Exploring the Mechanisms of Traditional Chinese Herbal Therapy in Gastric Cancer: A Comprehensive Network Pharmacology Study of the Tiao-Yuan-Tong-Wei decoction
Abstract
:1. Introduction
2. Results
2.1. Compound Identification of TYTW and the ADMET Prediction
2.2. Drug Target and Disease Target Prediction
2.3. Herb–Compounds–Targets–Disease Network of TYTW Analysis
2.4. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis
2.5. Molecular Validation of Compound-Target Interactions
3. Discussion
4. Materials and Methods
4.1. Compound Identification
4.2. Target Prediction and Collection for the Components
4.3. Identification of Thromboembolism-Related Targets
4.4. Construction of the PPI Network and HCTD Network
4.5. GO and KEGG Analysis
4.6. Receptor–Ligand Molecular Docking Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strong, V.E.; Wu, A.W.; Selby, L.V.; Gonen, M.; Hsu, M.; Song, K.Y.; Park, C.H.; Coit, D.G.; Ji, J.F.; Brennan, M.F. Differences in gastric cancer survival between the U.S. and China. J. Surg. Oncol. 2015, 112, 31–37. [Google Scholar] [CrossRef]
- Xu, W.; Li, B.; Xu, M.; Yang, T.; Hao, X. Traditional Chinese medicine for precancerous lesions of gastric cancer: A review. Biomed. Pharmacother. 2022, 146, 112542. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, H.; Yang, K.; Mao, Y.; Meng, L.; Yang, L.; Ouyang, G.; Liu, W. A comprehensive update: Gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. J. Zhejiang Univ. Sci. B 2022, 23, 1–18. [Google Scholar] [CrossRef]
- Komurcu, S.; Nelson, K.A.; Walsh, D.; Ford, R.B.; Rybicki, L.A. Gastrointestinal symptoms among inpatients with advanced cancer. Am. J. Hosp. Palliat. Med. 2002, 19, 351–355. [Google Scholar] [CrossRef]
- Mustafa, M.; Menon, J.; Kumar, R.; Elahee, M.I.; Azizan, N.; Mya, N.; Kadir, F.; Sharifa, A. Gastric Cancer: Risk Factors, Diagnosis and Management. IOSR J. Dent. Med. Sci. 2017, 16, 69–74. [Google Scholar] [CrossRef]
- Maconi, G.; Manes, G.; Porro, G.B. Role of symptoms in diagnosis and outcome of gastric cancer. World J. Gastroenterol. 2008, 14, 1149–1155. [Google Scholar] [CrossRef]
- Ramos, M.; Ribeiro Júnior, U.; Viscondi, J.K.Y.; Zilberstein, B.; Cecconello, I.; Eluf-Neto, J. Risk factors associated with the development of gastric cancer—Case-control study. Rev. Assoc. Med. Bras. 2018, 64, 611–619. [Google Scholar] [CrossRef]
- Yusefi, A.R.; Bagheri Lankarani, K.; Bastani, P.; Radinmanesh, M.; Kavosi, Z. Risk factors for gastric cancer: A systematic review. Asian Pac. J. Cancer Prev. 2018, 19, 591–603. [Google Scholar] [PubMed]
- de Martel, C.; Forman, D.; Plummer, M. Gastric cancer: Epidemiology and risk factors. Gastroenterol. Clin. N. Am. 2013, 42, 219–240. [Google Scholar] [CrossRef] [PubMed]
- Movahedi, M.; Afsharfard, A.; Moradi, A.; Nasermoaddeli, A.; Khoshnevis, J.; Fattahi, F.; Akbari, M.E. Survival rate of gastric cancer in Iran. J. Res. Med. Sci. 2009, 14, 367–373. [Google Scholar] [PubMed]
- Janunger, K.-G.; Hafström, L.; Glimelius, B. Chemotherapy in gastric cancer: A review and updated meta-analysis. Eur. J. Surg. 2002, 168, 597–608. [Google Scholar] [CrossRef]
- Park, J.I.; Jin, S.H.; Bang, H.Y.; Paik, N.S.; Moon, N.M.; Lee, J.I. Survival rates after operation for gastric cancer: Fifteen-year experience at a korea cancer center hospital. J. Korean Gastric Cancer Assoc. 2008, 8, 9–19. [Google Scholar] [CrossRef]
