, X.; Xue, H.; Yu, Y.; Lin, J.; et al. PD-L1 Degradation Is Regulated by Electrostatic Membrane Association of Its Cytoplasmic Domain. Nat. Commun. 2021, 12, 5106. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, Y.; Shen, L.; Xiao, T.; Cao, R.; Wei, S.; Tang, M.; Du, L.; Wu, H.; Wu, B.; et al. Regulation of PD-L1 through Direct Binding of Cholesterol to CRAC Motifs. Sci. Adv. 2022, 8, eabq4722. [Google Scholar] [CrossRef]
- Pascolutti, R.; Sun, X.; Kao, J.; Maute, R.L.; Ring, A.M.; Bowman, G.R.; Kruse, A.C. Structure and Dynamics of PD-L1 and an Ultra-High-Affinity PD-1 Receptor Mutant. Structure 2016, 24, 1719–1728. [Google Scholar] [CrossRef]
- Guzik, K.; Zak, K.M.; Grudnik, P.; Magiera, K.; Musielak, B.; Törner, R.; Skalniak, L.; Dömling, A.; Dubin, G.; Holak, T.A. Small-Molecule Inhibitors of the Programmed Cell Death-1/Programmed Death-Ligand 1 (PD-1/PD-L1) Interaction via Transiently-Induced Protein States and Dimerization of PD-L1. J. Med. Chem. 2017, 60, 5857–5867. [Google Scholar] [CrossRef]
- Muszak, D.; Surmiak, E.; Plewka, J.; Magiera-Mularz, K.; Kocik-Krol, J.; Musielak, B.; Sala, D.; Kitel, R.; Stec, M.; Weglarczyk, K.; et al. Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein-Protein Interaction. J. Med. Chem. 2021, 64, 11614–11636. [Google Scholar] [CrossRef]
- Basu, S.; Yang, J.; Xu, B.; Magiera-Mularz, K.; Skalniak, L.; Musielak, B.; Kholodovych, V.; Holak, T.A.; Hu, L. Design, Synthesis, Evaluation, and Structural Studies of C2-Symmetric Small Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein-Protein Interaction. J. Med. Chem. 2019, 62, 7250–7263. [Google Scholar] [CrossRef]
- Park, J.J.; Thi, E.P.; Carpio, V.H.; Bi, Y.; Cole, A.G.; Dorsey, B.D.; Fan, K.; Harasym, T.; Iott, C.L.; Kadhim, S.; et al. Checkpoint Inhibition through Small Molecule-Induced Internalization of Programmed Death-Ligand 1. Nat. Commun. 2021, 12, 1222. [Google Scholar] [CrossRef]
- Butera, R.; Ważyńska, M.; Magiera-Mularz, K.; Plewka, J.; Musielak, B.; Surmiak, E.; Sala, D.; Kitel, R.; De Bruyn, M.; Nijman, H.W.; et al. Design, Synthesis, and Biological Evaluation of Imidazopyridines as PD-1/PD-L1 Antagonists. ACS Med. Chem. Lett. 2021, 12, 768–773. [Google Scholar] [CrossRef]
- Wang, T.; Cai, S.; Cheng, Y.; Zhang, W.; Wang, M.; Sun, H.; Guo, B.; Li, Z.; Xiao, Y.; Jiang, S. Discovery of Small-Molecule Inhibitors of the PD-1/PD-L1 Axis That Promote PD-L1 Internalization and Degradation. J. Med. Chem. 2022, 65, 3879–3893. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Cheng, Y.; Liu, X.; Wang, G.; Min, W.; Wang, X.; Yuan, K.; Hou, Y.; Li, J.; Zhang, H.; et al. Novel Phthalimides Regulating PD-1/PD-L1 Interaction as Potential Immunotherapy Agents. Acta Pharm. Sin. B 2022, 12, 4446–4457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, S.; Plewka, J.; Wu, C.; Zhu, M.; Yu, Q.; Musielak, B.; Wang, X.; Awadasseid, A.; Magiera-Mularz, K.; et al. Design, Synthesis, and Antitumor Activity Evaluation of 2-Arylmethoxy-4-(2,2′-Dihalogen-Substituted Biphenyl-3-Ylmethoxy) Benzylamine Derivatives as Potent PD-1/PD-L1 Inhibitors. J. Med. Chem. 2023, 66, 10579–10603. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, X.; Cheng, Y.; Qi, Z.; Ye, K.; Zhang, K.; Jiang, S.; Liu, Y.; Xiao, Y.; Wang, T. Discovery of Novel PD-L1 Inhibitors That Induce the Dimerization, Internalization, and Degradation of PD-L1 Based on the Fragment Coupling Strategy. J. Med. Chem. 2023, 66, 16807–16827. [Google Scholar] [CrossRef] [PubMed]
