Potential of Bitter Medicinal Plants: A Review of Flavor Physiology
Abstract
:1. Introduction
“Sweet taste enables the identification of energy-rich nutrients, umami enables the recognition of amino acids, salty taste ensures the proper balance of dietary electrolytes, and sour and bitter tastes warn about the ingestion of potentially harmful and/or poisonous chemicals. In humans, taste has the additional value of contributing to the overall pleasure and enjoyment of a meal. Surprisingly, although we can taste a wide range of chemical entities, it is now generally accepted that, qualitatively, they evoke few distinct taste sensations: sweet, bitter, sour, salty and umami. Although this repertoire may seem modest, it has satisfied the evolutionary need for an effective and reliable platform to help recognize and distinguish major dietary components.” [3] (p. 288)
2. The Sense of Taste and Flavor
3. The Taste System
4. The Physiology of Taste
- (a)
- Channel or ionotropic receptors. They are known by the acronym TRP, which stands for transient receptor potential. In turn, according to their molecular specificity, they are subclassified into different groups: TRPc, TRPm, TRPp, TRPv, among others [29].
- (b)
4.1. Channel or Ionotropic Receptors
4.2. G Protein-Coupled Receptors and G Protein
4.3. Taste in the Central Nervous System
5. The Bitter Taste
“The primitive function of this taste quality would seem to be to provoke the rejection of toxic substances.” [50]
“Bitter taste perception provides animals with critical protection against ingestion of poisonous compounds.” [45]
“Taste is a different matter, especially where bitter compounds are concerned. Virtually every naturally occurring toxin tastes bitter, ‘so bitterness clearly evolved with the sole purpose of warning you against the ingestion of toxic substances,’ says Zuker. The important thing is to recognize and reject anything bitter, not to get hung up on distinctions among different compounds. Indeed, experimental evidence indicates that humans are unable to discriminate one bitter substance from another.”[51]
“Bitter taste effectively warns us not to ingest potentially harmful compounds. One of the most interesting challenges in taste research is to understand how evolution shaped bitter taste receptors to accomplish this task.” [20]
“The universal character of the rejection provoked by intensely bitter molecules demonstrates the close connection between taste and disgust. Toxic compounds, such as strychnine and other alkaloids common among plants, often exhibit a strong bitter taste. In fact, many plants have evolved such compounds to protect themselves from herbivores. All animals generally reject substances with a sour or bitter taste.” [21]
“Human bitter taste receptors of the TAS2R gene family play a crucial role as warning sensors against the ingestion of toxic food compounds.” [52].
“In contrast to the sweet and umami taste, the bitter taste is a signal that prevents animals from ingesting toxic substances.” [53]
“Taste receptors are located on the epithelial surface throughout the alimentary canal to identify nutrients and potential toxins. In the oral cavity, the role of taste is to encourage or discourage ingestion.” [54]
6. The Physiology of Taste and Health
7. Medicinal Bitters
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikeda, K. New Seasonings. Chem. Senses 2002, 27, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Hernández, C.D.B. La bioquímica y fisiología del sabor. Rev. Educ. Bioquim. 2019, 38, 100–104. [Google Scholar]
- Chandrashekar, J.; Hoon, M.A.; Ryba, N.J.P.; Zuker, C.S. The receptors and cells for mammalian taste. Nature 2006, 444, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Navarro, L.; Torrero, C.; Regalado, M.; Salas, M. Desarrollo de la discriminación a los sabores. Rev. Eneurobiología 2013, 4, 3. [Google Scholar]
- Zhang, J.; Jin, H.; Zhang, W.; Ding, C.; O’Keeffe, S.; Ye, M.; Zuker, C.S. Sour Sensing from the Tongue to the Brain. Cell 2019, 179, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Frings, S. The sour taste of a proton current. Proc. Natl. Acad. Sci. USA 2010, 107, 21955–21956. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, G. El Yoco: La Savia de la Selva; Centro Editorial Universidad del Rosario: Bogotá, Colombia, 2004; 110p, ISBN 958-8225-14-0. [Google Scholar]
