Protective Effects of Dietary Vitamin D3, Turmeric Powder, and Their Combination against Gasoline Intoxication in Rats
Abstract
:1. Introduction
2. Results
2.1. Changes in the Body Weight of Rats Supplemented with Vitamin D3, Turmeric Powder, or Their Combination, with and without Exposure to Gasoline Vapors
2.2. Macroscopical and Histological Features of the Lungs, Liver, Kidneys, and Spleen of Rats Supplemented with Vitamin D3, Turmeric Powder, or Their Combination, with and without Exposure to Gasoline Vapors
2.2.1. Macroscopical Analysis
2.2.2. Histological Analysis
2.3. Blood Chemistry Analysis of Rats Supplemented with Vitamin D3, Turmeric Powder, or Their Combination, with and without Exposure to Gasoline Vapors
2.4. Hematological Analysis of Rats Supplemented with Vitamin D3, Turmeric Powder, or Their Combination, with and without Exposure to Gasoline Vapors
3. Discussion
4. Materials and Methods
4.1. Experimental Rats
4.2. Experimental Protocols and Sample Collection
- Gr.1—Control: untreated.
- Gr.2—D3: oral vitamin D3 in a liquid form (Detrimax® Baby, Curtis Health Caps, Przeźmierowo, Poland) at a daily dose of 750 IU/kg.
- Gr.3—TUR: turmeric root powder (Kevala International LLC, Dallas, TX, USA) mixed with standard diet at 0.5% (w/w).
- Gr.4—D3 + TUR: oral vitamin D3 and dietary turmeric powder.
- Gr.5—GV: exposure to GV (11.5 ± 1.3 cm3/h/m3/day).
- Gr.6—GV + D3: exposure to GV and oral vitamin D3.
- Gr.7—GV + TUR: exposure to GV and dietary turmeric powder.
- Gr.8—GV + D3 + TUR: exposure to GV, oral vitamin D3, and dietary turmeric powder.
4.3. Phytochemical Analysis of Turmeric Root Powder
4.3.1. Extraction and HPLC Analysis of Curcuminoids
4.3.2. Quantitative Determination of Phytochemical Constituents of Turmeric Powder
4.4. Exposure to Gasoline Vapor
4.5. Histopathological Analysis
4.6. Blood Chemistry Analysis
4.7. Hematological Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahimi Moghadam, S.; Afshari, M.; Moosazadeh, M.; Khanjani, N.; Ganjali, A. The effect of occupational exposure to petrol on pulmonary function parameters: A review and meta-analysis. Rev. Environ. Health 2019, 34, 377–390. [Google Scholar] [CrossRef]
- Cairney, S.; Maruff, P.; Burns, C.B.; Currie, J.; Currie, B.J. Saccade dysfunction associated with chronic petrol sniffing and lead encephalopathy. J. Neurol. Neurosurg. Psychiatry 2004, 75, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Teklu, G.; Negash, M.; Asefaw, T.; Tesfay, F.; Gebremariam, G.; Teklehaimanot, G.; Wolde, M.; Tsegaye, A. Effect of Gasoline Exposure on Hematological Parameters of Gas Station Workers in Mekelle City, Tigray Region, Northern Ethiopia. J. Blood Med. 2021, 12, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Uboh, F.E.; Eteng, M.U.; Ebong, P.E.; Umoh, I.B. Vitamins A and E reverse gasoline vapors-induced hematotoxicity and weight loss in female rats. Toxicol. Ind. Health 2010, 26, 559–566. [Google Scholar] [CrossRef]
- Warden, H.; Richardson, H.; Richardson, L.; Siemiatycki, J.; Ho, V. Associations between occupational exposure to benzene, toluene and xylene and risk of lung cancer in Montréal. Occup. Environ. Med. 2018, 75, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Enterline, P.E. Review of new evidence regarding the relationship of gasoline exposure to kidney cancer and leukemia. Environ. Health Perspect. 1993, 101 (Suppl. 6), 101–103. [Google Scholar] [CrossRef]