- Surmiak, E.; Ząber, J.; Plewka, J.; Wojtanowicz, G.; Kocik-Krol, J.; Kruc, O.; Muszak, D.; Rodríguez, I.; Musielak, B.; Viviano, M.; et al. Solubilizer Tag Effect on PD-L1/Inhibitor Binding Properties for m-Terphenyl Derivatives. ACS Med. Chem. Lett. 2023, 15, 36–44. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Karplus, M.; Petsko, G.A. Molecular Dynamics Simulations in Biology. Nature 1990, 347, 631–639. [Google Scholar] [CrossRef]
- Ahmed, M.; Barakat, K. The Too Many Faces of PD-L1: A Comprehensive Conformational Analysis Study. Biochemistry 2017, 56, 5428–5439. [Google Scholar] [CrossRef]
- Liu, W.; Huang, B.; Kuang, Y.; Liu, G. Molecular Dynamics Simulations Elucidate Conformational Selection and Induced Fit Mechanisms in the Binding of PD-1 and PD-L1. Mol. BioSyst. 2017, 13, 892–900. [Google Scholar] [CrossRef]
- Kenn, M.; Karch, R.; Tomasiak, L.; Cibena, M.; Pfeiler, G.; Koelbl, H.; Schreiner, W. Molecular Dynamics Identifies Semi-Rigid Domains in the PD-1 Checkpoint Receptor Bound to Its Natural Ligand PD-L1. Front. Bioeng. Biotechnol. 2022, 10, 838129. [Google Scholar] [CrossRef]
- Shi, D.; Zhou, S.; Liu, X.; Zhao, C.; Liu, H.; Yao, X. Understanding the Structural and Energetic Basis of PD-1 and Monoclonal Antibodies Bound to PD-L1: A Molecular Modeling Perspective. Biochim. Et Biophys. Acta—Gen. Subj. 2018, 1862, 576–588. [Google Scholar] [CrossRef]
- Huang, D.; Wen, W.; Liu, X.; Li, Y.; Zhang, J.Z.H. Computational Analysis of Hot Spots and Binding Mechanism in the PD-1/PD-L1 Interaction. RSC Adv. 2019, 9, 14944–14956. [Google Scholar] [CrossRef]
- Du, J.; Qin, Y.; Wu, Y.; Zhao, W.; Zhai, W.; Qi, Y.; Wang, C.; Gao, Y. The Design of High Affinity Human PD-1 Mutants by Using Molecular Dynamics Simulations (MD). Cell Commun. Signal. 2018, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Klyukin, K.; Alexandrov, V. Kinetics of pH-Dependent Interactions between PD-1 and PD-L1 Immune Checkpoint Proteins from Molecular Dynamics. Proteins Struct. Funct. Bioinform. 2020, 88, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Almahmoud, S.; Zhong, H.A. Molecular Modeling Studies on the Binding Mode of the PD-1/PD-L1 Complex Inhibitors. Int. J. Mol. Sci. 2019, 20, 4654. [Google Scholar] [CrossRef]
- Sasmal, P.; Kumar Babasahib, S.; Prashantha Kumar, B.R.; Manjunathaiah Raghavendra, N. Biphenyl-Based Small Molecule Inhibitors: Novel Cancer Immunotherapeutic Agents Targeting PD-1/PD-L1 Interaction. Bioorg. Med. Chem. 2022, 73, 117001. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, L.; Zhou, Y.; Zhang, Y.; Zhang, J.Z.H. Computational Alanine Scanning with Interaction Entropy for Protein–Ligand Binding Free Energies. J. Chem. Theory Comput. 2018, 14, 1772–1780. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; He, L.; Bao, J.; Qi, Y.; Zhang, J.Z.H. Insights into Small Molecule Inhibitor Bindings to PD-L1 with Residue-Specific Binding Free Energy Calculation. J. Biomol. Struct. Dyn. 2022, 40, 12277–12285. