Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water–Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria
Abstract
:1. Introduction
2. Results
2.1. Cytotoxic Activity of R. gallica L. and R. centifolia L. hydrosols
2.2. Anti-Cytotoxic Activity of R. gallica L. and R. centifolia L. hydrosols
2.3. Genotoxic Activity of R. centifolia L. and R. gallica L. hydrosols
2.4. Anti-Genotoxic Activity of R. centifolia L. and R. gallica L. hydrosols
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of R. gallica L. and R. centifolia L. hydrosols
4.3. Test Systems
4.3.1. Preparation of Plant Test System and Design of Treatment
4.3.2. Preparation of Human Lymphocytes In Vitro and Design of Treatment
4.4. Endpoints
4.4.1. For Cytotoxicity
4.4.2. For Genotoxicity
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karamalakova, Y.D.; Nikolova, G.D.; Kovacheva, N.; Zheleva, A.M.; Gadjeva, V.G. Study of the radical-scavenging activities and radioprotective properties of Bulgarian essential rose oil from Rosa damascena Mill. Bulg. Chem. Commun. 2019, 51, 101–107. [Google Scholar]
- Gateva, S.; Jovtchev, G.; Chanev, C.; Georgieva, A.; Stankov, A.; Dobreva, A.; Mileva, M. Assessment of anti-cytotoxic, anti-genotoxic and antioxidant potential of Bulgarian Rosa alba L. essential oil. Caryologia Int. J. Cytol. Cytosyst. Cytogenet. 2020, 73, 71–88. [Google Scholar]
- Garzoli, S.; Alarcón-Zapata, P.; Seitimova, G.; Alarcón-Zapata, B.; Martorell, M.; Sharopov, F.; Fokou, P.V.Y.; Dize, D.; Yamthe, L.R.T.; Les, F.; et al. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int. 2022, 22, 407. [Google Scholar] [CrossRef] [PubMed]
- Rasgele, P.C.; Altin, N. Characterization of Essential Oils from Medicinal Plants and Assessment of Their Antimutagenic Effects Using Ames Salmonella/Microsomal Test. C. R. Acad. Bulg. Sci. 2023, 76, 192–202. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Shafei, M.N.; Zahra Saberi, A.; Amini, S. Pharmacological Effects of Rosa damascena. Iran. J. Basic Med. Sci. 2011, 14, 295–307. [Google Scholar] [PubMed]
- Oyeyemi, I.T.; Yekeen, O.M.; Odusina, P.O.; Ologun, T.M. Genotoxicity and antigenotoxicity study of aqueous and hydro-methanol extracts of Spondias mombin L., Nymphaea lotus L. and Luffa cylindrical L. using animal bioassays. Interdiscip. Toxicol. 2015, 8, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Dormousoglou, M.; Efthimiou, I.; Antonopoulou, M.; Fetzer, D.L.; Hamerski, F.; Corazza, M.L.; Papadaki, M.; Santzouk, S.; Dailianis, S.; Vlastos, D. Investigation of the Genotoxic, Antigenotoxic and Antioxidant Profile of Different Extracts from Equisetum arvense L. Antioxidants 2022, 11, 1393. [Google Scholar] [CrossRef]
- Bernstein, H.; Crowley-Skillicorn, C.S.C.; Bernstein, C.; Payne, C.M.; Dvorak, K.; Garewal, H. Dietary compounds that enhance DNA repair and their relevance to cancer and aging. In New Research on DNA Repair; Landseer, B.R., Ed.; Nova Publishers: New York, NY, USA, 2007; pp. 99–113. ISBN 978-1-60021-385-4. [Google Scholar]
- Rusanov, K.; Kovatcheva, N.; Atanassov, A.; Atanassov, I. Microsatellite analysis of oil bearing roses which do not belong to the species Rosa damascena Mill. Bulg. J. Agr. Sci. 2005, 11, 1–9. [Google Scholar]
- Kovatcheva, N.; Zheljazkov, V.D.; Astatkie, T. Productivity, oil content, composition, and bioactivity of oil-bearing rose accessions. HortScience 2011, 46, 710–714. [Google Scholar] [CrossRef]
- Mahboubi, M. Rosa damascena as holy ancient herb with novel applications. J. Tradit. Complement. Med. 2016, 6, 10–16. [Google Scholar] [CrossRef]
