Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders
Abstract
:1. Introduction
2. Research Main Overview: The Endocannabinoid System with Cannabinoid-Related Orphan GPCRs, Signal Transduction and Cannabinoids
2.1. The Endocannabinoid System and Cannabinoid-Related Orphan GPCRs
2.1.1. The Endocannabinoid System
2.1.2. Cannabinoid-Related Orphan GPCRs
2.2. Signal Transduction
2.3. Cannabinoids
Allosteric Modulation in Modulating Cannabinoid Receptor Function
2.4. Potential of Cannabinoids in Mitigating Protein Aggregation and Microglial Function
2.5. Potential of Cannabinoids in Mitigating Protein Aggregation in HD, ALS, AD, PD, and SM
3. Impact of Vitamin B12 in Neurodegenerative Processes. Therapeutic Potential of Vitamin B12 Combination with Cannabinoids in Neurodegeneration
Dual-Targeted Vitamin B12 Liposomes and Cannabidiol in Micellar Systems
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Aβ | Amyloid Beta |
AD | Alzheimer’s Disease |
ALS | Amyotrophic Lateral Sclerosis |
BBB | Blood–Brain Barrier |
BDNF | Brain-Derived Neurotrophic Factor |
cAMP | Cyclic Adenosine Monophosphate |
CBD | Cannabidiol |
CBG | Cannbigerol |
CBRs | Cannabinoid Receptors |
CSF | Cerebrospinal Fluid |
Cx43 | Connexin 43 |
ECS | The Endocannabinoid System |
GVHD | Graft-Versus-Host Disease |
GFAP | Glial Fibrillary Acidic Protein |
GPCR | G Protein-Coupled Receptor |
GTP | Guanosine Triphosphate |
HD | Huntington’s Disease |
IL | interleukin |
iNOS | inducible NOS |
KO | Knockout |
MAPK | Mitogen-Activated Protein Kinase |
MBP | Myelin Basic Protein |
MD Simulation | Molecular Dynamics Simulation |
mHTT | Mutant Huntingtin Protein |
MS | Multiple Sclerosis |
NADA | N-arachidonoyl dopamine |
NAGly | N-arachidonyl Glycine |
NFAT | Nuclear Factor of Activated T cells |
NMDA | N-Methyl-D-Aspartate Receptors |
NO | Nitric Oxide |
NAM | Negative Allosteric Modulation |
OEA | Lipid Mediator Oleoylethanolamide |
PD | Parkinson’s Disease |
PAM | Positive Allosteric Modulation |
PKA | Protein Kinase A |
PPARs | Peroxisome Proliferator-Activated Receptors |
PrPC | Cellular Prion Protein |
ROS | Reactive Oxygen Species |
SAH | Subarachnoid Hemorrhage |
SAM | S-adenosylmethionine |
SOD-1 | Superoxide Dismutase-1 |
S1P1 | Sphingosine-1-Phosphate Receptor 1 |
SRE | Serum Response Element |
TCN2 | Transcobalamin 2 |
TDP-43 | Transactive Response DNA-binding Protein 43 |
Δ9-THC | Δ9-Tetrahydrocannabinol |
THCV | D9-Tetrahydrocannabivarin |
Tf | Transferrin |
TM | Transmembrane Domains |
TRP | Transient Receptor Potential |
TRPA1 | Transient Receptor Potential Ankyrin 1 |
TRPV1 | Transient Receptor Potential Vanilloid 1 |
VASP | Vasodilator-Stimulated Phosphoprotein |
Appendix A
To briefly conclude cannabinoids field before turning to vitamin B12, it seems to be valuable to mention their challenges and limitations. While the therapeutic potential of cannabinoids is significant, the molecular complexities present considerable challenges that must be navigated carefully within the biomedical field. Addressing these challenges requires a deep understanding of molecular pharmacology, precise dosing strategies, comprehensive safety assessments, and the development of targeted cannabinoid-based therapies. | |
1. Pharmacodynamic Challenges |
|
| |
2. Pharmacokinetic Challenges |
|
| |
| |
3. Molecular Biology Considerations |
|
| |
4. Clinical Implications |
|
| |
| |
5. Research and Development Barriers |
|
|
