Elderberry Leaves with Antioxidant and Anti-Inflammatory Properties as a Valuable Plant Material for Wound Healing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis
2.2. Biological Activity
2.2.1. Evaluation of Antioxidant Activity Using Cell-Free Methods
2.2.2. Evaluation of Enzyme Activity Inhibition Using Cell-Free Methods
2.3. Principal Components Analysis
2.4. Evaluation of Wound-Healing Potential
3. Materials and Methods
3.1. Plant Material
3.2. Chemical Reagents
3.3. Extract Preparation
3.4. Determination of Phytochemical Profile
3.4.1. Total Polyphenolic Content
3.4.2. Total Flavonoid Content
3.4.3. High-Performance Liquid Chromatography Analysis
3.5. Antioxidant Activity
3.5.1. DPPH Analysis
3.5.2. CUPRAC Analysis
3.5.3. Chelating Cu2+ Analysis
3.6. Enzyme Activity Inhibition
3.6.1. Anty-Tyrosinase Activity
3.6.2. Anty-Hyaluronidase Activity
3.7. Cytotoxicity Assay
3.8. Scratch Test
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atkinson, M.D.; Atkinson, E. Sambucus nigra L. J. Ecol. 2002, 90, 895–923. [Google Scholar] [CrossRef]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive Properties of Sambucus nigra L. as a Functional Ingredient for Food and Pharmaceutical Industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef]
- Santin, J.R.; Benvenutti, L.; Broering, M.F.; Nunes, R.; Goldoni, F.C.; Patel, Y.B.K.; de Souza, J.A.; Kopp, M.A.T.; de Souza, P.; da Silva, R.d.C.V.; et al. Sambucus nigra: A Traditional Medicine Effective in Reducing Inflammation in Mice. J. Ethnopharmacol. 2022, 283, 114736. [Google Scholar] [CrossRef]
- Mahboubi, M. Sambucus nigra (Black Elder) as Alternative Treatment for Cold and Flu. Adv. Tradit. Med. 2021, 21, 405–414. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The Antioxidant Properties of Alcoholic Extracts from Sambucus nigra L. (Antioxidant Properties of Extracts). LWT-Food Sci. Technol. 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Barros, L.; Cabrita, L.; Boas, M.V.; Carvalho, A.M.; Ferreira, I.C.F.R. Chemical, Biochemical and Electrochemical Assays to Evaluate Phytochemicals and Antioxidant Activity of Wild Plants. Food Chem. 2011, 127, 1600–1608. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Suárez Valles, B. Analysis of Cyanogenic Compounds Derived from Mandelonitrile by Ultrasound-Assisted Extraction and High-Performance Liquid Chromatography in Rosaceae and Sambucus Families. Molecules 2021, 26, 7563. [Google Scholar] [CrossRef] [PubMed]
- Skowrońska, W.; Granica, S.; Czerwińska, M.E.; Osińska, E.; Bazylko, A. Sambucus nigra L. Leaves Inhibit TNF-α Secretion by LPS-Stimulated Human Neutrophils and Strongly Scavenge Reactive Oxygen Species. J. Ethnopharmacol. 2022, 290, 115116. [Google Scholar] [CrossRef]
- Yeşilada, E.; Honda, G.; Sezik, E.; Tabata, M.; Fujita, T.; Tanaka, T.; Takeda, Y.; Takaishi, Y. Traditional Medicine in Turkey. V. Folk Medicine in the Inner Taurus Mountains. J. Ethnopharmacol. 1995, 46, 133–152. [Google Scholar] [CrossRef]
