An Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometric Method for the Simultaneous Determination of Eighteen Marker Compounds in the Traditional Herbal Formula Bopyeo-Tang
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Marker Compounds for Quality Assessment of BPT Using the UPLC–MS/MS Multiple-Reaction Monitoring (MRM) Method
2.2. Identification of the 18 Marker Compounds via the UPLC–MS/MS MRM Method
2.3. Validation of the UPLC–MS/MS MRM Method
2.4. Simultaneous Determination of the 18 Marker Compounds in a BPT Sample via the UPLC–MS/MS MRM Method
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Preparation of a BPT Water Extract
3.4. Analytical Conditions for the Simultaneous Quantification of Markers in a BPT Sample via the UPLC–MS/MS MRM Method
3.5. Validation of the UPLC–MS/MS MRM Method
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heo, J. Donguibogan; Namsandang: Seoul, Republic of Korea, 2007; p. 470. [Google Scholar]
- Shen, J.; Zhu, X.; Chen, Y.; Li, W.; Liu, H.; Chu, C.; Zhang, Y.; Xu, C.; Tong, P.; Yu, X.; et al. Bufei decoction improves lung-qi deficiency syndrome of chronic obstructive pulmonary disease in rats by regulating the balance of Th17/Treg cells. Evid. Based Complement. Alternat. Med. 2022, 2022, 1459232. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, Y.; Zhao, P.; Feng, S.; Han, X.; Li, J. Network pharmacology analysis uncovers the effect on apoptotic pathway by Bu-Fei formula for COPD treatment. J. Ethnopharmacol. 2022, 289, 115022. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, X.; Jiang, Y.; Guan, Q.; Tian, Y.; Li, J.; Zhao, P. Maintenance of airway epithelial barrier integrity via the inhibition of AHR/EGFR activation ameliorates chronic obstructive pulmonary disease using effective-component combination. Phytomedicine 2023, 118, 154980. [Google Scholar] [CrossRef] [PubMed]
- Stone, P.W.; Osen, M.; Ellis, A.; Coaker, R.; Quint, J.K. Prevalence of chronic obstructive pulmonary disease in England from 2000 to 2019. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.I.; Park, Y.B.; Yoo, K.H. Recent trends in the prevalence of chronic obstructive pulmonary disease in Korea. Tuberc. Respir. Dis. 2017, 80, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wei, W.; Yao, C.; Wu, S.; Wang, W.; Guo, D. Advances in the chemical constituents, pharmacological properties and clinical applications of TCM formula Yupingfeng San. Fitoterapia 2023, 164, 105385. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, S.; Cui, L.; Chen, Y.; Xu, X.; Wu, L. Bufei Tishen formula inhibits the cell senescence in COPD by up-regulating the znf263 and Klotho expression. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Deng, L.; Zhou, Y.; Yuy, H.; Huang, X.; Chen, M.; Lei, Y.; Dong, J. Network pharmacology and experiments in vivo and in vitro reveal that the Jia-Wei-Bu-Shen-Yi-Qi formula (JWBSYQF) and its active ingredient baicalein ameliorate BLM-induced lung fibrosis in mice via PI3K/Akt signaling pathway. J. Ethnopharmacol. 2023, 315, 116691. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Li, D.; Lei, X.; Zhang, Y.; Cheng, S.; Shu, X.; Zhang, H. Effects of the Chinese herbal formula San-Huang Gu-Ben Zhi-Ke treatment on stable chronic obstructive pulmonary disease: A randomized, double-blind, placebo-controlled trial. Front. Pharmacol. 2023, 14, 1164818. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Y.; Xu, Y.; Guo, X.; Li, X.; Zhang, A.L.; May, B.H.; Xue, C.C.; Wen, Z.; Lin, L. Oral Guangqi formulae for stable chronic obstructive pulmonary disease: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med. 2013, 2013, 705315. [Google Scholar]