- Moghimi-Dehkordi, B.; Safaee, A.; Zali, M.R. Survival rates and prognosis of gastric cancer using an actuarial life-table method. Asian Pac. J. Cancer Prev. 2008, 9, 317–321. [Google Scholar]
- Sun, W.; Yan, L. Gastric cancer: Current and evolving treatment landscape. Chin. J. Cancer 2016, 35, 83. [Google Scholar] [CrossRef]
- Orditura, M.; Galizia, G.; Sforza, V.; Gambardella, V.; Fabozzi, A.; Laterza, M.M.; Andreozzi, F.; Ventriglia, J.; Savastano, B.; Mabilia, A.; et al. Treatment of gastric cancer. World J. Gastroenterol. 2014, 20, 1635–1649. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Y.; Liu, H.; Jing, C. Efficacy of traditional chinese medicine combined with chemotherapy in the treatment of gastric cancer: A meta-analysis. Comput. Math. Methods Med. 2022, 2022, 8497084. [Google Scholar] [CrossRef]
- Liu, J.; Nile, S.H.; Xu, G.; Wang, Y.; Kai, G. Systematic exploration of Astragalus membranaceus and Panax ginseng as immune regulators: Insights from the comparative biological and computational analysis. Phytomedicine 2021, 86, 153077. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.H.; Kim, S.W.; Seo, H.W.; Youn, S.H.; Kyung, J.S.; Lee, Y.Y.; In, G.; Park, C.-K.; Han, C.-K. Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng. J. Ginseng Res. 2020, 44, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-H.; Chen, X.-J.; Wang, M.; Lin, L.-G.; Wang, Y.-T. Ophiopogon japonicus—A phytochemical, ethnomedicinal and pharmacological review. J. Ethnopharmacol. 2016, 181, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhao, X.; Miyamoto, A.; Zhao, S.; Liu, C.; Zheng, W.; Wang, H. Effects of steroidal saponins extract from Ophiopogon japonicus root ameliorates doxorubicin-induced chronic heart failure by inhibiting oxidative stress and inflammatory response. Pharm. Biol. 2019, 57, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.J.; Tzeng, T.F.; Liou, S.S.; Da Lin, S.; Wu, M.C.; Liu, I.M. Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat. BMC Complement. Altern. Med. 2014, 14, 110. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, X.Y.; Martin, C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. 2016, 61, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Guan, Y.; Hu, W.; Xu, Z.; Ishfaq, M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. Iran. J. Basic Med. Sci. 2022, 25, 14–26. [Google Scholar] [PubMed]
- Morshed, A.; Paul, S.; Hossain, A.; Basak, T.; Hossain, M.S.; Hasan, M.M.; Hasibuzzaman, M.A.; Rahaman, T.I.; Mia, M.A.R.; Shing, P.; et al. Baicalein as promising anticancer agent: A comprehensive analysis on molecular mechanisms and therapeutic perspectives. Cancers 2023, 15, 2128. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Herrera-Bravo, J.; Salazar, L.A.; Shaheen, S.; Abdulmajid Ayatollahi, S.; Kobarfard, F.; Imran, M.; Imran, A.; Custódio, L.; Dolores López, M.; et al. The therapeutic potential of wogonin observed in preclinical studies. Evid. Based Complement. Altern. Med. 2021, 2021, 9935451. [Google Scholar] [CrossRef]
- de Boer, J.G.; Quiney, B.; Walter, P.B.; Thomas, C.; Hodgson, K.; Murch, S.J.; Saxena, P.K. Protection against aflatoxin-B1-induced liver mutagenesis by Scutellaria baicalensis. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2005, 578, 15–22. [Google Scholar] [CrossRef]
- Paluch, Z.; Biriczová, L.; Pallag, G.; Carvalheiro Marques, E.; Vargová, N.; Kmoníčková, E. The therapeutic effects of Agrimonia eupatoria L. Physiol. Res. 2020, 69, S555–S571. [Google Scholar] [CrossRef]