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Z.; Heng, Y.; Huang, S.; Shi, T.; Chen, L.; Xu, L.; Mei, H. Partial Least-Squares Discriminant Analysis and Ensemble-Based Flexible Docking of PD-1/PD-L1 Inhibitors: A Pilot Study. ACS Omega 2020, 5, 26914–26923. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; An, X.; Bai, Q.; Bing, Z.; Zhou, S.; Liu, H.; Yao, X. Computational Insight into the Small Molecule Intervening PD-L1 Dimerization and the Potential Structure-Activity Relationship. Front. Chem. 2019, 7, 764. [Google Scholar] [CrossRef] [PubMed]
- Mejías, C.; Guirola, O. Pharmacophore Model of Immunocheckpoint Protein PD-L1 by Cosolvent Molecular Dynamics Simulations. J. Mol. Graph. Model. 2019, 91, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Goodford, P.J. A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules. J. Med. Chem. 1985, 28, 849–857. [Google Scholar] [CrossRef]
- Paciotti, R.; Agamennone, M.; Coletti, C.; Storchi, L. Characterization of PD-L1 Binding Sites by a Combined FMO/GRID-DRY Approach. J. Comput.-Aided Mol. Des. 2020, 34, 897–914. [Google Scholar] [CrossRef]
- Lim, H.; Chun, J.; Jin, X.; Kim, J.; Yoon, J.H.; No, K.T. Investigation of Protein-Protein Interactions and Hot Spot Region between PD-1 and PD-L1 by Fragment Molecular Orbital Method. Sci. Rep. 2019, 9, 16727. [Google Scholar] [CrossRef]
- Sun, X.; Liang, L.; Gu, J.; Zhuo, W.; Yan, X.; Xie, T.; Wu, Z.; Liu, X.; Gou, X.; Liu, W.; et al. Inhibition of PD-L1 by Benzyl Ether Derivatives: Analyses of Conformational Change, Molecular Recognition and Binding Free Enrgy. J. Biomol. Struct. Dyn. 2019, 11, 1–14. [Google Scholar]
- Riccio, A.; Coletti, A.; Dolciami, D.; Mammoli, A.; Cerra, B.; Moretti, S.; Gioiello, A.; Ferlin, S.; Puxeddu, E.; Macchiarulo, A. The Stone Guest: How Does pH Affect Binding Properties of PD-1/PD-L1 Inhibitors? ChemMedChem 2021, 16, 568–577. [Google Scholar] [CrossRef]
- Soremekun, O.S.; Olotu, F.A.; Agoni, C.; Soliman, M.E.S. Recruiting Monomer for Dimer Formation: Resolving the Antagonistic Mechanisms of Novel Immune Check Point Inhibitors against Programmed Death Ligand-1 in Cancer Immunotherapy. Mol. Simul. 2019, 45, 777–789. [Google Scholar] [CrossRef]
- Guo, Y.; Jin, Y.; Wang, B.; Liu, B. Molecular Mechanism of Small-Molecule Inhibitors in Blocking the PD-1/PD-L1 Pathway through PD-L1 Dimerization. Int. J. Mol. Sci. 2021, 22, 4766. [Google Scholar] [CrossRef]
- Liang, J.; Wang, B.; Yang, Y.; Liu, B.; Jin, Y. Approaching the Dimerization Mechanism of Small Molecule Inhibitors Targeting PD-L1 with Molecular Simulation. Int. J. Mol. Sci. 2023, 24, 1280. [Google Scholar] [CrossRef]
- Ahmed, M.; Ganesan, A.; Barakat, K. Leveraging Structural and 2D-QSAR to Investigate the Role of Functional Group Substitutions, Conserved Surface Residues and Desolvation in Triggering the Small Molecule-Induced Dimerization of hPD-L1. BMC Chem. 2022, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ye, W.; Wang, S.; He, Y.; Zhong, H.; Wang, Y.; Zhu, Y.; Han, J.; Bing, Z.; Ji, S.; et al. Discovery of a New Inhibitor Targeting PD-L1 for Cancer Immunotherapy. Neoplasia 2021, 23, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Lung, J.; Hung, M.-S.; Lin, Y.-C.; Hung, C.-H.; Chen, C.-C.; Lee, K.-D.; Tsai, Y.H. Virtual Screening and In Vitro Evaluation of PD-L1 Dimer Stabilizers for Uncoupling PD-1/PD-L1 Interaction from Natural Products. Molecules 2020, 25, 5293. [Google Scholar] [CrossRef]