- Chu, X.; Liu, J.M.; Zeng, X.L.; Bao, H.R.; Shu, J. Effects of Astragalus and Codonopis pilosula polysaccharides on alveolar macrophage phagocytosis and inflammation in chronic obstructive pulmonary disease mice exposed to PM2.5. Environ. Toxicol. Pharmacol. 2016, 48, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tan, Y.; Gao, K.; Lei, J.; Chen, C.; Shi, Y. Effect of astragaloside on diaphragm cell apoptosis in chronic obstructive pulmonary disease. Food Sci. Nutr. 2020, 8, 6357–6366. [Google Scholar] [CrossRef] [PubMed]
- Timalsina, D.; Pokhrel, K.P.; Bhusal, D. Pharmacologic activities of plant-derived natural products on respiratory diseases and inflammations. Biomed Res. Int. 2021, 2021, 1636816. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, H.; Li, Y.; Liu, J.; Jia, Z.; Xu, W.; Xiao, H.; Wang, W. Aster tataricus attenuates asthma efficiently by simultaneously inhibiting tracheal ring contraction and inflammation. Biomed. Pharmacother. 2020, 130, 110616. [Google Scholar] [CrossRef]
- Jiang, S.T.; Han, S.Y.; Pang, L.N.; Jiao, Y.N.; He, X.R.; Li, P.P. Bu-Fei decoction and modified Bu-Fei decoction inhibit the growth of non-small cell lung cancer, possibly via inhibition of apurinic/apyrimidinic endonuclease 1. Int. J. Mol. Med. 2018, 41, 2128–2138. [Google Scholar] [CrossRef]
- Pang, L.; Han, S.; Jiao, Y.; Jiang, S.; He, X.; Li, P. Bu Fei Decoction attenuates the tumor associated macrophage stimulated proliferation, migration, invasion and immunosuppression of non-small cell lung cancer, partially via IL-10 and PD-L1 regulation. Int. J. Oncol. 2017, 51, 25–38. [Google Scholar] [CrossRef]
- He, X.R.; Han, S.Y.; Li, X.H.; Zheng, W.X.; Pang, L.N.; Jiang, S.T.; Li, P.P. Chinese medicine Bu-Fei decoction attenuates epithelial-mesenchymal transition of non-small cell lung cancer via inhibition of transforming growth factor β1 signaling pathway in vitro and in vivo. J. Ethnopharmacol. 2017, 204, 45–57. [Google Scholar] [CrossRef]
- Yang, S.; Cui, W.; Wang, M.; Xing, L.; Wang, Y.; Zhu, P.; Qu, Q.; Tang, Q. Bufei decoction alleviated bleomycin-induced idiopathic pulmonary fibrosis in mice by anti-inflammation. Evid. Based Complement. Alternat. Med. 2020, 2020, 7483278. [Google Scholar] [CrossRef]
- Seo, C.S.; Lee, M.Y. Simultaneous quantification of eight marker components in traditional herbal formula, Haepyoyijin-tang using HPLC–PDA. Appl. Sci. 2020, 10, 3888. [Google Scholar] [CrossRef]
- Seo, C.S.; Lee, M.Y. Quality assessment of Insamyangpye decoction by liquid chromatography tandem mass spectrometry multiple reaction monitoring. Processes 2021, 9, 831. [Google Scholar] [CrossRef]
- Seo, C.S.; Lee, M.Y. Method development and validation for simultaneous analysis of eleven components for quality control of Geumgwesingihwan using HPLC–DAD and UPLC–MS/MS. Separations 2022, 9, 213. [Google Scholar] [CrossRef]
- Seo, C.S.; Shin, H.K. Validation of the ultra-performance liquid chromatography with tandem mass spectrometry method for simultaneous analysis of eighteen compounds in the traditional herbal prescription, Sanjoin-tang. Separations 2023, 10, 411. [Google Scholar] [CrossRef]