1. Bioavailability and Absorption Issues | Vitamin B12, or cobalamin, is a complex molecule that requires a specific gastric protein, called intrinsic factor (IF), to be absorbed in the small intestine. The synthesis of IF can be compromised by various conditions, including atrophic gastritis and autoimmune destruction (pernicious anemia), which significantly reduces B12 absorption. Moreover: |
| |
| |
| |
| |
| |
2. Metabolic Pathways and Deficiency Risks | Vitamin B12 is crucial for the proper functioning of the brain and nervous system, and for the formation of blood. It’s involved in the metabolism of every cell of the human body, affecting DNA synthesis and regulation as well as fatty acid synthesis and energy production. Deficiencies can lead to: |
| |
| |
| |
| |
3. Dietary Sources and Population Risks | Vitamin B12 is predominantly found in animal products, posing a significant dietary challenge for vegans and strict vegetarians: |
| |
| |
4. Diagnostic Challenges | Identifying B12 deficiency can be tricky because: |
| |
| |
| |
5. Challenges in Treatment and Management |
|
| |
| |
6. Overconsumption and Health Risks | Although vitamin B12 is generally considered safe, even at high doses, because it is water-soluble and excess amounts are excreted, over-supplementation can lead to issues: |
| |
|
1. Neuroprotection and Anti- inflammatory Actions: |
|
| |
2. Influence on Neural Pathways: |
|
| |
3. Cognitive Function: |
|
| |
4. Regulation of Homocysteine Levels: |
|
| |
Dual-Targeted Vitamin B12 Liposomes and Cannabidiol in Micellar Systems | |
Wu et al., 2020 [125] | Wu et al. (2020) studied the progression of amyotrophic lateral sclerosis (ALS) with an emphasis on the blood-brain barrier (BBB). They found significantly higher levels of cerebrospinal fluid (CSF) homocysteine (Hcy) and the albumin quotient (Qalb) in ALS patients compared to controls. Specifically, CSF Hcy levels were 0.50 ± 0.46 µmol/L in ALS patients versus 0.25 ± 0.27 µmol/L in controls, and Qalb levels were 8.09 ± 3.03 in ALS patients compared to 6.39 ± 2.21 in controls, with both showing statistical significance (p < 0.05). Further analysis revealed a positive correlation between CSF Hcy and Qalb in ALS patients. The study highlighted that elevated Hcy levels, associated with pro-inflammatory effects and oxidative stress, could contribute to BBB dysfunction and neurotoxicity, potentially triggering ALS. This link between altered Hcy metabolism and BBB integrity could be crucial for understanding ALS progression. |
El-Mezayen et al., 2022 [10] | El-Mezayen et al. (2022) highlight the significant role of vitamin B12 in combating neurodegenerative diseases, particularly Alzheimer’s disease (AD), through its effects on the blood-brain barrier (BBB) and cholinergic systems. The research focused on how vitamin B12 impacts cholinergic function in the brain, crucial for developing treatments that target these pathways. Vitamin B12 acts as an epigenetic modifier and utilizes a unique transport mechanism in the central nervous system (CNS) via cubilin receptors, which are linked to the agrin protein involved in aggregating cholinergic components. This suggests that administering vitamin B12 could potentially enhance cholinergic receptor aggregation, helping to mitigate cholinergic loss in AD. Additionally, vitamin B12 plays a key role in homocysteine (Hcy) metabolism, which is important since elevated Hcy levels can disrupt BBB integrity, a common occurrence in AD. In a pharmacological study comparing three B12 doses with donepezil (DON), the standard AD care, the highest B12 dose exhibited the most effective cholinergic modulation in the hippocampus and showed a dose-dependent improvement in cholinergic receptor activity. This B12 treatment not only matched DON in reducing β-amyloid synthesis but also excelled in restoring BBB integrity, enhancing β-amyloid clearance. This underscores vitamin B12’s potential as a therapeutic agent in AD by supporting both BBB integrity and cholinergic function, presenting a promising method for treating or slowing Alzheimer’s progression. |