- Dobreva, A.; Nedeva, D.; Mileva, M. Comparative Study of the Yield and Chemical Profile of Rose Oils and Hydrosols Obtained by Industrial Plantations of Oil-Bearing Roses in Bulgaria. Resources 2023, 12, 83. [Google Scholar] [CrossRef]
- Labadie, C.; Christian Ginies, C.; Guinebretiere, M.-H.; Catherine, M.G.C.; Renard, C.M.G.C.; Cerutti, C.; Carlin, F. Hydrosols of orange blossom (Citrus aurantium), and rose flower (Rosa damascena and Rosa centifolia) support the growth of a heterogeneous spoilage microbiota. Food Res. Int. 2015, 76, 576–586. [Google Scholar] [CrossRef]
- Price, L.; Price, S. Understanding hydrolats: The specific hydrosols for aromatherapy: A guide for health professionals. Churchill Livingstone. In A Guide for Health Professionals; Price, L., Price, S., Eds.; Elsevier: London, UK, 2004; ISBN 9780443073168. [Google Scholar]
- Ulusoy, S.; Boşgelmez-Tinaz, G.; Seçilmiş-Canbay, H. Tocopherol, carotene, phenolic contents, and antibacterial properties of rose essential oil, hydrosol and absolute. Curr. Microbiol. 2009, 59, 554–558. [Google Scholar] [CrossRef]
- Verma, S.R.; Padalia, C.R.; Chauhan, A. Chemical investigation of the volatile components of shade-dried petals of damask rose (Rosa damascena Mill.). Arch. Biol. Sci. 2011, 63, 1111–1115. [Google Scholar] [CrossRef]
- Moein, M.; Zarshenas, M.M.; Delnavaz, S. Chemical composition analysis of rose water samples from Iran. Pharm. Biol. 2014, 52, 1358–1361. [Google Scholar] [CrossRef]
- Andola, H.C.; Purohit, V.K.; Chauhan, R.S.; Arunachalam, K. Standardize quality standards for aromatic hydrosols. Med. Plants Int. J. Phytomed. Relat. Ind. 2014, 6, 161–162. [Google Scholar] [CrossRef]
- Georgieva, A.; Dobreva, A.; Tzvetanova, E.; Alexandrova, A.; Mileva, M. Comparative Study of Phytochemical Profiles and Antioxidant Properties of Hydrosols from Bulgarian Rosa alba L. and Rosa damascena Mill. J. Essent. Oil-Bear. Plants 2019, 22, 1362–1371. [Google Scholar] [CrossRef]
- Aćimović, M.G.; Tesevic, V.V.; Smiljanic, K.T.; Cvetkovic, M.T.; Stankovic, J.M.; Kiprovski, B.M.; Sikora, V.S. Hydrolates—By-products of essential oil distillation: Chemical composition, biological activity, and potential uses. Adv. Technol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- Biswas, N.R.; Gupta, S.K.; Das, G.K.; Kumar, N.; Mongre, P.K.; Haldar, D.; Beri, S. Evaluation of ophthacare eye drops—A herbal formulation in the management of various ophthalmic disorders. Phytother. Res. 2001, 15, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Jahangir, U.; Urooj, S.; Shah, A.; Ishaaq, M.; Habib, A. A Comparative Clinical Trial of Rose Petal (Gul Gulaab), Rose Hydrosol Diluted (ArqGulaab), and Rose Hydrosol (RuhGulaab) in Insomnia. Internet J. Neurol. 2008, 11, 1–7. [Google Scholar]
- Hosseini, M.; GhasemzadehRahbardar, M.; Sadeghnia, H.R.; Rakhshandeh, H. Effects of different extracts of Rosa damascena on pentylenetetrazol-induced seizures in mice. Zhong Xi Yi Jie He Xue Bao 2011, 9, 1118–1124. [Google Scholar] [CrossRef]
- Hamedi, A.; Afifi, M.; Etemadfard, H. Investigating Chemical Composition and Indications of Hydrosol Soft Drinks (Aromatic Waters) Used in Persian Folk Medicine for Women’s. Horm. Reprod. Health Cond. 2017, 22, 824–839. [Google Scholar]
- Maruyama, N.; Tansho-Nagakawa, S.; Miyazaki, C.; Shimomura, K.; Ono, Y.; Abe, S. Inhibition of Neutrophil Adhesion and Antimicrobial Activity by Diluted Hydrosol Prepared from Rosa damascena. Biol. Pharm. Bull. 2017, 40, 161–168. [Google Scholar] [CrossRef]