- Zuluaga, G.; Amaya, C. Use of purgatives in traditional Colombian medicine. Interciencia 1991, 16, 322–328. [Google Scholar]
- Trius-Soler, M.; Moreno, J.J. Bitter taste receptors: Key target to understand the effects of polyphenols on glucose and body weight homeostasis. Pathophysiological and pharmacological implications. Pathophysiological and pharmacological implications. Biochem. Pharmacol. 2024, in press. [Google Scholar] [CrossRef]
- Bach, B.; Cleroux, M.; Saillen, M.; Schönenberger, P.; Burgos, S.; Ducruet, J.; Vallat, A. A new chemical tool for absinthe producers, quantification of α/β-thujone and the bitter components in Artemisia absinthium. Food Chem. 2016, 213, 813–817. [Google Scholar] [CrossRef]
- Neelamma, G.; Swamy, B.; Dhamodaran, P.; Vanitha, B. A Review on pharmacognostic and phytopharmacological perspective of artemisia vulgaris. Eur. J. Pharm. Sci. 2020, 3, 501–505. [Google Scholar]
- Datta, A.; Grün, I.U.; Kwasniewski, M.T.; Fernando, L.N. Comparison of Two Adsorbent Based de-Bittering Procedures for Neem (Azadirachta indica A. Juss) Tea—Effect on Polyphenols, Anti-Oxidant Capacity, Color and Volatile Profile. Plant Foods Hum. Nutr. 2017, 72, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.-C.; Wu, Z.-F.; Yin, Z.-Q.; Lin, L.-G.; Wang, R.; Zhang, Q.-W. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin. Med. 2018, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Maňourová, A.; Leuner, O.; Tchoundjeu, Z.; Van Damme, P.; Verner, V.; Přibyl, O.; Lojka, B. Medicinal Potential, Utilization and Domestication Status of Bitter Kola (Garcinia kola Heckel) in West and Central Africa. Forests 2019, 10, 124. [Google Scholar] [CrossRef]
- Hoel, H.; de Boer, H.J.; Kool, A.; Wangensteen, H. Analysis of bitter compounds in traditional preparations of Gentiana purpurea L. Fitoterapia 2024, 175, 105932. [Google Scholar] [CrossRef] [PubMed]
- Bora, A.F.M.; Kouame, K.J.E.-P.; Li, X.; Liu, L.; Pan, Y. New insights into the bioactive polysaccharides, proteins, and triterpenoids isolated from bitter melon (Momordica charantia) and their relevance for nutraceutical and food application: A review. Int. J. Biol. Macromol. 2023, 231, 123173. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; He, G.; Qin, J.; Cheng, X.; He, H.; Zhang, D.; Peng, W. High-efficient extraction of principal medicinal components from fresh Phellodendron bark (cortex phellodendri). Saudi J. Biol. Sci. 2018, 25, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Kubica, P.; Szopa, A.; Dominiak, J.; Luczkiewicz, M.; Ekiert, H. Verbena officinalis (Common Vervain)—A Review on the Investigations of This Medicinally Important Plant Species. Planta Med. 2020, 86, 1241–1257. [Google Scholar] [CrossRef] [PubMed]
- Asante, D.-B.; Henneh, I.T.; Acheampong, D.O.; Kyei, F.; Adokoh, C.K.; Ofori, E.G.; Domey, N.K.; Adakudugu, E.; Tangella, L.P.; Ameyaw, E.O. Anti-inflammatory, anti-nociceptive and antipyretic activity of young and old leaves of Vernonia amygdalina. Biomed. Pharmacother. 2019, 111, 1187–1203. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, B. Receptors and transduction in taste. Nature 2001, 413, 219–225. [Google Scholar] [CrossRef]
- Smith, D.; Margolskee, R. El sentido del gusto. Investig. Y Cienc. 2001, 296, 4–12. [Google Scholar]
- Auvray, M.; Spence, C. The multisensory perception of flavor. Conscious. Cogn. 2008, 17, 1016–1031. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, N.; Roper, S.D. The cell biology of taste. J. Cell Biol. 2010, 190, 285. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Gaviria, W. Cilia melanocytes and molecular bases of senses. Acta Otorrinolaringol. Cir. Cabeza Cuello 2007, 35, 45–57. [Google Scholar]
- Bering, A. Genetic Analysis of Taste in Homo Sapiens. Brock University, 2012. Available online: http://hdl.handle.net/10464/4220 (accessed on 1 April 2024).
- Morales, J.M.; María, E.; Sánchez, M.; Ángel, M.; García, C. FISIOLOGÍA DEL GUSTO. In Libro Virtual de Formación en ORL; 2009; Available online: https://seorl.net/PDF/Cavidad%20oral%20faringe%20esofago/069%20-%20FISIOLOG%C3%8DA%20DEL%20GUSTO.pdf (accessed on 1 April 2024).
- Miranda, M.I. El Sabor de los Recuerdos: Formación de la Memoria Gustativa. Revista Digital Universitaria UNAM. 2011. Available online: https://www.ru.tic.unam.mx/handle/123456789/1864 (accessed on 30 May 2024).