Andrade et al., 2022 [126]; Yordanov et al., 2022 [5]; Alberti et al., 2020 [4] | The Andrade et al. (2022) study addresses the challenge of delivering Vitamin B12 for treating neurodegenerative diseases due to its high molecular weight and hydrophilicity, which restrict its ability to cross the blood-brain barrier (BBB). To overcome this, the research team developed Vitamin B12- loaded liposomes functionalized with transferrin to enhance transport across the BBB and target neuronal cells. These liposomes, characterized by their small size, low polydispersity, and neutral zeta potential, showed promising brain delivery capabilities, high encapsulation efficiency, and sustained release over nine days with stability up to two months. Further innovation includes combining Vitamin B12 with cannabidiol (CBD) in a micellar system, as proposed by Yordanov et al. (2022), to increase therapeutic potential. This system, noted for high encapsulation efficiency, effectively delivers hydrophobic compounds like CBD, which modulate neuroorganic environments crucial in neurodegenerative diseases. Additionally, the integration of nanoparticles of β-caryophyllene, a CB2 receptor binder, as studied by Alberti et al. (2020), marks progress in developing therapies that improve BBB crossing and enhance overall treatment efficacy. These combined strategies suggest a robust approach to potentially improving outcomes in neurodegenerative disease treatments by addressing both delivery challenges and therapeutic effectiveness. |
Combination of Nano-Selenium (Nano-Se) with CBD as an Example of CBD Enhancement Impact on Other Substances | |
Konieczka et al., 2022 [109] | In studies using selenium, the addition of CBD and Nano-Se resulted in a significantly higher number of capillaries in the muscle tissues compared to groups treated with selenium alone or the control groups (p < 0.05). Furthermore, chickens infected with C. perfringens and treated with both CBD and Nano-Se showed fewer necrotic muscle fibers, indicating a protective effect from the combination of these bioactive substances. |
da Cruz Guedes et al., 2023 [108] | Further research, such as the study by da Cruz Guedes et al. (2023), delves into the advantages of combining CBD with other compounds for improved therapeutic outcomes. Their research indicates that supplementing CBD with nano-selenium (Nano-Se) considerably boosts vascularization, as demonstrated by the increased capillary count in chicken muscles, and decreases the incidence of muscle fiber necrosis in chickens infected with C. perfringens. These studies collectively underscore innovative strategies for enhancing drug efficacy and more effectively targeting neurodegenerative and other diseases. |
Quan et al., 2023 [120] | Quan et al. (2023) underline the significant role of vitamin B12 in neurodegenerative processes, with a focus on how fingolimod, a treatment for multiple sclerosis, promotes vitamin B12 homeostasis in the CNS. Fingolimod facilitates this by binding to Transcobalamin 2 (TCN2), creating a complex that increases vitamin B12 availability in astrocytes. This interaction triggers a series of cellular events including the internalization of CD320 and the phosphorylation of fingolimod, which antagonizes the Sphingosine-1-Phosphate receptor 1 (S1P1) and leads to increased CD320 expression in astrocytes. |