- Hadkhale, K.; Martinsen, J.I.; Weiderpass, E.; Kjaerheim, K.; Sparen, P.; Tryggvadottir, L.; Lynge, E.; Pukkala, E. Occupational exposure to solvents and bladder cancer: A population-based case control study in Nordic countries. Int. J. Cancer 2017, 140, 1736–1746. [Google Scholar] [CrossRef]
- Talbott, E.O.; Xu, X.; Youk, A.O.; Rager, J.R.; Stragand, J.A.; Malek, A.M. Risk of leukemia as a result of community exposure to gasoline vapors: A follow-up study. Environ. Res. 2011, 111, 597–602. [Google Scholar] [CrossRef]
- Abdrabouh, A.E. Liver disorders related to exposure to gasoline fumes in male rats and role of fenugreek seed supplementation. Environ. Sci. Pollut. Res. Int. 2019, 26, 8949–8957. [Google Scholar] [CrossRef]
- Abdrabouh, A.E. Inflammatory and proapoptotic effects of inhaling gasoline fumes on the lung and ameliorative effects of fenugreek seeds. Sci. Rep. 2022, 12, 14446. [Google Scholar] [CrossRef]
- Elsayed, A.S.I. DNA fragmentation and apoptosis caused by gasoline inhalation, and the protective role of green tea and curcumin. Pyrex J. Bio. Res. 2015, 1, 68–73. [Google Scholar]
- El-Mansy, A.A.; Mazroa, S.A.; Hamed, W.S.; Yaseen, A.H.; El-Mohandes, E.A. Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity. Biotech. Histochem. 2016, 91, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Serairi Beji, R.; Ben Mansour, R.; Bettaieb Rebey, I.; Aidi Wannes, W.; Jameleddine, S.; Hammami, M.; Megdiche, W.; Ksouri, R. Does Curcuma longa root powder have an effect against CCl4-induced hepatotoxicity in rats: A protective and curative approach. Food Sci. Biotechnol. 2019, 28, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Ademiluyi, A.O.; Oboh, G.; Ogunsuyi, O.B.; Akinyemi, A.J. Attenuation of gentamycin-induced nephrotoxicity in rats by dietary inclusion of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes. Nutr. Health 2012, 21, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Oluwafemi, A.G.; Ajayi, O.B.; Aluko, B.T. Defensive potential and deleterious impact of turmeric (Curcuma longa) L rhizome powder supplemented diet on antioxidant status of indomethacin-induced ulcerated wistar rats. J. Food Biochem. 2022, 46, e14019. [Google Scholar] [CrossRef]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef] [PubMed]
- Zittermann, A.; Frisch, S.; Berthold, H.K.; Götting, C.; Kuhn, J.; Kleesiek, K.; Stehle, P.; Koertke, H.; Koerfer, R. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am. J. Clin. Nutr. 2009, 89, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- von Hurst, P.R.; Stonehouse, W.; Coad, J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—A randomised, placebo-controlled trial. Br. J. Nutr. 2010, 103, 549–555. [Google Scholar] [CrossRef]
- Ismailova, A.; White, J.H. Vitamin D, infections and immunity. Rev. Endocr. Metab. Disord. 2022, 23, 265–277. [Google Scholar] [CrossRef]
- Uboh, F.E.; Ebong, P.E.; Umoh, I.B. Comparative hepatoprotective effect of vitamins A and E against gasoline vapor toxicity in male and female rats. Gastroenterol. Res. 2009, 2, 295–302. [Google Scholar] [CrossRef]