- Talavera, K.; Yasumatsu, K.; Voets, T.; Droogmans, G.; Shigemura, N.; Ninomiya, Y.; Margolskee, R.F.; Nilius, B. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 2005, 438, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Clapham, D.E. TRP channels as cellular sensors. Nature 2003, 426, 517–524. [Google Scholar] [CrossRef] [PubMed]
- González Morán, M.G. Comunicación celular. Transducción de señales acopladas a proteínas G heterotriméricas. Educ. Química 2018, 16, 208. [Google Scholar] [CrossRef]
- Jaggupilli, A.; Howard, R.; Upadhyaya, J.D.; Bhullar, R.P.; Chelikani, P. Bitter taste receptors: Novel insights into the biochemistry and pharmacology. Int. J. Biochem. Cell Biol. 2016, 77, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, I.S.; Delling, M.; Clapham, D.E. An introduction to trp channels. Annu. Rev. Physiol. 2006, 68, 619–647. [Google Scholar] [CrossRef]
- Pharmacology IU of B and C. Epithelial Sodium Channel (ENaC). Available online: https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=122 (accessed on 7 July 2020).
- Kellenberger, S.; Schild, L. Epithelial Sodium Channel/Degenerin Family of Ion Channels: A Variety of Functions for a Shared Structure. Physiol. Rev. 2002, 82, 735–767. [Google Scholar] [CrossRef]
- Abstracts from the Thirty-second Annual Meeting of the Association for Chemoreception Sciences. Chem. Senses 2010, 35, A1–A140. [CrossRef]
- Kaske, S.; Krasteva, G.; König, P.; Kummer, W.; Hofmann, T.; Gudermann, T.; Chubanov, V. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci. 2007, 8, 49. [Google Scholar] [CrossRef]
- Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 2011, 12, 218. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Inada, H.; Kubota, M.; Zhuang, H.; Tominaga, M.; Matsunami, H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 12569–12574. [Google Scholar] [CrossRef]
- Jácome, A. Historia de los receptores. Rev. Colomb. Endocrinol. Diabetes Y Metab. 2017, 4, 47–50. [Google Scholar] [CrossRef]
- García-Sáinz, J.A. El Premio Nobel de química 2012: Lefkowitz y Kobilka. Educ. Quim. 2013, 24, 79–81. [Google Scholar] [CrossRef]
- Gonzales Gil, P. Receptores acoplados a proteínas G: Entendiendo cómo responde nuestro organismo a señales diversas. Rev. Química 2012, 26, 16–19. [Google Scholar]
- Gilman, A. G Proteins: Transducers Of Receptor-Generated Signals. Annu. Rev. Biochem. 1987, 56, 615–649. [Google Scholar] [CrossRef] [PubMed]
- Bachmanov, A.A.; Beauchamp, G.K. Taste Receptor Genes. Annu. Rev. Nutr. 2007, 27, 389–414. [Google Scholar] [CrossRef]
- Hoon, M.A.; Adler, E.; Lindemeier, J.; Battey, J.F.; Ryba, N.J.P.; Zuker, C.S. Putative Mammalian Taste Receptors. Cell 1999, 96, 541–551. [Google Scholar] [CrossRef]
- Chandrashekar, J.; Mueller, K.L.; Hoon, M.A.; Adler, E.; Feng, L.; Guo, W.; Zuker, C.S.; Ryba, N.J.P. T2Rs function as bitter taste receptors. Cell 2000, 100, 703–711. [Google Scholar] [CrossRef]
- Adler, E.; Hoon, M.A.; Mueller, K.L.; Chandrashekar, J.; Ryba, N.J.P.; Zuker, C.S. A novel family of mammalian taste receptors. Cell 2000, 100, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.R.; Tanaka, T.; McDaniel, A.H. Diverse tastes: Genetics of sweet and bitter perception. Physiol. Behav. 2006, 88, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Chávez, O.; Vega, G.; Sierra, A.; Ramírez, F.; Miramontes, Y.H. Fisiología del gusto. Oral. Rev. 2010, 11, 625–631. [Google Scholar]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.; Behrens, M. The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors. Chem. Senses 2010, 35, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Cometto-Muñiz, J. Caracteristicas de los componentes del sabor. La. Aliment. Latinoam. 1980, 14, 44–50. [Google Scholar]
- Identification of Bitter-Taste Genes Provides Insight into the Organization of the Taste System. Available online: https://biology.ucsd.edu/about/news/article_031600.html (accessed on 27 July 2020).