Conclusions | |
Given the enhancing effects of CBD observed in parallel with vitamin B12 in the treatment of MS, it can be posited that combining CBD with vitamin B12 might prove beneficial for neurodegeneration improvement. This potential is particularly promising when the treatment process incorporates innovative approaches such as the micellar system proposed by Yordanov et al. (2022). This system, renowned for its high encapsulation efficiency, effectively delivers hydrophobic compounds like CBD, which are crucial for modulating neuroorganic environments in neurodegenerative diseases.Additionally, the integration of nanoparticles of β-caryophyllene, a CB2 receptor binder studied by Alberti et al. (2020), represents a significant advancement in developing therapies that enhance blood-brain barrier crossing and overall treatment efficacy. |
Disease | Mechanism | Molecular Target/Pathway |
---|---|---|
Alzheimer’s | Reduction of Beta-Amyloid Plaques | CB1 and CB2 receptors |
Neuroinflammation Modulation | CB2 receptors, microglia | |
Oxidative Stress Reduction | Antioxidant properties | |
Neuroprotection | Neurotransmitter modulation | |
Parkinson’s | Modulation of Dopaminergic System | Dopamine and glutamate receptors |
Anti-inflammatory Effects | CB2 receptors, microglia | |
Antioxidant Properties | Antioxidant properties | |
Neuroprotection | Mitochondrial function, calcium influx | |
Multiple Sclerosis | Immunomodulation | T-cells, cytokines |
Neuroprotection | Oligodendrocytes, myelin repair | |
Symptom Relief | CB1 and CB2 receptors | |
Inflammation Reduction | CB2 receptors, immune cells | |
Amyotrophic Lateral Sclerosis | Anti-inflammatory Effects | Microglia, astrocytes |
Oxidative Stress Reduction | Antioxidant properties | |
Neuroprotection | Mitochondrial function, excitotoxicity | |
Modulation of Glutamate Release | Glutamate receptors | |
Rodríguez-Cueto et al., 2021 [97] | The results demonstrated that activating CB2R led to significant neuroprotective effects. Mice with an intact CB2R gene displayed improved motor performance on rotarod tests and experienced a slower neurological decline compared to their double mutant counterparts. | |
Huntington’s | Modulation of the Endocannabinoid System | CB1 and CB2 receptors |
Reduction of Oxidative Stress | Antioxidant properties | |
Anti-inflammatory Effects | CB2 receptors, microglia | |
Neuroprotection | Mitochondrial function, calcium influx | |
Modulation of Apoptotic Pathways | Apoptotic pathways |
Disease | Mechanism | Molecular Target/ Pathway |
---|---|---|
Alzheimer’s | Homocysteine Metabolism | Homocysteine levels |
Myelin Synthesis | Myelin production | |
Neuroprotection | Antioxidant properties | |
Neuroprotection | Neurotransmitter modulation | |
DNA Synthesis and Repair | DNA repair pathways | |
Parkinson’s | Dopamine Production | Dopamine synthesis pathways |
Reduction of Homocysteine | Homocysteine levels | |
Neuroprotection | Antioxidant properties, mitochondrial function | |
Multiple Sclerosis | Myelin Maintenance | Myelin production |
Immunomodulation | Immune system | |
Reduction of Homocysteine | Homocysteine levels | |
Amyotrophic Lateral Sclerosis | Neuroprotection | Antioxidant properties, homocysteine levels |
Methylation Reactions | DNA repair, gene regulation | |
Mitochondrial Function | Mitochondrial health | |
Huntington’s | Reduction of Homocysteine Levels | Homocysteine metabolism |