- Cappelletti, E.M.; Trevisan, R.; Caniato, R. External Antirheumatic and Antineuralgic Herbal Remedies in the Traditional Medicine of North-Eastern Italy. J. Ethnopharmacol. 1982, 6, 161–190. [Google Scholar] [CrossRef]
- Cavero, R.Y.; Akerreta, S.; Calvo, M.I. Pharmaceutical Ethnobotany in Northern Navarra (Iberian Peninsula). J. Ethnopharmacol. 2011, 133, 138–146. [Google Scholar] [CrossRef]
- Mogoşanu, G.D.; Grumezescu, A.M. Natural and Synthetic Polymers for Wounds and Burns Dressing. Int. J. Pharm. 2014, 463, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Milkova-Tomova, I.; Kazakova, Z.; Buhalova, D.; Gentscheva, G.; Nikolova, K.; Minkova, S. Antioxidant Properties and Antibacterial Activity of Water Extracts from Sambucus nigra L. under Different Conditions. Folia Medica 2023, 65, 295–300. [Google Scholar] [CrossRef]
- Castillo-Maldonado, I.; Moreno-Altamirano, M.M.B.; Serrano-Gallardo, L.B. Anti-Dengue Serotype-2 Activity Effect of Sambucus nigra Leaves-and Flowers-Derived Compounds. Virol. Res. Rev. 2017, 1, 1–5. [Google Scholar] [CrossRef]
- Daryani, A.; Ebrahimzadeh, M.A.; Sharif, M.; Ahmadpour, E.; Edalatian, S.; Esboei, B.R.; Sarvi, S. Anti-Toxoplasma Activities of Methanolic Extract of Sambucus nigra (Caprifoliaceae) Fruits and Leaves. Rev. Biol. Trop. 2015, 63, 7–12. [Google Scholar] [CrossRef]
- Marțiș (Petruț), G.S.; Mureșan, V.; Marc (Vlaic), R.M.; Mureșan, C.C.; Pop, C.R.; Buzgău, G.; Mureșan, A.E.; Ungur, R.A.; Muste, S. The Physicochemical and Antioxidant Properties of Sambucus nigra L. and Sambucus nigra Haschberg during Growth Phases: From Buds to Ripening. Antioxidants 2021, 10, 1093. [Google Scholar] [CrossRef]
- Tundis, R.; Ursino, C.; Bonesi, M.; Loizzo, M.R.; Sicari, V.; Pellicanò, T.; Manfredi, I.L.; Figoli, A.; Cassano, A. Flower and Leaf Extracts of Sambucus nigra L.: Application of Membrane Processes to Obtain Fractions with Antioxidant and Antityrosinase Properties. Membranes 2019, 9, 127. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. 2022. Available online: https://journals.sagepub.com/doi/full/10.1177/1934578X211069721 (accessed on 29 March 2024).
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R.; Najda, A.; Sałata, A.; Krajewska, A. Bioactive Compounds and Antioxidant Properties of Black Elderberry (Sambucus nigra L.). Acta Sci. Pol. Hortorum Cultus 2022, 21, 143–156. [Google Scholar]
- Oziembłowski, M.; Nawirska-Olszańska, A.; Maksimowski, D. Optimization of Chlorogenic Acid in Ethanol Extracts from Elderberry Flowers (Sambucus nigra L.) under Different Conditions: Response Surface Methodology. Appl. Sci. 2023, 13, 3201. [Google Scholar] [CrossRef]
- Seymenska, D.; Shishkova, K.; Hinkov, A.; Benbassat, N.; Teneva, D.; Denev, P. Comparative Study on Phytochemical Composition, Antioxidant, and Anti-HSV-2 Activities of Sambucus nigra L. and Sambucus ebulus L. Extracts. Appl. Sci. 2023, 13, 12593. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous Non-Enzymatic Antioxidants in the Human Body. Adv. Med. Sci. 2018, 63, 68–78. [Google Scholar] [CrossRef]