- Cendrowski, A.; Krasniewska, K.; Przybyl, J.L.; Zielinska, A.; Kalisz, S. Antibacterial and antioxidant activity of extracts from rose fruits (Rosa rugosa). Molecules 2020, 25, 1365. [Google Scholar] [CrossRef]
- Tursun, X.; Zhao, Y.; Alat, Z.; Xin, X.; Tursun, A.; Abdulla, R.; Aisa, H. An Anti-inflammatory effect of Rosa rugosa flower extract in lipopolysaccharide stimulated RAW264.7 macrophages. Biomol. Ther. 2016, 24, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, N.; Elizabath, G.S.; Joice, P.A.; Soumya, T.S. Effect of Rosa multiflora extract on chemical mutagens using Ames assay. Pharma Chem. 2010, 2, 91–97. [Google Scholar]
- Kumar, S.; Gautam, S.; Sharma, A. Identification of antimutagenic properties of anthocyanins and other polyphenols from rose (Rosa centifolia) petals and tea. J. Food Sci. 2013, 78, H948–H954. [Google Scholar] [CrossRef] [PubMed]
- Sankaranand, R. Evaluation of antitussive activity of Rosa centifolia. IJPSR 2011, 2, 1473–1475. [Google Scholar]
- Jitendra, J.; Vineeta, T.; Ashok, K.; Brijesh, K.; Singh, P. Rosa centifolia. Plant Review. Int. J. Res. Pharm. Chem. 2012, 2, 794–796. [Google Scholar]
- Archana, B.; Chandragopal, S.S.; Kumar, S. Evaluation of Anti-Inflammatory and Anti-Arthritic Activity of Rosa centifolia (Linn.) Flowers in Experimental Rats. Int. J. Pharm. Res. Sch. 2013, 2, 1–4. [Google Scholar]
- Kumar, R.; Nair, V.; Singh, S.; Gupta, Y.K. In vivo antiarthritic activity of Rosa centifolia L. flower extract. Ayu 2015, 36, 341–345. [Google Scholar] [PubMed]
- Valiakos, E.; Marselos, M.; Sakellaridis, N.; Constantinidis, T.; Skaltsa, H. Ethnopharmacological approach to the herbal medicines of the “Antidotes” in Nikolaos Myrepsos Dynameron. J. Ethnopharmacol. 2015, 163, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Hassanali, N. An Investigation of Antimicrobial Compounds for Immunomodulating and Anti-Adhesion Properties, Pakistan Research Repository. Ph.D. Thesis, University of Karachi, Karachi, Pakistan, 2003; 121p. [Google Scholar]
- Jadhav, N.; Kulkarni, S.; Mane, A.; Kulkarni, R.; Palshetker, A.; Singh, K.; Joshi, S.; Risbud, A.; Kulkarni, S. Antimicrobial activity of plant extracts against sexually transmitted pathogens. Nat. Prod. Res. 2015, 29, 1562–15626. [Google Scholar] [CrossRef] [PubMed]
- Palshetkar, A.; Pathare, N.; Jadhav, N.; Pawar, M.; Wadhwani, A.; Kulkarni, S.; Singh, K.K. In vitro anti-HIV activity of some Indian medicinal plant extracts. BMC Complement. Med. Ther. 2020, 20, 69. [Google Scholar] [CrossRef]
- Lee, M.H.; Nam, T.G.; Lee, I.; Shin, E.J.; Han, A.R.; Lee, P.; Lee, S.Y.; Lim, T.G. Skin anti-inflammatory activity of rose petal extract (Rosa gallica) through reduction of MAPK signaling pathway. Food Sci. Nutr. 2018, 6, 2560–2567. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.J.; Han, A.R.; Lee, M.H.; Song, Y.R.; Lee, K.M.; Nam, T.G.; Lee, P.; Lee, S.Y.; Lim, T.G. Extraction conditions for Rosa gallica petal extracts with anti-skin aging activities. Food Sci. Biotechnol. 2019, 28, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.R.; Lim, W.C.; Han, A.; Lee, M.H.; Shin, E.J.; Lee, K.M.; Nam, T.G.; Lim, T.G. Rose petal extract (Rosa gallica) exerts skin whitening and anti-skin wrinkle effects. J. Med. Food. 2020, 23, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Jung, Y.-S.; Cho, Y.-R.; Seo, J.-W.; Lim, W.-C.; Nam, T.-G.; Lim, T.-G.; Byun, S. Oral Administration of Rosa gallica Prevents UVB Induced Skin Aging through Targeting the cRaf Signaling Axis. Antioxidants 2021, 10, 1663. [Google Scholar] [CrossRef] [PubMed]