Myelin Maintenance and Repair | Myelin synthesis pathways | |
DNA Methylation and Repair | DNA methylation and repair pathways | |
Neuroprotection and Antioxidant Properties | Antioxidant properties, mitochondrial function |
References
- Khoury, M.; Cohen, I.; Bar-Sela, G. “The Two Sides of the Same Coin”—Medical Cannabis, Cannabinoids and Immunity: Pros and Cons Explained. Pharmaceutics 2022, 14, 389. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Furtado, J.D.; Paganoni, S.; Schwarzschild, M.A.; Cudkowicz, M.E.; Ascherio, A. Association of Polyunsaturated Fatty Acids and Clinical Progression in Patients with ALS: Post Hoc Analysis of the EMPOWER Trial. Neurology 2023, 101, e690–e698. [Google Scholar] [CrossRef]
- Nawaz, A.; Khattak, N.N.; Khan, M.S.; Nangyal, H.; Sabri, S.; Shakir, M. Deficiency of Vitamin B12 and Its Relation with Neurological Disorders: A Critical Review. J. Basic Appl. Zool. 2020, 81, 10. [Google Scholar] [CrossRef]
- Alberti, T.B.; Coelho, D.S.; Maraschin, M. β-Caryophyllene Nanoparticles Design and Development: Controlled Drug Delivery of Cannabinoid CB2 Agonist as a Strategic Tool towards Neurodegeneration. Mater. Sci. Eng. C 2021, 121, 111824. [Google Scholar] [CrossRef] [PubMed]
- Yordanov, Y.; Stefanova, D.; Spassova, I.; Kovacheva, D.; Tzankova, V.; Konstantinov, S.; Yoncheva, K. Formulation of Nanomicelles Loaded with Cannabidiol as a Platform for Neuroprotective Therapy. Pharmaceutics 2022, 14, 2625. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Agrawal, N. Progressive Transcriptional Changes of Key Metabolic Genes and Altered Fatbody Homeostasis in Drosophila Model of Huntington’s Disease. SSRN J. 2021. [Google Scholar] [CrossRef]
- Abd-Elrahman, K.S.; Hamilton, A.; Hutchinson, S.R.; Liu, F.; Russell, R.C.; Ferguson, S.S.G. mGluR5 Antagonism Increases Autophagy and Prevents Disease Progression in the zQ175 Mouse Model of Huntington’s Disease. Sci. Signal. 2017, 10, eaan6387. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, A.; Nelson, A.R.; Sagare, A.P.; Zlokovic, B.V. Impaired Vascular-Mediated Clearance of Brain Amyloid Beta in Alzheimer’s Disease: The Role, Regulation and Restoration of LRP1. Front. Aging Neurosci. 2015, 7, 136. [Google Scholar] [CrossRef]
- Rai, S.N.; Singh, P.; Steinbusch, H.W.M.; Vamanu, E.; Ashraf, G.; Singh, M.P. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021, 9, 1284. [Google Scholar] [CrossRef]
- El-Mezayen, N.S.; Abd El Moneim, R.A.; El-Rewini, S.H. Vitamin B12 as a Cholinergic System Modulator and Blood Brain Barrier Integrity Restorer in Alzheimer’s Disease. Eur. J. Pharm. Sci. 2022, 174, 106201. [Google Scholar] [CrossRef]
- Rakić, M.; Lunić, T.; Bekić, M.; Tomić, S.; Mitić, K.; Graovac, S.; Božić, B.; Božić Nedeljković, B. Vitamin B Complex Suppresses Neuroinflammation in Activated Microglia: In Vitro and In Silico Approach Combined with Dynamical Modeling. Int. Immunopharmacol. 2023, 121, 110525. [Google Scholar] [CrossRef] [PubMed]
- Köfalvi, A.; Moreno, E.; Cordomí, A.; Cai, N.-S.; Fernández-Dueñas, V.; Ferreira, S.G.; Guixà-González, R.; Sánchez-Soto, M.; Yano, H.; Casadó-Anguera, V.; et al. Control of Glutamate Release by Complexes of Adenosine and Cannabinoid Receptors. BMC Biol. 2020, 18, 9. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.C.; Fogaça, M.V.; Sonego, A.B.; Guimarães, F.S. Cannabidiol, Neuroprotection and Neuropsychiatric Disorders. Pharmacol. Res. 2016, 112, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, C.; Di Marzo, V. The Endocannabinoid System in Energy Homeostasis and the Etiopathology of Metabolic Disorders. Cell Metab. 2013, 17, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; Campolongo, P.; Yehuda, R.; Patel, S. Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 2018, 43, 80–102. [Google Scholar] [CrossRef] [PubMed]