- Seo, C.S.; Shin, H.K. Ultra-performance liquid chromatography with tandem mass spectrometry for simultaneous analysis of 22 analytes of Oncheong-eum, a traditional Korean herbal formula. Processes 2023, 11, 2906. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, K.; Kweon, H.Y.; Kim, H.; Lee, J.H. Inhibitory effect of mulberry root bark extract and its derived compounds on cholesterol regulation, inflammation, and platelet aggregation. J. Korean Soc. Food Sci. Nutr. 2022, 51, 633–639. [Google Scholar] [CrossRef]
- Kim, J.H.; Doh, E.J.; Lee, G. Quantitative comparison of the marker compounds in different medicinal parts of Morus alba L. using high-performance liquid chromatography-diode array detector with chemometric analysis. Molecules 2020, 25, 5592. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.H.; Vu, T.P.D.; Cai, L.; Zhao, Y.; Li, H.X.; Yang, S.Y.; Kim, Y.H.; Kim, S.J.; Cho, H.S.; Bao, H.; et al. Development of HPLC method for differentiation of three parts of mulberry tree. Anal. Sci. Technol. 2017, 30, 130–137. [Google Scholar]
- Hwang, S.Y.; Hwang, B.Y.; Choi, W.H.; Jung, H.J.; Huh, J.D.; Lee, K.S.; Ro, J.S. Quantitative determination of 5-hydroxymethyl-2-furaldehyde in the Rehmanniae Radix Preparata samples at various processing stages. Kor. J. Pharmacogn. 2001, 32, 116–120. [Google Scholar]
- Wang, H.P.; Zhang, Y.B.; Yang, X.W.; Zhao, D.Q.; Wang, Y.P. Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC–DAD–QTOF–MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS. J. Ginseng Res. 2016, 40, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shi, H.; Zhang, Q.; Liu, Y.; Wan, C.; Zhang, L. Simultaneous determination of five components in Aster tataricus by ultra performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. Sci. 2016, 54, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.X.; Hu, B.Q.; Zhang, M.; Zhang, C.F.; Xu, X.H. Simultaneous separation and determination of phenolic acids, pentapeptides, and triterpenoid saponins in the root of Aster tataricus by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2015, 38, 571–575. [Google Scholar] [CrossRef]
- Song, J.Z.; Yiu, H.H.W.; Qiao, C.F.; Han, Q.B.; Xu, H.X. Chemical comparison and classification of Radix Astragali by determination of isoflavonoids and astragalosides. J. Pharm. Biomed. Anal. 2008, 47, 399–406. [Google Scholar] [CrossRef]
- Lin, L.Z.; He, X.G.; Lindenmaier, M.; Nolan, G.; Yang, J.; Cleary, M.; Qiu, S.X.; Cordell, G.A. Liquid chromatography–electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. J. Chromatogr. A 2000, 876, 87–95. [Google Scholar] [CrossRef]
- Koo, D.C.; Suh, W.S.; Baek, S.Y.; Shim, S.H. Quantitative determination of lignans from Schizandra chinensis by HPLC. Kor. J. Pharmacogn. 2011, 42, 233–239. [Google Scholar]
- Wang, S.; Liu, X.M.; Zhang, J.; Zhang, Y.Q. An efficient preparation of mulberroside A from the branch bark of mulberry and its effect on the inhibition of tyrosinase activity. PLoS ONE 2014, 9, e109396. [Google Scholar] [CrossRef]
- Li, J.; Jiang, K.; Wang, L.J.; Yin, G.; Wang, J.; Wang, Y.; Jin, B.J.; Li, Q.; Wang, T.J. HPLC–MS/MS determination of flavonoids in Gleditsiae Spina for its quality assessment. J. Sep. Sci. 2018, 41, 1752–1763. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, X.; Dai, W.; Yan, S.; Huang, H.; Liang, X.; Li, Y.; Zhang, W. Chemical fingerprinting of Liuwei Dihuang Pill and simultaneous determination of its major bioactive constituents by HPLC coupled with multiple detections of DAD, ELSD and ESI–MS. J. Pharm. Biomed. Anal. 2009, 49, 638–645. [Google Scholar] [CrossRef]