- Puladze, M.; Mulkijanyan, K.; Gogitidze, N.; Sulakvelidze, M.; Novikova, Z.; Mushkiashvili, N.; Getia, M.; Frédérich, M.; Mouithys-Mickalad, A.; Franck, T.; et al. Phytochemical and pharmacological study of Rosa × gallica L. Georgian cultivar essential oil production waste. GSC Biol. Pharm. Sci. 2022, 19, 213–222. [Google Scholar] [CrossRef]
- Abdelbaky, A.S.; Mohamed, A.M.H.A.; Alharthi, S.S. Antioxidant and Antimicrobial Evaluation and Chemical Investigation of Rosa gallica var. aegyptiaca Leaf Extracts. Molecules 2021, 26, 6498. [Google Scholar] [CrossRef]
- Lim, W.-C.; Choi, H.-K.; Kim, K.-T.; Lim, T.-G. Rose (Rosa gallica) Petal Extract Suppress Proliferation, Migration, and Invasion of Human Lung Adenocarcinoma A549 Cells through via the EGFR Signaling Pathway. Molecules 2020, 25, 5119. [Google Scholar] [CrossRef] [PubMed]
- Malar, S.K.; Saradha, M. Comparative Phytochemical Analysis and Mineral Profile of Rosa damascene and Rosa centifolia. Int. J. Pharm. Bio-Med. Sci. 2022, 2, 565–569. [Google Scholar]
- Dobreva, A.; Nedeltcheva-Antonova, D.; Nenov, N.; Getchovska, K.; Antonov, L. Subcritical Extracts from Major Species of Oil-Bearing Roses-A Comparative Chemical Profiling. Molecules 2021, 26, 4991. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Assessment Report on Rosa gallica L., Rosa centifolia L., Rosa damascene Mill., flos. 1 July 2014 EMA/HMPC/137298/2013 Committee on Herbal Medicinal Products (HMPC). Available online: https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-rosa-centifolia-l-rosa-gallica-lrosa-damascena-mill-flos_en.pdf (accessed on 9 February 2024).
- Carnesecchi, S.; Langley, K.; Exinger, F.; Gosse, F.; Raul, F. Geraniol, a component of plant essential oils, sensitizes human colonic cancer cells to 5-Fluorouracil treatment. J. Pharmacol. Exp. Ther. 2002, 301, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Gateva, S.; Jovtchev, G.; Stankov, A.; Georgieva, A.; Dobreva, A.; Mileva, M. The potential of geraniol to reduce cytotoxic and genotoxic effects of MNNG in plant and human lymphocyte test-systems. S. Afr. J. Bot. 2019, 123, 170–179. [Google Scholar] [CrossRef]
- Coêlho, M.L.; Islam, M.T.; Oliveira, G.L.S.; Barros de Alencar, M.V.O.; Santos, J.V.O.; dos Reis, A.C.; Ferreira da Mata, A.M.O.; Jardim Paz, M.F.C.; Docea, A.O.; Calina, D.; et al. Cytotoxic and Antioxidant Properties of Natural Bioactive Monoterpenes Nerol, Estragole, and 3,7-Dimethyl-1-Octanol. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 8002766. [Google Scholar] [CrossRef] [PubMed]
- Politi, M.; Ferrante, C.; Menghini, L.; Angelini, P.; Flores, G.A.; Muscatello, B.; Braca, A.; De Leo, M. Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. Plants 2022, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, M.E.; Ciocirlan, M.; Becheanu, G.; Nicolaie, T.; Ditescu, C.; Teiusanu, A.G.; Gologan, S.I.; Arbanas, T.; Diculescu, M.M. Nuclear Division Index May Predict Neoplastic Colorectal Lesions. Maedica 2011, 6, 173–178. [Google Scholar] [PubMed] [PubMed Central]
- Gerasimova, T.; Jovtchev, G.; Gateva, S.; Topashka-Ancheva, M.; Stankov, A.; Angelova, T.; Dobreva, A.; Mileva, M. Study on Cytotoxic and Genotoxic Potential of Bulgarian Rosa damascena Mill. and Rosa alba L. Hydrosols-In Vivo and In Vitro. Life 2022, 12, 1452. [Google Scholar] [CrossRef]
- Gateva, S.; Jovtchev, G.; Angelova, T.; Gerasimova, T.; Dobreva, A.; Mileva, M. Cytogenetic Studies on Genoprotective Effect of Rosa damascena Mill. Hydrosol in Plant and Lymphocyte Test Systems. Life 2023, 13, 1753. [Google Scholar] [CrossRef]