- Morena, M.; Patel, S.; Bains, J.S.; Hill, M.N. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016, 41, 80–102. [Google Scholar] [CrossRef] [PubMed]
- Micale, V.; Drago, F. Endocannabinoid System, Stress and HPA Axis. Eur. J. Pharmacol. 2018, 834, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Goldstein Ferber, S.; Trezza, V.; Weller, A. Early Life Stress and Development of the Endocannabinoid System: A Bidirectional Process in Programming Future Coping. Dev. Psychobiol. 2021, 63, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Komarnytsky, S.; Rathinasabapathy, T.; Wagner, C.; Metzger, B.; Carlisle, C.; Panda, C.; Le Brun-Blashka, S.; Troup, J.P.; Varadharaj, S. Endocannabinoid System and Its Regulation by Polyunsaturated Fatty Acids and Full Spectrum Hemp Oils. Int. J. Mol. Sci. 2021, 22, 5479. [Google Scholar] [CrossRef]
- Yanes, J.A.; McKinnell, Z.E.; Reid, M.A.; Busler, J.N.; Michel, J.S.; Pangelinan, M.M.; Sutherland, M.T.; Younger, J.W.; Gonzalez, R.; Robinson, J.L. Effects of Cannabinoid Administration for Pain: A Meta-Analysis and Meta-Regression. Exp. Clin. Psychopharmacol. 2019, 27, 370–382. [Google Scholar] [CrossRef]
- Braun, M.; Khan, Z.T.; Khan, M.B.; Kumar, M.; Ward, A.; Achyut, B.R.; Arbab, A.S.; Hess, D.C.; Hoda, M.N.; Baban, B.; et al. Selective Activation of Cannabinoid Receptor-2 Reduces Neuroinflammation after Traumatic Brain Injury via Alternative Macrophage Polarization. Brain Behav. Immun. 2018, 68, 224–237. [Google Scholar] [CrossRef]
- Dasram, M.H.; Walker, R.B.; Khamanga, S.M. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int. J. Mol. Sci. 2022, 23, 13223. [Google Scholar] [CrossRef]
- Cabrera, R.; Keir-Rudman, S.; Horniman, N.; Clarkson, N.; Page, C. The Anti-Inflammatory Effects of Cannabidiol and Cannabigerol Alone, and in Combination. Pulm. Pharmacol. Ther. 2021, 69, 102047. [Google Scholar] [CrossRef]
- Ye, L.; Cao, Z.; Wang, W.; Zhou, N. New Insights in Cannabinoid Receptor Structure and Signaling. Curr. Mol. Pharmacol. 2019, 12, 239–248. [Google Scholar] [CrossRef]
- Liu, B.; Song, S.; Jones, P.M.; Persaud, S.J. GPR55: From Orphan to Metabolic Regulator? Pharmacol. Ther. 2015, 145, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Shore, D.M.; Reggio, P.H. The Therapeutic Potential of Orphan GPCRs, GPR35 and GPR55. Front. Pharmacol. 2015, 6, 139382. [Google Scholar] [CrossRef] [PubMed]
- Kargl, J.; Balenga, N.; Parzmair, G.P.; Brown, A.J.; Heinemann, A.; Waldhoer, M. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55. J. Biol. Chem. 2012, 287, 44234–44248. [Google Scholar] [CrossRef]
- Mori-Fegan, D.K.; Noor, S.; Wong, Y.Y.; Wu, C.; Black, S.E.; Ross, R.A.; Swardfager, W.; Alzheimer’s Disease Neuroimaging Initiative (ADNI). Association between G-Protein Coupled Receptor 55 (GPR55) Single Nucleotide Polymorphisms and Alzheimer’s Disease. Alzheimer’s Dement. 2023, 19, e073447. [Google Scholar] [CrossRef]
- Burgaz, S.; García, C.; Gonzalo-Consuegra, C.; Gómez-Almería, M.; Ruiz-Pino, F.; Unciti, J.D.; Gómez-Cañas, M.; Alcalde, J.; Morales, P.; Jagerovic, N.; et al. Preclinical Investigation in Neuroprotective Effects of the GPR55 Ligand VCE-006.1 in Experimental Models of Parkinson’s Disease and Amyotrophic Lateral Sclerosis. Molecules 2021, 26, 7643. [Google Scholar] [CrossRef]