- Qi, Y.; Cheng, X.; Jing, H.; Yan, T.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Comparative pharmacokinetic study of the components in Alpinia oxyphylla Miq. -Schisandra chinensis (Turcz.) Baill. herb pair and its single herb between normal and Alzheimer’s disease rats by UPLC–MS/MS. J. Pharm. Biomed. Anal. 2020, 177, 112874. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Geng, C.A.; Ma, Y.B.; Huang, X.Y.; Chen, H.; Cao, T.W.; He, K.; Wang, H.; Zhang, X.M.; Chen, J.J. UFLC/MS–IT–TOF guided isolation of anti-HBV active chlorogenic acid analogues from Artemisia capillaris as a traditional Chinese herb for the treatment of hepatitis. J. Ethnopharmacol. 2014, 156, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Kafle, B.; Baak, J.; Brede, C. Quantification by LC–MS/MS of astragaloside IV and isoflavones in Astragali Radix can be more accurate by using standard addition. Phytochem. Anal. 2021, 32, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Lai, Y.C.; Chang, C.L. High throughput screening and antioxidant assay of dibenzo[a,c]cyclooctadiene lignans in modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill by liquid chromatography–mass spectrometry and a free radical-scavenging method. J. Sep. Sci. 2008, 31, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, H.B.; Xue, X.Y.; Sun, Y.G.; Liang, X.M. Simultaneous characterization of isoflavonoids and astragalosides in two Astragalus species by high–performance liquid chromatography coupled with atmospheric pressure chemical ionization tandem mass spectrometry. J. Sep. Sci. 2007, 30, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.M.; Lu, J.; Gao, O.P.; Li, S.P. Rapid method for simultaneous determination of flavonoid, saponins and polyacetylenes in Folium Ginseng and Radix Ginseng by pressurized liquid diode array detection and mass spectrometry. J. Chromatogr. A 2009, 1216, 3825–3830. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Bae, J.Y.; Zhao, J.; Wang, Y.H.; Wang, M.; Zhang, Z.; Ali, Z.; Chittiboyina, A.G.; Khan, I.A. Quantitative determination and characterization of polyphenols from Cissus quadrangularis L. and dietary supplements using UHPLC–PDA–MS, LCQ–ToF and HPTLC. J. Pharm. Biomed. Anal. 2021, 199, 114036. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.Q.; Xiong, Y.J.; Xue, Y.; Wang, Y.; Yan, C. Using UPLC–MS/MS for characterization of active components in extracts of Yupingfeng and application to a comparative pharmacokinetic study in rat plasma after oral administration. Molecules 2017, 22, 810. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Samiotaki, M.; Panayotou, G.; Oreopoulou, V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC–MS/MS. Molecules 2007, 12, 593–606. [Google Scholar] [CrossRef]
- Zhao, J.; Su, C.; Yang, C.; Liu, M.; Tang, L.; Su, W.; Liu, Z. Determination of ginsenosides Rb1, Rb2, and Rb3 in rat plasma by a rapid and sensitive liquid chromatography tandem mass spectrometry method: Application in a pharmacokinetic study. J. Pharm. Biomed. Anal. 2012, 64–65, 94–97. [Google Scholar] [CrossRef]
- International Conference on Harmonisation (ICH), Guidance for Industry, Q2B, Validation of Analytical Procedures: Methodology; Food and Drug Administration: Rockville, MD, USA, 1996.