- Uboh, F.E.; Ebong, P.E.; Akpan, H.D.; Usoh, I.F. Hepatoprotective effect of vitamins C and E against gasoline vapor-induced liver injury in male rats. Turk. J. Biol. 2012, 36, 217–223. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K.; Genuis, S.J. Vitamin D, essential minerals, and toxic elements: Exploring interactions between nutrients and toxicants in clinical medicine. Sci. World J. 2015, 2015, 318595. [Google Scholar] [CrossRef] [PubMed]
- Almasmoum, H.; Refaat, B.; Ghaith, M.M.; Almaimani, R.A.; Idris, S.; Ahmad, J.; Abdelghany, A.H.; BaSalamah, M.A.; El-Boshy, M. Protective effect of Vitamin D3 against lead induced hepatotoxicity, oxidative stress, immunosuppressive and calcium homeostasis disorders in rat. Environ. Toxicol. Pharmacol. 2019, 72, 103246. [Google Scholar] [CrossRef]
- BaSalamah, M.A.; Abdelghany, A.H.; El-Boshy, M.; Ahmad, J.; Idris, S.; Refaat, B. Vitamin D alleviates lead induced renal and testicular injuries by immunomodulatory and antioxidant mechanisms in rats. Sci. Rep. 2018, 8, 4853. [Google Scholar] [CrossRef]
- El-Boshy, M.; Refaat, B.; Almaimani, R.A.; Abdelghany, A.H.; Ahmad, J.; Idris, S.; Almasmoum, H.; Mahbub, A.A.; Ghaith, M.M.; BaSalamah, M.A. Vitamin D3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and antiinflammatory actions by remodeling cellular calcium pathways. J. Biochem. Mol. Toxicol. 2020, 34, e22440. [Google Scholar] [CrossRef]
- Elmubarak, S.; Özsoy, N. Histoprotective effect of vitamin D against carbon tetrachloride nephrotoxicity in rats. Hum. Exp. Toxicol. 2016, 35, 713–723. [Google Scholar] [CrossRef]
- El-Boshy, M.; BaSalamah, M.A.; Ahmad, J.; Idris, S.; Mahbub, A.; Abdelghany, A.H.; Almaimani, R.A.; Almasmoum, H.; Ghaith, M.M.; Elzubier, M.; et al. Vitamin D protects against oxidative stress, inflammation and hepatorenal damage induced by acute paracetamol toxicity in rat. Free Radic. Biol. Med. 2019, 141, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xiang, C.; Ye, M.; Li, H.F.; Zhang, X.; Guo, D.A. Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from Curcuma species. Food Chem. 2011, 126, 1890–1895. [Google Scholar] [CrossRef]
- Grover, M.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Virmani, T.; Rachamalla, M.; Farasani, A.; Chigurupati, S.; Alsubayiel, A.M.; et al. In Vitro Phytochemical Screening, Cytotoxicity Studies of Curcuma longa Extracts with Isolation and Characterisation of Their Isolated Compounds. Molecules 2021, 26, 7509. [Google Scholar] [CrossRef]
- Sharma, M.; Monika; Thakur, P.; Saini, R.V.; Kumar, R.; Torino, E. Unveiling antimicrobial and anticancerous behavior of AuNPs and AgNPs moderated by rhizome extracts of Curcuma longa from diverse altitudes of Himalaya. Sci. Rep. 2020, 10, 10934. [Google Scholar] [CrossRef]
- Horev, L.; Ramot, Y.; Klapholz, L. Yellow feet in a patient with breast and thyroid carcinoma, due to oral intake of turmeric. Drug Saf. Case Rep. 2015, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Nm, J.; Joseph, A.; Maliakel, B.; Im, K. Dietary addition of a standardized extract of turmeric (TurmaFEEDTM) improves growth performance and carcass quality of broilers. J. Anim. Sci. Technol. 2018, 60, 8. [Google Scholar] [CrossRef]
- White, D.; Lawson, N.; Masters, P.; McLaughlin, D. Clinical Chemistry, 1st ed.; Garland Science, Taylor & Francis Group, LLC.: New York, NY, USA; Abingdon, UK, 2017; pp. 1–551. [Google Scholar]