- Barnwal, A.; Das, S.; Bhattacharyya, J. Repurposing Ponatinib as a PD-L1 Inhibitor Revealed by Drug Repurposing Screening and Validation by In Vitro and In Vivo Experiments. ACS Pharmacol. Transl. Sci. 2023, 6, 281–289. [Google Scholar] [CrossRef]
- Acúrcio, R.C.; Pozzi, S.; Carreira, B.; Pojo, M.; Gómez-Cebrián, N.; Casimiro, S.; Fernandes, A.; Barateiro, A.; Farricha, V.; Brito, J.; et al. Therapeutic Targeting of PD-1/PD-L1 Blockade by Novel Small-Molecule Inhibitors Recruits Cytotoxic T Cells into Solid Tumor Microenvironment. J. Immunother. Cancer 2022, 10, e004695. [Google Scholar] [CrossRef]
- Bianconi, E.; Riccio, A.; Ruta, L.; Bigiotti, C.; Carotti, A.; Moretti, S.; Cerra, B.; Gioiello, A.; Ferlin, S.; Puxeddu, E.; et al. Turning a Tumor Microenvironment Pitfall into Opportunity: Discovery of Benzamidoxime as PD-L1 Ligand with pH-Dependent Potency. Int. J. Mol. Sci. 2023, 24, 5535. [Google Scholar] [CrossRef]
- Wang, F.; Ye, W.; He, Y.; Zhong, H.; Zhu, Y.; Han, J.; Gong, X.; Tian, Y.; Wang, Y.; Wang, S.; et al. Identification of CBPA as a New Inhibitor of PD-1/PD-L1 Interaction. Int. J. Mol. Sci. 2023, 24, 3971. [Google Scholar] [CrossRef] [PubMed]
- Choorakottayil Pushkaran, A.; Kumaran, K.; Ann Maria, T.; Biswas, R.; Mohan, C.G. Identification of a PD1/PD-L1 Inhibitor by Structure-Based Pharmacophore Modelling, Virtual Screening, Molecular Docking and Biological Evaluation. Mol. Inform. 2023, 42, e2200254. [Google Scholar] [CrossRef]
- Fattakhova, E.; Hofer, J.; DiFlumeri, J.; Cobb, M.; Dando, T.; Romisher, Z.; Wellington, J.; Oravic, M.; Radnoff, M.; Patil, S.P. Identification of the FDA-Approved Drug Pyrvinium as a Small-Molecule Inhibitor of the PD-1/PD-L1 Interaction. ChemMedChem 2021, 16, 2769–2774. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.P.; Fattakhova, E.; Hofer, J.; Oravic, M.; Bender, A.; Brearey, J.; Parker, D.; Radnoff, M.; Smith, Z. Machine-Learning Guided Discovery of Bioactive Inhibitors of PD1-PDL1 Interaction. Pharmaceuticals 2022, 15, 613. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, S.; Feng, X.; Xu, W.; Luo, R.; Zhu, Z.; Zeng, Q.; He, Z. Advances in Efficacy Prediction and Monitoring of Neoadjuvant Immunotherapy for Non-Small Cell Lung Cancer. Front. Oncol. 2023, 13, 1145128. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Huang, H. Development of Anti-PD-L1 Antibody Based on Structure Prediction of AlphaFold2. Front. Immunol. 2023, 14, 1275999. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, N.; Tardiel-Cyril, D.R.; Chai, D.; Generali, D.; Li, J.-R.; Vazquez-Perez, J.; Lim, J.M.; Morris, R.; Bullock, Z.N.; Davtyan, A.; et al. Artificial Intelligence-Powered Discovery of Small Molecules Inhibiting CTLA-4 in Cancer. BJC Rep. 2024, 2, 4. [Google Scholar] [CrossRef]