- Comino-Sanz, I.M.; López-Franco, M.D.; Castro, B.; Pancorbo-Hidalgo, P.L. The Role of Antioxidants on Wound Healing: A Review of the Current Evidence. J. Clin. Med. 2021, 10, 3558. [Google Scholar] [CrossRef] [PubMed]
- Husain, N.; Mahmood, R. Copper(II) Generates ROS and RNS, Impairs Antioxidant System and Damages Membrane and DNA in Human Blood Cells. Env. Sci. Pollut. Res. 2019, 26, 20654–20668. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Obaid, R.J.; Mughal, E.U.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Natural and Synthetic Flavonoid Derivatives as New Potential Tyrosinase Inhibitors: A Systematic Review. RSC Adv. 2021, 11, 22159–22198. [Google Scholar] [CrossRef] [PubMed]
- Zolghadri, S.; Beygi, M.; Mohammad, T.F.; Alijanianzadeh, M.; Pillaiyar, T.; Garcia-Molina, P.; Garcia-Canovas, F.; Munoz-Munoz, J.; Saboury, A.A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem. Pharmacol. 2023, 212, 115574. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.S.C.; Lahiri, M.A. Use of Hyaluronidase in Plastic Surgery: A Review. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 1610–1614. [Google Scholar] [CrossRef]
- Hering, A.; Stefanowicz-Hajduk, J.; Gucwa, M.; Wielgomas, B.; Ochocka, J.R. Photoprotection and Antiaging Activity of Extracts from Honeybush (Cyclopia sp.)—In Vitro Wound Healing and Inhibition of the Skin Extracellular Matrix Enzymes: Tyrosinase, Collagenase, Elastase and Hyaluronidase. Pharmaceutics 2023, 15, 1542. [Google Scholar] [CrossRef]
- Meszaros, M.; Kis, A.; Kunos, L.; Tarnoki, A.D.; Tarnoki, D.L.; Lazar, Z.; Bikov, A. The Role of Hyaluronic Acid and Hyaluronidase-1 in Obstructive Sleep Apnoea. Sci. Rep. 2020, 10, 19484. [Google Scholar] [CrossRef] [PubMed]
- Dovedytis, M.; Liu, Z.J.; Bartlett, S. Hyaluronic Acid and Its Biomedical Applications: A Review. Eng. Regen. 2020, 1, 102–113. [Google Scholar] [CrossRef]
- Kawano, Y.; Patrulea, V.; Sublet, E.; Borchard, G.; Iyoda, T.; Kageyama, R.; Morita, A.; Seino, S.; Yoshida, H.; Jordan, O.; et al. Wound Healing Promotion by Hyaluronic Acid: Effect of Molecular Weight on Gene Expression and In Vivo Wound Closure. Pharmaceuticals 2021, 14, 301. [Google Scholar] [CrossRef]
- Mainka, M.; Czerwińska, M.E.; Osińska, E.; Ziaja, M.; Bazylko, A. Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland. Antioxidants 2021, 10, 698. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, X.; Li, B.; Yue, R. Fast and Efficient Identification of Hyaluronidase Specific Inhibitors from Chrysanthemum morifolium Ramat. Using UF-LC-MS Technique and Their Anti-Inflammation Effect in Macrophages. Heliyon 2023, 9, e13709. [Google Scholar] [CrossRef] [PubMed]
- Skowrońska, W.; Granica, S.; Piwowarski, J.P.; Jakupović, L.; Zovko Končić, M.; Bazylko, A. Wound Healing Potential of Extract from Sambucus nigra L. Leaves and Its Fractions. J. Ethnopharmacol. 2024, 320, 117423. [Google Scholar] [CrossRef] [PubMed]
- Frontiers. Chlorogenic Acid: A Review on Its Mechanisms of Anti-Inflammation, Disease Treatment, and Related Delivery Systems. Available online: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1218015/full (accessed on 15 April 2024).