- Jovtchev, G.; Stankov, A.; Georgieva, A.; Dobreva, A.; Bakalova, R.; Aoki, I.; Mileva, M. Cytotoxic and genotoxic potential of Bulgarian Rosa alba L. essential oil—In vitro model study. Biotechnol. Biotechnol. Equip. 2018, 32, 513–519. [Google Scholar] [CrossRef]
- Silva, B.O.; Orlando, J.B.; Pires, C.L.; Hiruma-Lima, C.A.; Gaivão, I.M.; Perazzo, F.F.; Maistro, E.L. Genotoxicity induced by nerol, an essential oil present in citric plants using human peripheral blood mononuclear cells (PBMC) and HepG2/C3A cells as a model. J. Toxicol. Environ. Health Part A 2021, 84, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef] [PubMed]
- Roberto, D.; Micucci, P.; Sebastian, T.; Graciela, F.; Anesini, C. Antioxidant activity of limonene on normal murine lymphocytes: Relation to H2O2 modulation and cell proliferation. Basic Clin. Pharmacol. Toxicol. 2010, 106, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Aprotosoaie, A.C.; Hăncianu, M.; Costache, I.I.; Miron, A. Linalool: A review on a key odorant molecule with valuable biological properties. Flavour. Fragr. J. 2014, 29, 193–219. [Google Scholar] [CrossRef]
- Banu, F.; Dawood, N.; Lakshmi, S.Y.; Gopalakrishnan, S.; Brinda, V. Antioxidant Activity of Geraniol on n-Nitrosodiethylamine-induced Hepatocarcinogenesis in Wistar Albino Rats. Indian J. Oncol. Radiat. Biol. 2014, 2, 4–9. [Google Scholar]
- Prasad, S.N.; Muralidhara, M. Analysis of the Antioxidant Activity of Geraniol Employing Various In-Vitro Models: Relevance to Neurodegeneration in Diabetic Neuropathy. Asian J. Pharm. Clin. Res. 2017, 10, 101–105. [Google Scholar] [CrossRef]
- Ola, O.S.; Sofolahan, T.A. A monoterpene antioxidant, linalool, mitigates benzene-induced oxidative toxicities on hematology and liver of male rats. Egypt. J. Basic Appl. Sci. 2021, 8, 39–53. [Google Scholar] [CrossRef]
- Jayaraj, R.L.; Azimullah, S.; Parekh, K.A.; Ojha, S.K.; Beiram, R. Effect of citronellol on oxidative stress, neuroinflammation and autophagy pathways in an in vivo model of Parkinson’s disease. Heliyon 2022, 8, e11434. [Google Scholar] [CrossRef]
- Malik, M.N.H.; Tahir, M.N.; Alsahli, T.G.; Tusher, M.H.; Alzarea, S.I.; Alsuwayt, B.; Jahan, S.; Gomaa, H.A.M.; Shaker, M.E.; Ali, M.; et al. Geraniol Suppresses Oxidative Stress, Inflammation, and Interstitial Collagenase to Protect against Inflammatory Arthritis. ACS Omega 2023, 8, 37128–37139. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Mihai, C.T.; Vochita, C.; Rotinberg, P.; Trifan, A.; Luca, S.V.; Petreus, T.; Gille, E.; Miron, A. Antigenotoxic and antioxidant activities of a polyphenolic extract from European Dracocephalum moldavica L. Ind. Crops Prod. 2016, 79, 248–257. [Google Scholar] [CrossRef]
- Alzandi, A.A.; Taher, E.A.; Al-Sagheer, N.A.; Al-Khulaidi, A.W.; Azizi, M.; Nagui, D.M. Phytochemical components, antioxidant, and anticancer activity of 18 major medicinal plants in Albaha region, Saudi Arabia. Biocatal. Agric. Biotechnol. 2021, 34, 102020. [Google Scholar] [CrossRef]
- Black, K.A.; McFarland, R.D.; Grisham, J.W.; Smith, G.J. Cell cycle perturbation and cell death after exposure of a human lymphoblastoid cell strain to N-methyl N’-nitro-N-nitrosoguanidine. Am. J. Pathol. 1989, 134, 53–61. [Google Scholar] [PubMed]
- Quiros, S.; Roos, W.P.; Kaina, B. Processing of O6 -methylguanine into DNA double strand breaks requires two rounds of replication whereas apoptosis is also induced in subsequent cell cycles. Cell Cycle 2010, 9, 168–178. [Google Scholar] [CrossRef] [PubMed]
- IARC Monographs, Supplement; 1987; Volume 6, pp. 394–398.