- Martínez-Pinilla, E.; Rico, A.J.; Rivas-Santisteban, R.; Lillo, J.; Roda, E.; Navarro, G.; Lanciego, J.L.; Franco, R. Expression of GPR55 and Either Cannabinoid CB1 or CB2 Heteroreceptor Complexes in the Caudate, Putamen, and Accumbens Nuclei of Control, Parkinsonian, and Dyskinetic Non-Human Primates. Brain Struct. Funct. 2020, 225, 2153–2164. [Google Scholar] [CrossRef]
- Wang, X.; Xiang, X.; Hu, J.; Wu, Y.; Li, Y.; Jin, S.; Wu, X. Pharmacological Activation of GPR55 Improved Cognitive Impairment Induced by Lipopolysaccharide in Mice. J. Mol. Neurosci. 2022, 72, 1656–1669. [Google Scholar] [CrossRef] [PubMed]
- McHugh, D. GPR18 in Microglia: Implications for the CNS and Endocannabinoid System Signalling. Br. J. Pharmacol. 2012, 167, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Morales, P.; Lago-Fernandez, A.; Hurst, D.P.; Sotudeh, N.; Brailoiu, E.; Reggio, P.H.; Abood, M.E.; Jagerovic, N. Therapeutic Exploitation of GPR18: Beyond the Cannabinoids?: Miniperspective. J. Med. Chem. 2020, 63, 14216–14227. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.E.; Kim, I.-S.; Jakaria, M.; Akther, M.; Choi, D.-K. Importance of GPCR-Mediated Microglial Activation in Alzheimer’s Disease. Front. Cell. Neurosci. 2018, 12, 258. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, S.; Kim, J.; Ham, S.; Park, J.H.Y.; Han, S.; Jung, Y.-K.; Shim, I.; Han, J.-S.; Lee, K.W.; et al. Ca2+-Permeable TRPV1 Pain Receptor Knockout Rescues Memory Deficits and Reduces Amyloid-β and Tau in a Mouse Model of Alzheimer’s Disease. Hum. Mol. Genet. 2020, 29, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhou, W.; Dou, F.; Wang, C.; Yu, Z. TRPV1 Sustains Microglial Metabolic Reprogramming in Alzheimer’s Disease. EMBO Rep. 2021, 22, e52013. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, F.A.; Vitale, R.M. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021, 10, 586. [Google Scholar] [CrossRef] [PubMed]
- Reich, D.; Gallucci, G.; Tong, M.; de la Monte, S. Therapeutic Advantages of Dual Targeting of PPAR-δ and PPAR-γ in an Experimental Model of Sporadic Alzheimer’s Disease. J. Park. Dis. Alzheimer’s Dis. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Wójtowicz, S.; Strosznajder, A.K.; Jeżyna, M.; Strosznajder, J.B. The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochem. Res. 2020, 45, 972–988. [Google Scholar] [CrossRef]
- Quan, Q.; Qian, Y.; Li, X.; Li, M. Pioglitazone Reduces β Amyloid Levels via Inhibition of PPARγ Phosphorylation in a Neuronal Model of Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 178. [Google Scholar] [CrossRef]
- Li, J.; Remington, J.M.; Liao, C.; Parsons, R.L.; Schneebeli, S.; Braas, K.M.; May, V.; Brewer, M. GPCR Intracellular Loop Regulation of Beta-Arrestin-Mediated Endosomal Signaling Dynamics. J. Mol. Neurosci. 2022, 72, 1358–1373. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Polgar, W.E.; Mann, A.; Dasgupta, P.; Schulz, S.; Zaveri, N.T. Differential In Vitro Pharmacological Profiles of Structurally Diverse Nociceptin Receptor Agonists in Activating G Protein and Beta-Arrestin Signaling at the Human Nociceptin Opioid Receptor. Mol. Pharmacol. 2021, 100, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Childers, S.R. Activation of G-Proteins in Brain by Endogenous and Exogenous Cannabinoids. AAPS J. 2006, 8, E112–E117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, T.; Lu, X.; Lan, X.; Chen, Z.; Lu, S. G Protein-Coupled Receptors (GPCRs): Advances in Structures, Mechanisms, and Drug Discovery. Signal Transduct. Target. Ther. 2024, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Ladilov, Y. Emerging Role of cAMP/AMPK Signaling. Cells 2022, 11, 308. [Google Scholar] [CrossRef] [PubMed]