- Sampath, G.; Shyu, D.J.H.; Rameshkumar, N.; Krishnan, M.; Kayalvizhi, N. In vitro anti-Helicobacter pylori and anti-gastric cancer activities of Acacia nilotica aqueous leaf extract and its validation using in silico molecular docking approach. Mater. Today Proc. 2022, 51, 1675–1684. [Google Scholar] [CrossRef]
- Guo, S.L.; Ye, H.; Teng, Y.; Wang, Y.L.; Yang, G.; Li, X.B.; Zhang, C.; Yang, X.; Yang, Z.Z.; Yang, X. Akt-p53-miR-365-cyclin D1/cdc25A axis contributes to gastric tumorigenesis induced by PTEN deficiency. Nat. Commun. 2013, 4, 2544. [Google Scholar] [CrossRef]
- Kozłowska, A.; Kozera, P.; Majewski, M.; Godlewski, J. Co-expression of caspase-3 or caspase-8 with galanin in the human stomach section affected by carcinoma. Apoptosis 2018, 23, 484–491. [Google Scholar] [CrossRef]
- Guan, X.; Liu, Z.; Liu, H.; Yu, H.; Wang, L.E.; Sturgis, E.M.; Li, G.; Wei, Q. A functional variant at the miR-885-5p binding site of CASP3 confers risk of both index and second primary malignancies in patients with head and neck cancer. Faseb J. 2013, 27, 1404–1412. [Google Scholar] [CrossRef]
- Gorup, D.; Bohaček, I.; Miličević, T.; Pochet, R.; Mitrečić, D.; Križ, J.; Gajović, S. Increased expression and colocalization of GAP43 and CASP3 after brain ischemic lesion in mouse. Neurosci. Lett. 2015, 597, 176–182. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, S.; Jiang, L.; Tan, Z.; Wang, J. A systematic pan-cancer analysis of CASP3 as a potential target for immunotherapy. Front. Mol. Biosci. 2022, 9, 776808. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar] [PubMed]
- Gao, J.; Yang, S.; Xie, G.; Pan, J.; Zhu, F. Integrating network pharmacology and experimental verification to explore the pharmacological mechanisms of aloin against gastric cancer. Drug Des. Dev. Ther. 2022, 16, 1947–1961. [Google Scholar] [CrossRef] [PubMed]
- Barbi, S.; Cataldo, I.; De Manzoni, G.; Bersani, S.; Lamba, S.; Mattuzzi, S.; Bardelli, A.; Scarpa, A. The analysis of PIK3CA mutations in gastric carcinoma and metanalysis of literature suggest that exon-selectivity is a signature of cancer type. J. Exp. Clin. Cancer Res. 2010, 29, 32. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, I.S.; Choi, I.J.; Kang, Y.N.; Park, K.U.; Lee, J.H. Are PIK3CA mutation and amplification associated with clinicopathological characteristics of gastric cancer? Asian Pac. J. Cancer Prev. 2015, 16, 4493–4496. [Google Scholar] [CrossRef]
- Lee, J.W.; Soung, Y.H.; Kim, S.Y.; Lee, H.W.; Park, W.S.; Nam, S.W.; Kim, S.H.; Lee, J.Y.; Yoo, N.J.; Lee, S.H. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 2005, 24, 1477–1480. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.-M. Biomarkers for gastric cancer: Molecular classification revisited. Precis. Future Med. 2017, 1, 59–68. [Google Scholar] [CrossRef]
- Finetti, F.; Paradisi, L.; Bernardi, C.; Pannini, M.; Trabalzini, L. Cooperation between prostaglandin E2 and epidermal growth factor receptor in cancer progression: A dual target for cancer therapy. Cancers 2023, 15, 2374. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, Y.Y.; Wang, X.X.; Wang, H.P.; Chen, H.; Wu, Y.C.; Wang, L.; Pu, X.; Yue, G.Z.; Zhang, L. Tanshinone IIA suppresses ovarian cancer growth through inhibiting malignant properties and angiogenesis. Ann. Transl. Med. 2020, 8, 1295. [Google Scholar] [CrossRef]