- Reichling, C.; Meyerhof, W.; Behrens, M. Functions of human bitter taste receptors depend on N-glycosylation. J. Neurochem. 2008, 106, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, A.; Fresno, M.J.; Santander, H.; Valenzuela, S.; Felipe Gutiérrez, M.; Miralles, R.; Fuentes, A. Sensopercepción Gustativa: Una Revisión Gustatory Sensory Perception: A Review. Int. J. Odontostomat 2010, 42, 161–168. [Google Scholar] [CrossRef]
- Hassan, L.; Newman, L.; Keast, R.; Danaher, J.; Biesiekierski, J.R. The effect of gastrointestinal bitter sensing on appetite regulation and energy intake: A systematic review. Appetite 2023, 180, 106336. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Bayrami, Z.; Farzaei, F.; Aneva, I.; Das, S.K.; Patra, J.K.; Das, G.; Abdollahi, M. Poisoning by Medical Plants. Arch. Iran. Med. 2020, 23, 117–127. [Google Scholar]
- Pijoan, M. Venenos tribales. Offarm 2007, 26, 104–116. [Google Scholar]
- Villegas, X.; Ruíz, H.; Bárcenas, M. Tecnologías de enmascaramiento de sabor amargo en alimentos. Temas Sel. Ing. Aliment. 2010, 4, 27–36. [Google Scholar]
- Pydi, S.P.; Sobotkiewicz, T.; Billakanti, R.; Bhullar, R.P.; Loewen, M.C.; Chelikani, P. Amino acid derivatives as bitter taste receptor (T2R) blockers. J. Biol. Chem. 2014, 289, 25054–25066. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.A.; Liggett, S.B.; Munger, S.D. Extraoral bitter taste receptors as mediators of off-target drug effects. FASEB J. 2012, 26, 4827–4831. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Zhang, C.-H.; Lifshitz, L.M.; ZhuGe, R. Extraoral bitter taste receptors in health and disease. J. Gen. Physiol. 2017, 149, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Descamps-Solà, M.; Vilalta, A.; Jalsevac, F.; Blay, M.T.; Rodríguez-Gallego, E.; Pinent, M.; Beltrán-Debón, R.; Terra, X.; Ardévol, A. Bitter taste receptors along the gastrointestinal tract: Comparison between humans and rodents. Front. Nutr. 2023, 10, 1215889. [Google Scholar] [CrossRef] [PubMed]
- Devillier, P.; Naline, E.; Grassin-Delyle, S. The pharmacology of bitter taste receptors and their role in human airways. Pharmacol. Ther. 2015, 155, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Hartley, I.E.; Liem, D.G.; Keast, R. Umami as an ‘Alimentary’ taste. A new perspective on taste classification. Nutrients 2019, 11, 182. [Google Scholar] [CrossRef]
- Llerena, I.R.; Huerta, E.M. Vino y corazón. Rev. Esp. Cardiol. 2015, 51, 435–449. [Google Scholar] [CrossRef]
- Hay, E.; Dhe, L. Tratamiento farmacológico de la migraña. Rev. Fac. Med. (Méx.) 2012, 55, 54–58. [Google Scholar]
- Lee, R.J.; Kofonow, J.M.; Rosen, P.L.; Siebert, A.P.; Chen, B.; Doghramji, L.; Xiong, G.; Adappa, N.D.; Palmer, J.N.; Kennedy, D.W.; et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Investig. 2014, 124, 1393–1405. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Reimann, F.; Gribble, F.M. Cellular mechanisms of incretin hormone secretion. J. Mol. Endocrinol. 2024, 72, e230112. [Google Scholar] [CrossRef]
- Deshmukh, D.; Baghel, V.S.; Shastri, D.; Nandini, D.; Chauhan, N. Plant as bitter. J. Adv. Pharm. Sci. 2010, 1, 334–343. [Google Scholar]
- Grădinaru, T.-C.; Gilca, M.; Vlad, A.; Dragoș, D. Relevance of Phytochemical Taste for Anti-Cancer Activity: A Statistical Inquiry. Int. J. Mol. Sci. 2023, 24, 16227. [Google Scholar] [CrossRef]
- Dragoș, D.; Petran, M.; Gradinaru, T.-C.; Gilca, M. Phytochemicals and Inflammation: Is Bitter Better? Plants 2022, 11, 2991. [Google Scholar] [CrossRef]
Scientific Name | Common Name | Bitter Compounds | Distribution | Ref. |
---|---|---|---|---|
Artemisia absinthium | Ajenjo (span.), Wormwood (eng.) | Thujone, sesquiterpene lactones: absinthin, anabsinthin, anabsin, and artabsin | Cosmopolitan | [10] |
Artemisia vulgaris | Altamisa (span.), Mugwort (eng.) | Terpenoids and sesquiterpene lactones | Cosmopolitan | [11] |