- Al-Ghanayem, A.A.; Alhussaini, M.S.; Alyahya, A.A.I.; Asad, M.; Joseph, B. Wound Healing Activity of Chlorogenic Acid in Diabetic Rats Is Mediated Through Antibacterial, Antioxidant, and Proliferative Effects. Online J. Biol. Sci. 2024, 24, 255–262. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Hou, Y.; He, W.; Wang, X.; Zhang, D.; Hu, J. Self-Assembly of Chlorogenic Acid into Hydrogel for Accelerating Wound Healing. Colloids Surf. B Biointerfaces 2023, 228, 113440. [Google Scholar] [CrossRef]
- Bagdas, D.; Etoz, B.C.; Gul, Z.; Ziyanok, S.; Inan, S.; Turacozen, O.; Gul, N.Y.; Topal, A.; Cinkilic, N.; Tas, S.; et al. In Vivo Systemic Chlorogenic Acid Therapy under Diabetic Conditions: Wound Healing Effects and Cytotoxicity/Genotoxicity Profile. Food Chem. Toxicol. 2015, 81, 54–61. [Google Scholar] [CrossRef]
- Chen, W.-C.; Liou, S.-S.; Tzeng, T.-F.; Lee, S.-L.; Liu, I.-M. Effect of Topical Application of Chlorogenic Acid on Excision Wound Healing in Rats. Planta Med. 2013, 79, 616–621. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Bulicz, M.; Henkel, M.; Rosiak, N.; Paczkowska-Walendowska, M.; Szwajgier, D.; Baranowska-Wójcik, E.; Korybalska, K.; Cielecka-Piontek, J. Pleiotropic Potential of Evernia Prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Molecules 2023, 29, 233. [Google Scholar] [CrossRef] [PubMed]
- Studzińska-Sroka, E.; Galanty, A.; Gościniak, A.; Wieczorek, M.; Kłaput, M.; Dudek-Makuch, M.; Cielecka-Piontek, J. Herbal Infusions as a Valuable Functional Food. Nutrients 2021, 13, 4051. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Miklaszewski, A.; Cielecka-Piontek, J. Improving Solubility and Permeability of Hesperidin through Electrospun Orange-Peel-Extract-Loaded Nanofibers. Int. J. Mol. Sci. 2023, 24, 7963. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.S.; Brizola, V.R.A.; Granato, D. High-Throughput Assay Comparison and Standardization for Metal Chelating Capacity Screening: A Proposal and Application. Food Chem. 2017, 214, 515–522. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Koumentakou, I.; Lazaridou, M.; Bikiaris, D.; Miklaszewski, A.; Plech, T.; Cielecka-Piontek, J. 3D-Printed Chitosan-Based Scaffolds with Scutellariae baicalensis Extract for Dental Applications. Pharmaceutics 2024, 16, 359. [Google Scholar] [CrossRef]
TPC | TFC | Chlorogenic Acid Content | Quercetin Content | |||||
---|---|---|---|---|---|---|---|---|
Extract No. | mg GAE/g | SD | mg QE/g | SD | mg/g | SD | mg/g | SD |
1 | 44.69 e,f,g | 1.02 | 7.55 e,f,g | 0.39 | 17.55 j | 0.57 | 0.51 e | 0.05 |
2 | 61.85 a | 1.18 | 7.51 e,f,g | 0.43 | 16.76 k | 0.67 | 0.78 b | 0.08 |
3 | 41.74 g | 2.31 | 7.74 d,e,f | 0.64 | 20.22 g | 0.20 | 0.22 g | 0.03 |