- Abbott, P.J.; Saffhill, R. DNA synthesis with methylated poly(dC-dG) templates. Evidence for a competitive nature to miscoding by O6-methylguanine. Biochim. Biophys. Acta (BBA) Nucleic Acids Protein Synth. 1979, 562, 51–61. [Google Scholar] [CrossRef]
- Kondo, N.; Takahashi, A.; Ono, K.; Ohnishi, T. DNA Damage Induced by Alkylating Agents, and Repair Pathways. J. Nucleic Acids 2010, 19, 543531. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.-Y.; Ho, F.-M.; Shiah, S.-G.; Chang, Y.; Lin, W.-W. Oxidative stress initiates DNA damages MNNG-induced poly (ADP-ribose) polymerase-1-dependent parthanatos cell death. Biochem. Pharmacol. 2011, 81, 459–470. [Google Scholar] [CrossRef]
- Mondal, M.; Bala, J.; Mondal, K.R.; Afrin, S.; Saha, P.; Saha, M.; Jamaddar, S.; Roy, U.K.; Sarkar, C. The protective effects of nerol to prevent the toxicity of carbon tetrachloride to the liver in Sprague-Dawley rats. Heliyon 2023, 9, e23065. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R. Role of plant polyphenols in genomic stability. Mutat. Res. 2001, 475, 89–111. [Google Scholar] [CrossRef]
- Briskin, D.P. Medicinal plants and phytomedicines linking plant biochemistry and physiology to human health. Plant Physiol. 2000, 124, 507–514. [Google Scholar] [CrossRef]
- Künzel, G.; Nicoloff, H. Further results on karyotype reconstruction barley. Biol. Zentralbl. 1979, 98, 587–592. [Google Scholar]
- Jovtchev, G.; Stergios, M.; Schubert, I. A comparison of N-methyl-N-nitrosourea-induced chromatid aberrations and micronuclei in barley meristems using FISH techniques. Mutat. Res. Toxicol. Environ. Mutagen. 2002, 517, 47–51. [Google Scholar] [CrossRef]
- Evans, H. Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. In Handbook of Mutagenicity Test Procedures; Kilbey, B., Legator, M., Nicols, W., Ramel, C., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1984; pp. 405–427. [Google Scholar]
- Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef]
- Rieger, R.; Michaelis, A.; Schubert, I.; Döbel, P.; Jank, H.W. Non-random intrachromosomal distribution of chromatid aberrations induced by X-rays, alkylating agents and ethanol in Vicia faba. Mutat. Res. 1975, 27, 69–79. [Google Scholar] [CrossRef]
- Jovtchev, G.; Gateva, S.P.; Stergios, M.; Kulekova, S. Cytotoxic and genotoxic effects of paraquat in Hordeum vulgare and human lymphocytes in vitro. Environ. Toxicol. 2010, 25, 294–303. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gateva, S.; Jovtchev, G.; Angelova, T.; Gerasimova, T.; Dobreva, A.; Mileva, M. Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water–Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria. Pharmaceuticals 2024, 17, 657. https://doi.org/10.3390/ph17050657
Gateva S, Jovtchev G, Angelova T, Gerasimova T, Dobreva A, Mileva M. Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water–Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria. Pharmaceuticals. 2024; 17(5):657. https://doi.org/10.3390/ph17050657
Chicago/Turabian StyleGateva, Svetla, Gabriele Jovtchev, Tsveta Angelova, Tsvetelina Gerasimova, Ana Dobreva, and Milka Mileva. 2024. "Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water–Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria" Pharmaceuticals 17, no. 5: 657. https://doi.org/10.3390/ph17050657
APA StyleGateva, S., Jovtchev, G., Angelova, T., Gerasimova, T., Dobreva, A., & Mileva, M. (2024). Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water–Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria. Pharmaceuticals, 17(5), 657. https://doi.org/10.3390/ph17050657