Azadirachta indica | Nim (span.), Neem (eng.) | Azadirachtin, meliacin, gedunin, nimbidin, nimbolides, salanin, nimbin, valassin, meliacin, limonoid | Indian | [12] |
Banisteriopsis caapi | Ayahuasca, yage, capi (span. and indigenous languages) | β-carboline alkaloids | Amazon region | [7] |
Coptidis rhizoma | Huang Lian (Chinese) | Alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, and steroids | Traditional Chinese medicine, Japanese traditional herbal medicine (Kampo) | [13] |
Garcinia kola | Cola amarga (span.), Orogbo (Yoriba) | Biflavonoids, benzophenones, benzofurans, benzopyran, xanthones, and phytosterols | Traditional African medicine | [14] |
Gentiana purpurea | Genciana (span.), Purple Gentian (eng.) | Secoiridoids, amarogentin | Ancient European tradition | [15] |
Momordica charantia | Melón amargo (span.), Bitter melon (eng.) | Phenolic components, Kuguaglycoside G, Momordicine | Traditional Chinese medicine | [16] |
Phellodendron amurense bark | Amur cork tree (eng.), Huáng bò (Chinese) | Phellodendrine, Berberine | Traditional Chinese medicine | [17] |
Verbena officinalis | Verbena (span.), Vervain (eng.) | Iridoids, flavonoids and phenolic acid derivatives | Cosmopolitan | [18] |
Vernonia amygdalina | Hoja amarga (span.), Ewuro (Yoruba) | Sesquiterpene lactones: vernodalin, vernolide, hydroxyvernolide | Tongwe (Tanzania) | [19] |
Bitter Compounds | Food or Medicinal Plants | Therapeutic Effect | Ref. |
---|---|---|---|
Polyphenols, methylxanthines, isoflavones, and sulfonamides | Cruciferous vegetables and carrots | Antioxidant effects and protect us from certain diseases | [4] |
Tannins | Grape wine | Cardiovascular protective effect | [64] |
Xanthines | Stimulant beverages (coffee, tea, chocolate, kola) | Benefits at the cerebrovascular level and control migraine | [65] |
Polyphenols | Exist widely in plant and plant-based foods | Metabolism of adipose tissue and promotes the secretion of gastrointestinal hormones such as ghrelin, which helps control blood glucose | [9] |
Thujone, sesquiterpene lactones: absinthin, anabsinthin, anabsin, and artabsin | Wormwood (Artemisia absinthium) | Anti-inflammatory, antioxidant, and antimicrobial effects, and it has been shown to influence GI tract and urinary system | [10] |
Azadirachtin, meliacin, gedunin, nimbidin, nimbolides, salanin, nimbin, valassin, meliacin, limonoid | Neem (Azadirachta indica) | Antiplasmodial, antitrypanosomal, antioxidant, anti-cancer, antibacterial, antiviral, larvicidal, and fungicidal activities. | [12] |
Phenolic components, Kuguaglycoside G, Momordicine | Bitter melon (Momordica charantia) | Antidiabetic, anti-obesity, anti-inflammatory, anti-cancer effects among others | [16] |
Phellodendrine, Berberine | Amur cork tree (Phellodendron amurense) | Protect against airway inflammation, can reduce blood uric acid levels, reduce blood glucose levels, and slow the development of diabetic nephropathy | [17] |
Sesquiterpene lactones: vernodalin, vernolide, hydroxyvernolide | Bitter leaf (Vernonia amygdalina) | Alleviate inflammation, pyrexia and nociception | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuluaga, G. Potential of Bitter Medicinal Plants: A Review of Flavor Physiology. Pharmaceuticals 2024, 17, 722. https://doi.org/10.3390/ph17060722
Zuluaga G. Potential of Bitter Medicinal Plants: A Review of Flavor Physiology. Pharmaceuticals. 2024; 17(6):722. https://doi.org/10.3390/ph17060722
Chicago/Turabian StyleZuluaga, Germán. 2024. "Potential of Bitter Medicinal Plants: A Review of Flavor Physiology" Pharmaceuticals 17, no. 6: 722. https://doi.org/10.3390/ph17060722
APA StyleZuluaga, G. (2024). Potential of Bitter Medicinal Plants: A Review of Flavor Physiology. Pharmaceuticals, 17(6), 722. https://doi.org/10.3390/ph17060722