Analyte 1 | Ion Mode | Molar Mass (g/mol) | MRM Transition | Cone Voltage (V) | Collision Energy (eV) | |
---|---|---|---|---|---|---|
Precursor Ion (Q1) (m/z) | Production Ion (Q3) (m/z) | |||||
1 | Positive | 568.5 | 569.7 | 245.0 | 30 | 20 |
2 | Positive | 126.1 | 127.0 | 109.0 | 20 | 10 |
3 | Negative | 354.3 | 353.4 | 191.0 | 20 | 20 |
4 | Negative | 610.5 | 609.6 | 300.5 | 45 | 30 |
5 | Positive | 446.4 | 447.5 | 285.1 | 30 | 20 |
6 | Negative | 464.4 | 463.5 | 300.0 | 40 | 20 |
7 | Negative | 516.4 | 515.4 | 173.0 | 30 | 30 |
8 | Negative | 516.5 | 515.0 | 352.7 | 30 | 15 |
9 | Negative | 801.0 | 800.6 | 636.8 | 50 | 20 |
10 | Negative | 228.2 | 227.2 | 185.0 | 30 | 20 |
11 | Negative | 284.3 | 283.4 | 267.9 | 30 | 20 |
12 | Positive | 302.2 | 303.0 | 153.0 | 40 | 30 |
13 | Positive | 286.2 | 286.9 | 153.2 | 45 | 30 |
14 | Negative | 1109.3 | 1107.7 | 179.0 | 50 | 45 |
15 | Positive | 785.0 | 785.3 | 142.9 | 15 | 20 |
16 | Positive | 432.5 | 433.5 | 415.0 | 25 | 13 |
17 | Positive | 416.5 | 417.1 | 399.0 | 20 | 10 |
18 | Positive | 400.5 | 401.1 | 370.1 | 35 | 20 |
Analyte 1 | Retention Time (min) | Linear Range (μg/L) | Regression Equation 2 | r2 | LOD (μg/L) | LOQ (μg/L) |
---|---|---|---|---|---|---|
1 | 1.03 | 10.00–500.00 | y = 485,931.00x + 14.47 | 0.9954 | 1.05 | 3.15 |
2 | 1.13 | 100.00–1600.00 | y = 8870.53x + 48,805.00 | 0.9951 | 1.10 | 3.29 |
3 | 1.19 | 10.00–500.00 | y = 2589.01x + 8562.76 | 0.9984 | 0.36 | 1.07 |
4 | 1.51 | 10.00–500.00 | y = 703.06x − 494.34 | 0.9974 | 1.97 | 5.92 |
5 | 1.63 | 100.00–5000.00 | y = 22,617.20x + 152,151.00 | 0.9992 | 1.29 | 3.87 |
6 | 1.76 | 10.00–500.00 | y = 1375.21x − 20.12 | 0.9974 | 2.99 | 8.97 |
7 | 1.99 | 10.00–500.00 | y = 196.41x − 1915.30 | 0.9959 | 1.82 | 5.47 |
8 | 2.10 | 10.00–500.00 | y = 2282.64x − 8840.91 | 0.9968 | 0.58 | 1.73 |
9 | 2.75 | 100.00–2500.00 | y = 1.28x − 45.22 | 0.9967 | 24.45 | 73.35 |
10 | 2.96 | 10.00–500.00 | y = 819.62x − 1368.80 | 0.9961 | 0.42 | 1.26 |
11 | 3.44 | 10.00–500.00 | y = 12,088.30x + 168,161.00 | 0.9996 | 0.98 | 2.95 |
12 | 3.46 | 10.00–500.00 | y = 2785.91x − 22,041.70 | 0.9981 | 0.79 | 2.37 |
13 | 4.34 | 10.00–500.00 | y = 4723.05x + 18,591.70 | 0.9985 | 0.40 | 1.21 |
14 | 4.37 | 10.00–500.00 | y = 12.96x − 150.02 | 0.9966 | 2.77 | 8.31 |
15 | 5.16 | 10.00–500.00 | y = 25.47x − 159.67 | 0.9959 | 1.94 | 5.83 |