- Santa, K.; Watanabe, K.; Kumazawa, Y.; Nagaoka, I. Phytochemicals and Vitamin D for a Healthy Life and Prevention of Diseases. Int. J. Mol. Sci. 2023, 24, 12167. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, Z.; Slominski, A.T.; Li, W.; Żmijewski, M.A.; Liu, Y. Vitamin D and its analogs as anticancer and antiinflammatory agents. Eur. J. Med. Chem. 2020, 207, 112738. [Google Scholar] [CrossRef]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Yang, T.; Korma, S.A.; Sitohy, M.; Abd El-Mageed, T.A.; Selim, S.; Al Jaouni, S.K.; Salem, H.M.; Mahmmod, Y.; Soliman, S.M.; et al. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front. Nutr. 2022, 9, 1040259. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, K.; Drużga, A.; Katarzyna, J.; Skonieczna-Żydecka, K. Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials. Antioxidants 2020, 9, 1092. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.L.G.; Passos, D.F.; Bernardes, V.M.; Cabral, F.L.; Schimites, P.G.; Manzoni, A.G.; de Oliveira, E.G.; de Bona da Silva, C.; Beck, R.C.R.; Jantsch, M.H.; et al. Co-Nanoencapsulation of Vitamin D3 and Curcumin Regulates Inflammation and Purine Metabolism in a Model of Arthritis. Inflammation 2019, 42, 1595–1610. [Google Scholar] [CrossRef] [PubMed]
- Hemshekhar, M.; Anaparti, V.; El-Gabalawy, H.; Mookherjee, N. A bioavailable form of curcumin, in combination with vitamin-D- and omega-3-enriched diet, modifies disease onset and outcomes in a murine model of collagen-induced arthritis. Arthritis Res. Ther. 2021, 23, 39. [Google Scholar] [CrossRef]
- Muz, O.E.; Orhan, C.; Erten, F.; Tuzcu, M.; Ozercan, I.H.; Singh, P.; Morde, A.; Padigaru, M.; Rai, D.; Sahin, K. A Novel Integrated Active Herbal Formulation Ameliorates Dry Eye Syndrome by Inhibiting Inflammation and Oxidative Stress and Enhancing Glycosylated Phosphoproteins in Rats. Pharmaceuticals 2020, 13, 295. [Google Scholar] [CrossRef]
- Attia, Y.M.; El-Kersh, D.M.; Ammar, R.A.; Adel, A.; Khalil, A.; Walid, H.; Eskander, K.; Hamdy, M.; Reda, N.; Mohsen, N.E.; et al. Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chem. Biol. Interact. 2020, 315, 108865. [Google Scholar] [CrossRef] [PubMed]
- García-Quiroz, J.; García-Becerra, R.; Santos-Cuevas, C.; Ramírez-Nava, G.J.; Morales-Guadarrama, G.; Cárdenas-Ochoa, N.; Segovia-Mendoza, M.; Prado-Garcia, H.; Ordaz-Rosado, D.; Avila, E.; et al. Synergistic antitumorigenic activity of calcitriol with curcumin or resveratrol is mediated by angiogenesis inhibition in triple negative breast cancer xenografts. Cancers 2019, 11, 1739. [Google Scholar] [CrossRef] [PubMed]
- Danilenko, M.; Wang, Q.; Wang, X.; Levy, J.; Sharoni, Y.; Studzinski, G.P. Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha,25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Res. 2003, 63, 1325–1332. [Google Scholar] [PubMed]
- Wang, Q.; Salman, H.; Danilenko, M.; Studzinski, G.P. Cooperation between antioxidants and 1,25-dihydroxyvitamin D3 in induction of leukemia HL60 cell differentiation through the JNK/AP-1/Egr-1 pathway. J. Cell. Physiol. 2005, 204, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Aggeli, I.K.; Koustas, E.; Gaitanaki, C.; Beis, I. Curcumin acts as a prooxidant inducing apoptosis via JNKs in the isolated perfused Rana ridibunda heart. J. Exp. Zool. A Ecol. Genet. Physiol. 2013, 319, 328–339. [Google Scholar] [CrossRef]
- Wolnicka-Glubisz, A.; Wisniewska-Becker, A. Dual Action of Curcumin as an Anti- and Prooxidant from a Biophysical Perspective. Antioxidants 2023, 12, 1725. [Google Scholar] [CrossRef]