4 | 46.13 e,f | 1.14 | 7.06 f,g,h | 0.50 | 12.75 ł | 0.27 | 0.26 g | 0.02 |
5 | 41.36 g | 1.31 | 9.05 b | 0.57 | 18.28 i,j | 0.28 | 0.60 d | 0.06 |
6 | 48.09 d,e | 0.98 | 6.74 h | 0.50 | 13.35 l,ł | 0.33 | 0.93 a | 0.03 |
7 | 52.32 b,c,d | 0.96 | 10.35 a | 0.64 | 27.49 b | 0.43 | 0.27 g | 0.02 |
8 | 54.94 b,c | 3.71 | 10.79 a | 0.59 | 19.52 g,h | 0.59 | 0.39 f | 0.03 |
9 | 51.42 c,d | 0.90 | 8.08 c,d,e | 0.42 | 26.93 b | 0.69 | 0.23 g | 0.02 |
10 | 56.14 b | 1.47 | 7.06 f,g,h | 0.41 | 23.07 e | 0.30 | 0.34 f | 0.03 |
11 | 46.13 e,f | 1.59 | 8.26 c,d | 0.34 | 13.89 l | 0.38 | 0.16 h | 0.02 |
12 | 51.24 c,d | 3.09 | 10.15 | 0.38 | 19.66 g,h | 0.66 | 0.69 c | 0.06 |
13 | 53.92 b,c | 0.91 | 7.07 g,h | 0.74 | 24.04 d | 0.40 | 0.36 f | 0.03 |
14 | 50.77 c,d | 2.65 | 5.67 i | 0.63 | 21.96 f | 0.69 | 0.37 f | 0.03 |
15 | 52.74 b,c | 1.57 | 6.05 i | 0.50 | 27.34 b | 0.37 | 0.10 h,i,j | 0.01 |
16 | 51.84 b,c,d | 2.55 | 5.66 i | 0.22 | 27.50 b | 0.57 | 0.12 h,i,j | 0.01 |
17 | 46.09 e,f | 3.48 | 6.79 h | 0.50 | 27.72 b | 0.27 | 0.15 h,i | 0.01 |
18 | 41.38 g | 1.52 | 5.52 i | 0.55 | 19.12 h | 0.29 | 0.14 h,i,j | 0.01 |
19 | 62.53 a | 2.56 | 10.40 a | 0.84 | 34.15 a | 0.24 | 0.08 j | 0.01 |
20 | 60.60 a | 4.27 | 10.44 a | 0.60 | 27.23 b | 0.27 | 0.09 i,j | 0.01 |
21 | 41.74 g | 1.67 | 8.02 c,d,e | 0.47 | 19.49 g,h | 0.39 | 0.25 g | 0.02 |
22 | 42.84 f,g | 0.91 | 8.52 b,c | 0.42 | 18.83 h,i | 0.38 | 0.27 g | 0.02 |
23 | 50.79 c,d | 4.75 | 8.34 c,d | 0.43 | 25.87 c | 0.58 | 0.81 b | 0.06 |
24 | 52.50 b,c | 2.25 | 7.20 f,g,h | 0.41 | 25.64 c | 0.46 | 0.90 a | 0.06 |
CUPRAC | Cu(II) Chelating | DPPH | ||||
---|---|---|---|---|---|---|
Extract No. | IC0.5 [mg/mL] | SD | IC50 [mg/mL] | SD | IC50 [mg/mL] | SD |
1 | 0.35 a | 0.02 | 2.58 a | 0.28 | 0.94 a | 0.04 |
2 | 0.63 b | 0.03 | 4.82 h,i | 0.14 | 1.88 b,c | 0.04 |
3 | 1.21 n | 0.09 | 4.00 f,g | 0.17 | 3.05 j | 0.06 |
4 | 0.97 k | 0.03 | 3.88 e,f | 0.32 | 2.48 f,g | 0.06 |
5 | 0.89 h,i | 0.05 | 3.82 d,e,f | 0.27 | 2.68 g,h,i | 0.14 |
6 | 0.82 f | 0.03 | 4.77 h,i | 0.66 | 2.48 f,g | 0.13 |
7 | 0.69 c | 0.02 | 3.38 b,c,d | 0.34 | 2.05 c,d | 0.13 |
8 | 0.72 c,d | 0.02 | 3.94 e,f,g | 0.19 | 2.20 d,e | 0.08 |
9 | 0.83 f,g | 0.01 | 2.70 a | 0.34 | 2.47 f,g | 0.15 |
10 | 0.72 c,d | 0.02 | 3.75 c,d,e,f | 0.28 | 1.94 b,c | 0.11 |
11 | 0.91 i,j | 0.01 | 3.15 b | 0.24 | 2.47 f,g | 0.05 |
12 | 0.95 j,k | 0.06 | 4.35 g,h | 0.20 | 2.39 e,f | 0.10 |
13 | 0.84 f,g,h | 0.02 | 3.68 c,d,e,f | 0.31 | 2.09 c,d | 0.06 |
14 | 1.00 k,l | 0.01 | 3.84 d,e,f | 0.22 | 2.72 h,i | 0.22 |
15 | 0.95 j,k | 0.03 | 3.23 b,c | 0.25 | 2.55 f,g,h | 0.24 |
16 | 0.95 j,k | 0.03 | 4.88 i | 0.40 | 2.36 e,f | 0.27 |
17 | 1.08 m | 0.02 | 3.47 b,c,d,e | 0.32 | 2.83 j | 0.24 |
18 | 1.29 o | 0.04 | 4.56 h,i | 0.07 | 3.04 i | 0.08 |