16 | 6.78 | 10.00–500.00 | y = 25,945.60x + 306,489.00 | 0.9995 | 1.07 | 3.20 |
17 | 7.42 | 10.00–500.00 | y = 1279.18x + 3833.31 | 0.9970 | 2.02 | 6.07 |
18 | 11.28 | 10.00–500.00 | y = 5225.76x + 79,203.7 | 0.9993 | 1.38 | 4.13 |
Analyte 1 | Spiked Amount (μg/L) | Recovery (n = 5) | Precision (n = 5) | Repeatability (n = 6) | Stability | |||||
---|---|---|---|---|---|---|---|---|---|---|
Intraday | Interday | |||||||||
Mean (%) | RSD (%) | Precision (%) | Accuracy (%) | Precision (%) | Accuracy (%) | RSD (%) of RT 2 | RSD (%) of PA 3 | RSD (%) | ||
1 | 80.00 | 97.74 | 1.03 | 1.04 | 98.43 | 1.02 | 97.50 | 0.22 | 2.98 | 1.10 |
160.00 | 98.34 | 2.02 | 2.71 | 96.04 | 2.44 | 96.52 | ||||
320.00 | 97.42 | 3.62 | 3.78 | 94.96 | 2.95 | 96.98 | ||||
2 | 200.00 | 102.02 | 0.79 | 3.82 | 100.56 | 2.31 | 100.98 | 0.27 | 1.28 | 0.88 |
400.00 | 100.46 | 2.85 | 5.91 | 102.67 | 3.86 | 101.38 | ||||
800.00 | 103.87 | 1.75 | 2.11 | 104.06 | 1.80 | 104.22 | ||||
3 | 20.00 | 103.15 | 2.83 | 3.96 | 99.43 | 2.84 | 101.71 | 0.24 | 4.15 | 1.81 |
40.00 | 98.44 | 2.54 | 5.63 | 100.14 | 4.03 | 98.49 | ||||
80.00 | 96.84 | 5.04 | 4.62 | 96.36 | 3.94 | 95.13 | ||||
4 | 20.00 | 101.50 | 2.73 | 2.84 | 98.69 | 2.61 | 100.44 | 0.30 | 2.53 | 1.54 |
40.00 | 95.84 | 2.20 | 2.12 | 97.17 | 2.72 | 96.03 | ||||
80.00 | 90.41 | 3.50 | 1.66 | 98.24 | 2.57 | 92.02 | ||||
5 | 200.00 | 99.40 | 0.68 | 2.22 | 98.51 | 1.14 | 99.32 | 0.16 | 2.51 | 0.78 |
400.00 | 104.07 | 1.88 | 3.50 | 102.17 | 2.95 | 102.72 | ||||
800.00 | 108.82 | 3.24 | 1.83 | 100.72 | 2.41 | 105.10 | ||||
6 | 20.00 | 103.48 | 1.55 | 2.68 | 101.68 | 2.33 | 102.93 | 0.21 | 3.97 | 1.05 |
40.00 | 92.61 | 1.88 | 1.67 | 95.46 | 2.29 | 93.11 | ||||
80.00 | 86.74 | 2.07 | 2.73 | 93.36 | 2.76 | 88.43 | ||||
7 | 40.00 | 101.02 | 1.87 | 1.67 | 99.98 | 1.78 | 100.80 | 0.42 | 3.52 | 0.76 |
80.00 | 98.83 | 2.14 | 2.69 | 97.35 | 2.63 | 98.58 | ||||
160.00 | 96.63 | 1.99 | 1.86 | 94.97 | 2.55 | 95.04 | ||||
8 | 40.00 | 103.15 | 3.19 | 2.77 | 101.59 | 2.89 | 101.87 | 0.24 | 2.00 | 1.18 |
80.00 | 92.81 | 4.16 | 3.20 | 96.12 | 3.21 | 93.79 | ||||
160.00 | 88.46 | 5.34 | 2.01 | 92.36 | 3.54 | 89.26 | ||||
9 | 400.00 | 91.82 | 4.25 | 4.53 | 92.46 | 4.07 | 92.37 | 0.39 | 4.49 | 0.58 |
800.00 | 85.19 | 3.16 | 4.29 | 104.02 | 3.44 | 91.23 | ||||