- Chobot, V.; Hadacek, F. Exploration of prooxidant and antioxidant activities of the flavonoid myricetin. Redox Rep. 2011, 16, 242–247. [Google Scholar] [CrossRef]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef]
- Labieniec, M.; Gabryelak, T.; Falcioni, G. Antioxidant and prooxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus. Mutat. Res. 2003, 539, 19–28. [Google Scholar] [CrossRef]
- Khan, N.S.; Ahmad, A.; Hadi, S.M. Antioxidant, prooxidant properties of tannic acid and its binding to DNA. Chem. Biol. Interact. 2000, 125, 177–189. [Google Scholar] [CrossRef]
- Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 1994, 330, 1029–1035. [Google Scholar] [CrossRef]
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L.; Valanis, B.; Williams, J.H.; et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 1996, 334, 1150–1155. [Google Scholar] [CrossRef]
- Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Meyskens, F.L.; Omenn, G.S.; Valanis, B.; Williams, J.H. The Beta-Carotene and Retinol Efficacy Trial: Incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J. Natl. Cancer Inst. 2004, 96, 1743–1750. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Nikolova, D.; Gluud, L.L.; Simonetti, R.G.; Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. JAMA 2007, 297, 842–857. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Celeste, M.; Tomas, C.; Cladera, A.; Estela, J.M.; Cerda, V. Thermometric titration of polyhydric phenols. Application to the determination of the tannin content of wines. Analyst 1993, 118, 895–898. [Google Scholar] [CrossRef]
- Li, L.; Long, W.; Wan, X.; Ding, Q.; Zhang, F.; Wan, D. Studies on quantitative determination of total alkaloids and berberine in five origins of crude medicine “Sankezhen”. J. Chromatogr. Sci. 2015, 53, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S.; Lau, C.H.; Chew, C.Y.; Dawood, D.A.S. Solvent Fractionation and Acetone Precipitation for Crude Saponins from Eurycoma longifolia Extract. Molecules 2019, 24, 1416. [Google Scholar] [CrossRef] [PubMed]
Quantity 1 | Curcumin | DMC 2 | BDMC 3 | Total Flavonoids | Total Tannins | Total Alkaloids | Total Saponins |
---|---|---|---|---|---|---|---|
mg/g dry weight | 69.8 | 31.6 | 20.9 | 2.8 | 27.0 | 15.8 | 41.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yestemirova, G.A.; Yessimsiitova, Z.B.; Danilenko, M. Protective Effects of Dietary Vitamin D3, Turmeric Powder, and Their Combination against Gasoline Intoxication in Rats. Pharmaceuticals 2024, 17, 619. https://doi.org/10.3390/ph17050619
Yestemirova GA, Yessimsiitova ZB, Danilenko M. Protective Effects of Dietary Vitamin D3, Turmeric Powder, and Their Combination against Gasoline Intoxication in Rats. Pharmaceuticals. 2024; 17(5):619. https://doi.org/10.3390/ph17050619
Chicago/Turabian StyleYestemirova, Gulfira A., Zura B. Yessimsiitova, and Michael Danilenko. 2024. "Protective Effects of Dietary Vitamin D3, Turmeric Powder, and Their Combination against Gasoline Intoxication in Rats" Pharmaceuticals 17, no. 5: 619. https://doi.org/10.3390/ph17050619
APA StyleYestemirova, G. A., Yessimsiitova, Z. B., & Danilenko, M. (2024). Protective Effects of Dietary Vitamin D3, Turmeric Powder, and Their Combination against Gasoline Intoxication in Rats. Pharmaceuticals, 17(5), 619. https://doi.org/10.3390/ph17050619