- Guan, Z.; Chen, J.; Li, X.; Dong, N. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci. Rep. 2020, 40, BSR20201807. [Google Scholar] [CrossRef]
- Vogel, L.K.; Sæbø, M.; Høyer, H.; Kopp, T.I.; Vogel, U.; Godiksen, S.; Frenzel, F.B.; Hamfjord, J.; Bowitz-Lothe, I.M.; Johnson, E.; et al. Intestinal PTGS2 mRNA levels, PTGS2 gene polymorphisms, and colorectal carcinogenesis. PLoS ONE 2014, 9, e105254. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Jiang, L.; He, T.; Liu, J.-J.; Fan, J.-Y.; Xu, X.-H.; Tang, B.; Shi, Y.; Zhao, Y.-L.; Qian, F.; et al. NETO2 promotes invasion and metastasis of gastric cancer cells via activation of PI3K/Akt/NF-κB/Snail axis and predicts outcome of the patients. Cell Death Dis. 2019, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Qiu, Y.; Kong, D. Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm. Sin. B 2017, 7, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Lien, E.C.; Dibble, C.C.; Toker, A. PI3K signaling in cancer: Beyond AKT. Curr. Opin. Cell Biol. 2017, 45, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.S.; Yap, W.N.; Arfuso, F.; Kar, S.; Wang, C.; Cai, W.; Dharmarajan, A.M.; Sethi, G.; Kumar, A.P. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine? World J. Gastroenterol. 2015, 21, 12261–12273. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.; Yashiro, M. The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers 2014, 6, 1441–1463. [Google Scholar] [CrossRef] [PubMed]
- Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers 2021, 13, 3949. [Google Scholar] [CrossRef] [PubMed]
- Hibdon, E.S.; Razumilava, N.; Keeley, T.M.; Wong, G.; Solanki, S.; Shah, Y.M.; Samuelson, L.C. Notch and mTOR signaling pathways promote human gastric cancer cell proliferation. Neoplasia 2019, 21, 702–712. [Google Scholar] [CrossRef]
- Kameda, C.; Nakamura, M.; Tanaka, H.; Yamasaki, A.; Kubo, M.; Tanaka, M.; Onishi, H.; Katano, M. Oestrogen receptor-α contributes to the regulation of the hedgehog signalling pathway in ERα-positive gastric cancer. Br. J. Cancer 2010, 102, 738–747. [Google Scholar] [CrossRef]
- Xu, H.Y.; Zhang, Y.Q.; Liu, Z.M.; Chen, T.; Lv, C.Y.; Tang, S.H.; Zhang, X.B.; Zhang, W.; Li, Z.Y.; Zhou, R.R.; et al. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019, 47, D976–D982. [Google Scholar] [CrossRef]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminformatics 2014, 6, 13. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; et al. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep. 2016, 6, 21146. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, F.; Yang, K.; Fang, S.; Bu, D.; Li, H.; Sun, L.; Hu, H.; Gao, K.; Wang, W.; et al. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2019, 47, D1110–D1117. [Google Scholar] [CrossRef]
- Yao, Z.J.; Dong, J.; Che, Y.J.; Zhu, M.F.; Wen, M.; Wang, N.N.; Wang, S.; Lu, A.P.; Cao, D.S. TargetNet: A web service for predicting potential drug-target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des. 2016, 30, 413–424. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleki, A.; Ghasemi, J.B.; Ghasemi, F. Computer aided drug design for multi-target drug design: SAR/QSAR, molecular docking and pharmacophore methods. Curr. Drug Targets 2017, 18, 556–575. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Slominski, R.M.; Qayyum, S.; Kim, T.-K.; Janjetovic, Z.; Raman, C.; Tuckey, R.C.; Song, Y.; Slominski, A.T. Molecular and structural basis of interactions of vitamin D3 hydroxyderivatives with aryl hydrocarbon receptor (AhR): An integrated experimental and computational study. Int. J. Biol. Macromol. 2022, 209, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