1600.00 | 85.23 | 5.99 | 5.31 | 102.78 | 3.07 | 87.91 | ||||
10 | 20.00 | 101.70 | 6.60 | 5.82 | 98.96 | 5.73 | 101.73 | 0.40 | 2.83 | 2.91 |
40.00 | 94.60 | 5.97 | 1.58 | 96.38 | 3.61 | 95.21 | ||||
80.00 | 100.83 | 3.05 | 2.85 | 96.30 | 3.25 | 97.50 | ||||
11 | 20.00 | 102.34 | 2.50 | 1.31 | 103.38 | 2.01 | 101.92 | 0.19 | 2.73 | 1.42 |
40.00 | 93.98 | 1.92 | 3.49 | 97.79 | 2.88 | 94.62 | ||||
80.00 | 86.64 | 2.27 | 1.69 | 93.40 | 2.26 | 88.73 | ||||
12 | 80.00 | 101.01 | 1.30 | 3.06 | 98.99 | 2.04 | 100.58 | 0.23 | 4.46 | 1.47 |
160.00 | 96.98 | 1.99 | 3.99 | 103.94 | 2.40 | 99.66 | ||||
320.00 | 100.12 | 3.87 | 3.38 | 103.27 | 3.27 | 100.78 | ||||
13 | 40.00 | 100.58 | 0.32 | 1.09 | 100.16 | 0.75 | 100.62 | 0.20 | 2.37 | 0.46 |
80.00 | 100.38 | 0.66 | 1.43 | 101.29 | 1.14 | 100.35 | ||||
160.00 | 99.59 | 1.80 | 1.29 | 99.57 | 1.37 | 99.81 | ||||
14 | 80.00 | 105.50 | 1.50 | 3.44 | 102.17 | 1.86 | 104.33 | 0.11 | 5.78 | 1.88 |
160.00 | 95.64 | 3.24 | 3.33 | 96.85 | 2.86 | 94.97 | ||||
320.00 | 91.82 | 3.30 | 3.02 | 97.82 | 3.47 | 92.14 | ||||
15 | 20.00 | 103.69 | 1.44 | 2.22 | 102.24 | 1.66 | 101.61 | 0.16 | 5.80 | 2.67 |
40.00 | 101.57 | 3.65 | 4.02 | 97.88 | 4.09 | 99.31 | ||||
80.00 | 101.07 | 5.36 | 4.17 | 97.15 | 4.48 | 99.70 | ||||
16 | 20.00 | 98.81 | 0.95 | 1.87 | 96.05 | 1.40 | 97.68 | 0.04 | 1.17 | 1.28 |
40.00 | 106.71 | 1.00 | 1.48 | 104.08 | 1.69 | 105.27 | ||||
80.00 | 107.58 | 1.26 | 1.05 | 104.94 | 0.93 | 105.99 | ||||
17 | 40.00 | 98.14 | 1.26 | 2.19 | 94.88 | 1.64 | 97.43 | 0.08 | 1.13 | 2.29 |
80.00 | 101.65 | 0.77 | 3.13 | 102.41 | 2.30 | 101.67 | ||||
160.00 | 104.13 | 0.68 | 0.96 | 104.55 | 0.89 | 103.57 | ||||
18 | 4.00 | 112.50 | 3.14 | 9.77 | 89.75 | 4.70 | 106.25 | 0.09 | 2.00 | 2.97 |
8.00 | 109.25 | 3.85 | 9.01 | 96.93 | 5.13 | 106.39 | ||||
16.00 | 110.25 | 2.74 | 2.34 | 96.25 | 2.23 | 106.25 |
Analyte 1 | Mean (mg/g) | SD 2 (×10–2) (mg/g) | RSD (%) | Source |
---|---|---|---|---|
1 | 0.71 | 2.33 | 3.29 | M. alba |
2 | 3.20 | 27.93 | 8.74 | R. glutinosa |
3 | 0.36 | 2.14 | 5.90 | M. alba and A. tataricus |
4 | 0.01 | 0.01 | 1.39 | M. alba |
5 | 0.08 | 0.13 | 1.78 | A. propinquus |
6 | 0.01 | 0.01 | 1.48 | M. alba |
7 | 0.03 | 0.03 | 0.95 | A. tataricus |
8 | 0.14 | 0.33 | 2.31 | A. tataricus |
9 | 0.07 | 0.60 | 8.41 | P. ginseng |