- Anderson, K.G.; Braun, D.A.; Buqué, A.; Gitto, S.B.; Guerriero, J.L.; Horton, B.; Keenan, B.P.; Kim, T.S.; Overacre-Delgoffe, A.; Ruella, M.; et al. Leveraging Immune Resistance Archetypes in Solid Cancer to Inform Next-Generation Anticancer Therapies. J. Immunother. Cancer 2023, 11, e006533. [Google Scholar] [CrossRef]
- Lombardo, S.D.; Presti, M.; Mangano, K.; Petralia, M.C.; Basile, M.S.; Libra, M.; Candido, S.; Fagone, P.; Mazzon, E.; Nicoletti, F.; et al. Prediction of PD-L1 Expression in Neuroblastoma via Computational Modeling. Brain Sci. 2019, 9, 221. [Google Scholar] [CrossRef]
DrugBank ID | Name | Year of Approval | Target | Commercializing Company |
---|---|---|---|---|
DB09035 | Nivolumab | 2014 | PD-1 | BMS |
DB09037 | Pembrolizumab | 2014 | PD-1 | Merk |
DB14707 | Cemiplimab | 2019 | PD-1 | Sanofi |
DB15627 | Dostarlimab | 2021 | PD-1 | GSK |
DB15766 | Retifanlimab | 2023 | PD-1 | Incyte Biosciences |
DB11595 | Atezolizumab | 2016 | PD-L1 | Genentech |
DB11945 | Avelumab | 2017 | PD-L1 | Merk |
DB11714 | Durvalumab | 2017 | PD-L1 | Astra Zeneca |
PDB ID | Resolution (Å) | Ligand | IC50 Value (nM) | Reference |
---|---|---|---|---|
5J89 | 2.20 | 6GX (BMS-202) | 18 | [30] |
5J8O | 2.30 | 6GZ (BMS-8) | 146 | [30] |
5N2D | 2.35 | 8J8 (BMS-37) | 6–100 | [52] |
5N2F | 1.70 | 8HW (BMS-200) | 80.00 | [52] |
5NIU | 2.01 | 8YZ (BMS-1001) | 2.25 | [32] |
6NM7 | 2.43 | 22L | n.d. | [47] |
6NM8 | 2.79 | KSD | 53.00 | [47] |
6NOJ | 2.33 | KW7 | Kd = 1.9 mM | [47] |
6NOS | 2.70 | KWA | Kd = 1.9 mM | [47] |
6R3K | 2.20 | JQT (BMS-1166) | 1.85 | [53] |
6RPG | 2.70 | KDW | 3.00 | [54] |
6VQN | 2.49 | R81 | 0.4 | [55] |
7BEA | 2.45 | TK2 | 16.80 | [56] |
7DY7 | 2.42 | HOU | 27.80 | [57] |
7NLD | 2.30 | UGZ | 2.07 | [53] |
7VUN | 2.00 | 8H7 | 8.90 | [58] |
8OR1 | 3.50 | VYC | 2.4 | [59] |
8K5N | 2.20 | I7M | 1.8 | [60] |
8R6Q | 2.17 | WEW | <0.5 | [61] |
Hot Region | Hot Spots | Note |
---|---|---|
1 | Tyr56, Glu58, Arg113, Tyr123, Met115 | Deepest cleft with predominantly hydrophobic character |
2 | Met115, Ala121, and Tyr123 | Located near the previous hot region |
3 | Asp122, Tyr123, Lys124, Arg125 | Extended groove with multiple H-bond donor and acceptor groups |
Methods | Force Field | Thermodynamic Ensemble | Ref. |
---|---|---|---|
Classical and accelerated MD | AMBER FF14SB | NVT/NPT | [64] |
Classical MD | AMBER03 | NVT/NPT | [70] |
Classical MD | CHARMM36 | NPT | [65] |
Classical MD | AMBER99SB-ILDN | NVT/NPT | [66] |
Classical MD, MM/GBSA | AMBER FF14SB | NVT/NPT | [67] |
Classical MD, MM/PBSA | OPLS/AA | NVT/NPT | [69] |
Classical MD, infrequent MTD | AMBER03 | NVT/NPT | [71] |
Classical MD, MM/GBSA/IE | AMBER FF14SB | NVT/NPT | [68] |
Studied Ligands | Computational Approach | PD-L1 Hot Spot Residues | Reference |
---|---|---|---|
29 BMS derivatives | Docking Binding free energy calculation | ATyr56, BTyr56, BAsp122, BLys124, BArg125 | [72] |
Several biphenyl derivatives from literature and patents | Docking | ATyr56, BTyr56, BAsp122 | [73] |
35 BMS derivatives | MD AS-IE | ATyr123, BTyr56, BMet155, AMet115, BGln66, AAsp122 | [75] |
6 BMS derivatives | FMO/GRID-DRY | ATyr56, AMet115, AAla121, ATyr123, and BIle54, BTyr56, BMet115, BAla121 | [80] |
4 BMS derivatives | FMO 3D-SPIE | Tyr56, Glu58, Gln66, Met115, Asp122, Arg125 | [81] |