19 | 0.76 d,e | 0.02 | 3.92 e,f,g | 0.47 | 1.82 b | 0.09 |
20 | 0.81 e,f | 0.02 | 4.46 h,i | 0.11 | 1.95 b,c | 0.04 |
21 | 1.21 n | 0.07 | 3.89 e,f,g | 0.28 | 3.06 j | 0.11 |
22 | 1.04 l,m | 0.02 | 5.36 j | 0.18 | 2.44 f | 0.17 |
23 | 0.88 g,h,i | 0.02 | 4.79 h,i | 0.19 | 2.19 d,e | 0.12 |
24 | 0.75 d | 0.01 | 6.44 k | 0.21 | 1.91 b,c | 0.12 |
Tyrosinase Inhibition | Hyaluronidase Inhibition | |||
---|---|---|---|---|
Extract No. | [%] | SD | [%] | SD |
1 | 34.9 k | 2.77 | 19.27 c | 1.76 |
2 | 65.22 b | 4.13 | 41.28 a | 0.41 |
3 | 56.71 c,d,e | 3.07 | 15.11 c,d | 3.67 |
4 | 63.71 b,c | 3.13 | 11.95 d,e,f,g | 0.95 |
5 | 35.82 k | 2.96 | 2.31 h | 0.34 |
6 | 61.56 b,c,d | 6.51 | 7.69 g | 0.96 |
7 | 40.45 i,j,k | 3.33 | 12.59 d,e,f | 5.76 |
8 | 38.77 j,k | 5.93 | 33.36 b | 2.51 |
9 | 34.14 k | 4.69 | 18.29 c | 3.40 |
10 | 48.20 f,g,h | 5.08 | 8.14 f,g | 5.24 |
11 | 65.41 b | 3.23 | 3.28 h | 4.32 |
12 | 55.09 d,e,f | 4.09 | 1.57 h | 0.46 |
13 | 46.94 g,h,i | 2.4 | 3.17 h | 1.41 |
14 | 80.33 a | 0.57 | 9.73 e,f,g | 3.24 |
15 | 43.54 h,i,j | 3.33 | 10.07 e,f,g | 3.08 |
16 | 66.45 b | 6.06 | 18.53 c | 2.92 |
17 | 65.06 b | 1.96 | 13.44 d,e | 3.61 |
18 | 75.98 a | 2.04 | 11.41 d,e,f,g | 3.77 |
19 | 53.51 e,f,g | 3.24 | 2.47 h | 1.10 |
20 | 82.59 a | 1.03 | 3.09 h | 1.87 |
21 | 44.43 h,i,j | 4.23 | 0.00 h | 0.00 |
22 | 66.07 b | 3.62 | 0.00 h | 0.00 |
23 | 59.07 b,c,d,e | 7.77 | 1.88 h | 0.72 |
24 | 59.23 b,c,d,e | 3.01 | 8.00 f,g | 2.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Studzińska-Sroka, E.; Paczkowska-Walendowska, M.; Woźna, Z.; Plech, T.; Szulc, P.; Cielecka-Piontek, J. Elderberry Leaves with Antioxidant and Anti-Inflammatory Properties as a Valuable Plant Material for Wound Healing. Pharmaceuticals 2024, 17, 618. https://doi.org/10.3390/ph17050618
Studzińska-Sroka E, Paczkowska-Walendowska M, Woźna Z, Plech T, Szulc P, Cielecka-Piontek J. Elderberry Leaves with Antioxidant and Anti-Inflammatory Properties as a Valuable Plant Material for Wound Healing. Pharmaceuticals. 2024; 17(5):618. https://doi.org/10.3390/ph17050618
Chicago/Turabian StyleStudzińska-Sroka, Elżbieta, Magdalena Paczkowska-Walendowska, Zuzanna Woźna, Tomasz Plech, Piotr Szulc, and Judyta Cielecka-Piontek. 2024. "Elderberry Leaves with Antioxidant and Anti-Inflammatory Properties as a Valuable Plant Material for Wound Healing" Pharmaceuticals 17, no. 5: 618. https://doi.org/10.3390/ph17050618
APA StyleStudzińska-Sroka, E., Paczkowska-Walendowska, M., Woźna, Z., Plech, T., Szulc, P., & Cielecka-Piontek, J. (2024). Elderberry Leaves with Antioxidant and Anti-Inflammatory Properties as a Valuable Plant Material for Wound Healing. Pharmaceuticals, 17(5), 618. https://doi.org/10.3390/ph17050618