10 | 0.001 | 0.01 | 4.01 | M. alba |
11 | 0.01 | 0.02 | 1.67 | A. propinquus |
12 | 0.03 | 0.02 | 0.84 | A. tataricus |
13 | 0.03 | 0.06 | 1.78 | A. tataricus |
14 | 0.03 | 0.22 | 7.65 | P. ginseng |
15 | 0.01 | 0.08 | 9.17 | A. propinquus |
16 | 0.11 | 0.19 | 1.71 | S. chinensis |
17 | 0.02 | 0.07 | 3.73 | S. chinensis |
18 | <LOQ | – | – | S. chinensis |
UPLC Conditions | MS Conditions | ||||
---|---|---|---|---|---|
UPLC system | Acquity UPLC I-Class Plus | MS system | Xevo TQ-XS | ||
Column | Acquity UPLC BEH C18 column (2.1 mm × 100 mm, particle size: 1.7 μm) | MS software | MassLynx v4.2 | ||
Column temperature | 45 °C | Ion source 1 | ESI+ or ESI– | ||
Sample temperature | 5 °C | Acquisition mode | MRM | ||
Injection volume | 2.0 μL | Capillary voltage | 1.2 kV | ||
Flow rate | 0.3 mL/min | Cone gas flow | 150 L/h | ||
Mobile phase A | 0.1% (v/v) formic acid in distilled water | Desolvation gas flow | 700 L/h | ||
Mobile phase B | Acetonitrile | Desolvation temperature | 500 °C | ||
Gradient program of mobile phase | Time (min) | A (%) | B (%) | Source temperature | 150 °C |
Initial | 80 | 20 | |||
14.0 | 5 | 95 | |||
15.0 | 0 | 100 | |||
15.1 | 80 | 20 | |||
18.0 | 80 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, C.-S. An Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometric Method for the Simultaneous Determination of Eighteen Marker Compounds in the Traditional Herbal Formula Bopyeo-Tang. Pharmaceuticals 2024, 17, 352. https://doi.org/10.3390/ph17030352
Seo C-S. An Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometric Method for the Simultaneous Determination of Eighteen Marker Compounds in the Traditional Herbal Formula Bopyeo-Tang. Pharmaceuticals. 2024; 17(3):352. https://doi.org/10.3390/ph17030352
Chicago/Turabian StyleSeo, Chang-Seob. 2024. "An Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometric Method for the Simultaneous Determination of Eighteen Marker Compounds in the Traditional Herbal Formula Bopyeo-Tang" Pharmaceuticals 17, no. 3: 352. https://doi.org/10.3390/ph17030352
APA StyleSeo, C. -S. (2024). An Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometric Method for the Simultaneous Determination of Eighteen Marker Compounds in the Traditional Herbal Formula Bopyeo-Tang. Pharmaceuticals, 17(3), 352. https://doi.org/10.3390/ph17030352