Herb Species | Metabolites | Molecular Formula | Hepatotoxicity | Solubility | Absorption Level | Drug-Likeness Grading |
---|---|---|---|---|---|---|
Radix pseudostellariae | 1-Monolinolein | C20H36O4 | 0 | −3.058 | 0 | Weak |
Acacetin | C16H12O5 | 1 | −3.413 | 0 | Good | |
Beta-sitosterol | C29H50O | 1 | −8.256 | 3 | Weak | |
Luteolin | C15H10O6 | 1 | −2.856 | 0 | Moderate | |
Schottenol | C29H50O | * N/A | N/A | N/A | N/A | |
Taraxerol | C30H50O | 1 | −8.8 | 3 | Weak | |
Ophiopogon japonicus | Ruscogenin | C27H42O4 | 1 | −5.062 | 0 | Moderate |
Ophiopogonanone B | C18H18O5 | 1 | −4.053 | 0 | Good | |
Linalool | C10H18O | 0 | −2.194 | 0 | Moderate | |
Adenosine | C10H13N5O4 | 1 | −0.316 | 2 | Moderate | |
Wogonin | C16H12O5 | 1 | −3.428 | 0 | Good | |
Scutellaria baicalensis | Tetramethoxyflavone | C19H18O6 | 1 | −4.326 | 0 | Good |
Scutevulin | C16H12O6 | 1 | −3.207 | 0 | Good | |
Dimethoxyflavone | C17H14O7 | 1 | −3.414 | 0 | Good | |
Baicalin | C21H18O11 | 1 | −3.506 | 3 | Weak | |
Baicalein | C15H10O5 | 1 | −2.976 | 0 | Good | |
7-Methoxybaicalein | C16H12O5 | 1 | −3.415 | 0 | Good | |
Agrimoniae herba | Agrimoniin | C82H54O52 | N/A | N/A | N/A | N/A |
Catechin | C15H14O6 | 1 | −2.445 | 0 | Moderate | |
Dihydroquercetin | C15H12O7 | 1 | −2.492 | 1 | Moderate | |
Quercetin | C15H10O7 | 1 | −2.633 | 1 | Moderate | |
Citrus aurantium | Prunasin | C14H17NO6 | 0 | −0.093 | 1 | Moderate |
Neohesperidin | C28H34O15 | 1 | −4.715 | 3 | Weak | |
Naringin | C27H32O14 | 1 | −4.385 | 3 | Weak | |
Hesperetin | C16H14O6 | 1 | −3.157 | 0 | Good | |
Ephedrine | C10H15NO | 0 | −1.169 | 0 | Good | |
Salvia miltiorrhiza | Cryptotanshinone | C19H20O3 | 0 | −5.673 | 0 | Good |
Danshenol A | C21H20O4 | 1 | −4.226 | 0 | Good | |
Danshenol B | C22H26O4 | 0 | −4.619 | 0 | Good | |
Danshensu | C9H10O5 | 1 | −0.345 | 0 | Moderate | |
Isocryptotanshinone | C19H20O3 | 0 | −5.68 | 0 | Good | |
Isotanshinone I | C18H12O3 | 1 | −6.049 | 0 | Moderate | |
Salviol | C20H30O2 | 0 | −5.101 | 0 | Good | |
Tanshinol A | C18H14O4 | 1 | −3.556 | 0 | Good | |
Tanshinone I | C18H12O3 | 1 | −6.05 | 0 | Moderate | |
Actinidia valvata | Asiatic acid | C30H48O5 | 1 | −5.298 | 1 | Weak |
Corosolic acid | C30H48O4 | N/A | N/A | N/A | N/A | |
Netursen-28-oic acid | C30H48O5 | N/A | N/A | N/A | N/A | |
Radix codonopsis lanceolatae | Cycloartenol | C30H50O | 0 | −8.421 | 3 | Weak |
Echinocystic acid | C30H48O4 | 1 | −6.356 | 1 | Weak | |
Oleanolic acid | C30H48O3 | 1 | −7.612 | 1 | Weak | |
Radix glycyrrhizae preparata | Glycyrrhizic acid | C42H62O16 | 1 | −6.703 | 3 | Weak |
Isoliquiritin | C21H22O9 | 1 | −2.288 | 3 | Weak | |
Liquiritigenin | C15H12O4 | 1 | −3.234 | 0 | Good | |
Liquiritin | C21H22O9 | 1 | −2.432 | 2 | Weak |
Module | GO Terms/KEGG Terms | LogP | Total Genes | Mapped Genes |
---|---|---|---|---|
1 | Pathways in cancer | −48.7 | 531 | 35 |
CKAP4 signaling pathway map | −40.5 | 116 | 24 | |
Lipid and atherosclerosis | −44.1 | 215 | 27 | |
Malignant pleural mesothelioma | −35.0 | 440 | 27 | |
PI3K-Akt signaling pathway | −32.2 | 354 | 24 | |
Endocrine resistance | −31.9 | 18 | 98 | |
Response to hormone | −31.8 | 29 | 788 | |