PDB ID | Database (# Compounds) | Program | Screening Protocol | Emerging PD-L1 Inhibitor | Activity (μM) | Ref |
---|---|---|---|---|---|---|
5J89 | Specs (200,000) | Schrödinger Canva | docking study clustering | APBC | IC50 27.82 | [87] |
5J89 | natural compounds of ZINC12 (180,131) | iDock AuPosSOM Data Warrior | docking study filtering by iDock score (−9.95 kcal mol−1) Contact Fingerprint Analysis filtering by drug-likeness properties clustering (FragFP descriptor) | ZINC12529904 | IC50 0.1 | [88] |
* n.r. | ZINC database | ParDOCK Amber suite | docking study filtering by docking score (−8 kcal mol−1) MD simulations | Ponatinib | IC50 1.91 | [89] |
5J89 | NCI, Enamine, Specs, or in-house (900,000) | MOE FAF-Drugs4 | docking-based 50 GA for rapid screening filtering by docking score re-docking 500 GA for top scoring compounds filtering by Lipinski’s rule of 5 | 69 | IC50 0.096 | [90] |
5J89 | In-house (807) Life Chemicals (4994) | Schrödinger | Docking study (Asp122 &Lys124 hot spots) filtering by docking score | VIS310 | Kd 8.13 | [91] |
5J89 | ChEMBL25 (1.9 M) | AutoDock | filtering by Lipinski’s rule of 5 first docked once top-scored docked 5 times clustering by FCFP_4 fingerprints druggability | 17 | IC50 0.0278 | [57] |
5J89 | Specs (200,000) | Schrödinger | filtration by PAINS Pharmacophore model generation Docking study Clustering Induced fit docking | CBPA | Kd 48.10 | [92] |
5J89 | Specs (540,807 s.m.) & DrugBank (1925 FDA-approved drug) | Schrödinger | 3D pharmacophore model Docking study (3 steps: HTSV, SP, XP) Filtering by ADME and druggability | Raltitrexed Safinamide AK-968/40642641 | Indirect in vitro experiments (↑ in immune cell proliferation) | [93] |
5N2F, 5NIU, 6R3K, 5J89, 5J8O, 5N2D, 6NM8 | 10,000 approved or investigational drugs | AutoDock Vina (SB-VS) ROCS (LB-VS) | Ensemble docking (7 crystal structure) Visual inspection Filtering by shape similarity (7 crystal ligands) Docking study (top 1000 compounds) | Pyrvinium | IC50 29.66 | [94] |
5N2F | bioactive molecules of Cayman Chemical database (16,191) | Open Drug Discovery Toolkit (ODDT) AutoDock Vina Desmond | Multiple 2D descriptors (FP1, FP2, Layered, MACCS, Morgan, RDKit) Random Forest models Docking study Molecular Dynamics | CRT5 | IC50 22.35 IC50 33.65 | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantacuzzi, M.; Paciotti, R.; Agamennone, M. A Comprehensive Computational Insight into the PD-L1 Binding to PD-1 and Small Molecules. Pharmaceuticals 2024, 17, 316. https://doi.org/10.3390/ph17030316
Fantacuzzi M, Paciotti R, Agamennone M. A Comprehensive Computational Insight into the PD-L1 Binding to PD-1 and Small Molecules. Pharmaceuticals. 2024; 17(3):316. https://doi.org/10.3390/ph17030316
Chicago/Turabian StyleFantacuzzi, Marialuigia, Roberto Paciotti, and Mariangela Agamennone. 2024. "A Comprehensive Computational Insight into the PD-L1 Binding to PD-1 and Small Molecules" Pharmaceuticals 17, no. 3: 316. https://doi.org/10.3390/ph17030316
APA StyleFantacuzzi, M., Paciotti, R., & Agamennone, M. (2024). A Comprehensive Computational Insight into the PD-L1 Binding to PD-1 and Small Molecules. Pharmaceuticals, 17(3), 316. https://doi.org/10.3390/ph17030316