Proteoglycans in cancer | −31.8 | 21 | 205 | |
Hepatitis C and hepatocellular carcinoma | −31.7 | 16 | 56 | |
Photodynamic therapy-induced NF-kB survival signaling | −30.1 | 35 | 14 | |
2 | Regulation of mitotic cell cycle phase transition | −7.9 | 355 | 5 |
Regulation of cell cycle phase transition | −7.4 | 456 | 5 | |
Pathways in cancer | −7.05 | 531 | 5 | |
Cellular response to organic cyclic compound | −5.3 | 500 | 4 | |
Nucleic acid-templated transcription | −3.4 | 594 | 3 | |
3 | Nuclear division | −7.9 | 308 | 4 |
Meiotic cell cycle process | −6.0 | 182 | 3 | |
Sister chromatid segregation | −6.0 | 140 | 3 | |
4 | Cellular responses to stress | −4.7 | 788 | 4 |
Cluster | Term | Count | p-Value |
---|---|---|---|
Disease enrichment | Stomach neoplasms | 29 | |
Malignant neoplasm of stomach | 29 | ||
Hereditary diffuse gastric cancer | 29 | ||
KEGG pathway | PI3K-Akt signaling pathway | 33 | |
Kaposi sarcoma-associated herpesvirus infection | 25 | ||
Small cell lung cancer | 17 | ||
Proteoglycans in cancer | 25 | ||
MAPK signaling pathway | 26 | ||
Thyroid-stimulating hormone (TSH) signaling pathway | 13 | ||
G.O. terms | Protein phosp+B51:B123horylation | 29 | |
Protein serine/threonine/tyrosine kinase activity | 27 | ||
ATP binding | 39 | ||
Protein serine/threonine kinase activity | 21 | ||
Peptidyl-serine phosphorylation | 15 | ||
Protein kinase activity | 19 | ||
Kinase activity | 13 |
Species | Components | Targets | Binding Affinity (kcal/mol) |
---|---|---|---|
Agrimoniae herba | Agrimoniin | AKT1 | −11.3 |
CASP3 | −8.9 | ||
ESR1 | −9.6 | ||
IL6 | −8.3 | ||
PIK3CA | −12.0 | ||
PTGS2 | −10.9 | ||
Scutellaria baicalensis | Baicalin | AKT1 | −8.6 |
CASP3 | −7.8 | ||
ESR1 | −7.3 | ||
IL6 | −6.7 | ||
PIK3CA | −9.0 | ||
PTGS2 | −10.0 | ||
Actinidia valvata | Corosolic acid | AKT1 | −8.2 |
CASP3 | −8.1 | ||
ESR1 | −7.6 | ||
IL6 | −6.8 | ||
PIK3CA | −9.9 | ||
PTGS2 | −8.3 | ||
Radix pseudostellariae | Luteolin | AKT1 | −8.2 |
CASP3 | −6.9 | ||
ESR1 | −7.5 | ||
IL6 | −7.0 | ||
PIK3CA | −9.3 | ||
PTGS2 | −9.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Kang, J.; Yuan, S.; O’Connell, P.; Zhang, Z.; Wang, L.; Liu, J.; Chen, R. Exploring the Mechanisms of Traditional Chinese Herbal Therapy in Gastric Cancer: A Comprehensive Network Pharmacology Study of the Tiao-Yuan-Tong-Wei decoction. Pharmaceuticals 2024, 17, 414. https://doi.org/10.3390/ph17040414
Chen J, Kang J, Yuan S, O’Connell P, Zhang Z, Wang L, Liu J, Chen R. Exploring the Mechanisms of Traditional Chinese Herbal Therapy in Gastric Cancer: A Comprehensive Network Pharmacology Study of the Tiao-Yuan-Tong-Wei decoction. Pharmaceuticals. 2024; 17(4):414. https://doi.org/10.3390/ph17040414
Chicago/Turabian StyleChen, Juan, Jingdong Kang, Shouli Yuan, Peter O’Connell, Zizhu Zhang, Lina Wang, Junying Liu, and Rongfeng Chen. 2024. "Exploring the Mechanisms of Traditional Chinese Herbal Therapy in Gastric Cancer: A Comprehensive Network Pharmacology Study of the Tiao-Yuan-Tong-Wei decoction" Pharmaceuticals 17, no. 4: 414. https://doi.org/10.3390/ph17040414
APA StyleChen, J., Kang, J., Yuan, S., O’Connell, P., Zhang, Z., Wang, L., Liu, J., & Chen, R. (2024). Exploring the Mechanisms of Traditional Chinese Herbal Therapy in Gastric Cancer: A Comprehensive Network Pharmacology Study of the Tiao-Yuan-Tong-Wei decoction. Pharmaceuticals, 17(4), 414. https://doi.org/10.3390/ph17040414