- Boczek, T.; Zylinska, L. Receptor-Dependent and Independent Regulation of Voltage-Gated Ca2+ Channels and Ca2+-Permeable Channels by Endocannabinoids in the Brain. Int. J. Mol. Sci. 2021, 22, 8168. [Google Scholar] [CrossRef] [PubMed]
- Ibsen, M.S.; Finlay, D.B.; Patel, M.; Javitch, J.A.; Glass, M.; Grimsey, N.L. Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence. Front. Pharmacol. 2019, 10, 350. [Google Scholar] [CrossRef] [PubMed]
- Saravia, R.; Ten-Blanco, M.; Pereda-Pérez, I.; Berrendero, F. New Insights in the Involvement of the Endocannabinoid System and Natural Cannabinoids in Nicotine Dependence. Int. J. Mol. Sci. 2021, 22, 13316. [Google Scholar] [CrossRef] [PubMed]
- Saito, V.M.; Rezende, R.M.; Teixeira, A.L. Cannabinoid Modulation of Neuroinflammatory Disorders. Curr. Neuropharmacol. 2012, 10, 159–166. [Google Scholar] [CrossRef]
- Cárdenas-Rodríguez, N.; Ignacio-Mejía, I.; Correa-Basurto, J.; Carrasco-Vargas, H.; Vargas-Hernández, M.A.; Albores-Méndez, E.M.; Mayen-Quinto, R.D.; De La Paz-Valente, R.; Bandala, C. Possible Role of Cannabis in the Management of Neuroinflammation in Patients with Post-COVID Condition. Int. J. Mol. Sci. 2024, 25, 3805. [Google Scholar] [CrossRef]
- Booz, G.W. Cannabidiol as an Emergent Therapeutic Strategy for Lessening the Impact of Inflammation on Oxidative Stress. Free. Radic. Biol. Med. 2011, 51, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Petrosino, S.; Verde, R.; Vaia, M.; Allarà, M.; Iuvone, T.; Di Marzo, V. Anti-Inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis. J. Pharmacol. Exp. Ther. 2018, 365, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Kogan, N.M.; Lavi, Y.; Topping, L.M.; Williams, R.O.; McCann, F.E.; Yekhtin, Z.; Feldmann, M.; Gallily, R.; Mechoulam, R. Novel CBG Derivatives Can Reduce Inflammation, Pain and Obesity. Molecules 2021, 26, 5601. [Google Scholar] [CrossRef]
- Schubert, D.; Kepchia, D.; Liang, Z.; Dargusch, R.; Goldberg, J.; Maher, P. Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’s Disease. Mol. Neurobiol. 2019, 56, 7719–7730. [Google Scholar] [CrossRef] [PubMed]
- Henshaw, F.R.; Dewsbury, L.S.; Lim, C.K.; Steiner, G.Z. The Effects of Cannabinoids on Pro- and Anti-Inflammatory Cytokines: A Systematic Review of In Vivo Studies. Cannabis Cannabinoid Res. 2021, 6, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Abioye, A.; Ayodele, O.; Marinkovic, A.; Patidar, R.; Akinwekomi, A.; Sanyaolu, A. Δ9-Tetrahydrocannabivarin (THCV): A Commentary on Potential Therapeutic Benefit for the Management of Obesity and Diabetes. J. Cannabis Res. 2020, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Angelats, E.; Requesens, M.; Aguinaga, D.; Kreutz, M.R.; Franco, R.; Navarro, G. Neuronal Calcium and cAMP Cross-Talk Mediated by Cannabinoid CB1 Receptor and EF-Hand Calcium Sensor Interactions. Front. Cell Dev. Biol. 2018, 6, 67. [Google Scholar] [CrossRef]
- Xin, Q.; Xu, F.; Taylor, D.H.; Zhao, J.; Wu, J. The Impact of Cannabinoid Type 2 Receptors (CB2Rs) in Neuroprotection against Neurological Disorders. Acta Pharmacol. Sin. 2020, 41, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Dearborn, J.T.; Nelvagal, H.R.; Rensing, N.R.; Takahashi, K.; Hughes, S.M.; Wishart, T.M.; Cooper, J.D.; Wong, M.; Sands, M.S. Effects of Chronic Cannabidiol in a Mouse Model of Naturally Occurring Neuroinflammation, Neurodegeneration, and Spontaneous Seizures. Sci. Rep. 2022, 12, 11286. [Google Scholar] [CrossRef]
- Kaplan, J.S.; Stella, N.; Catterall, W.A.; Westenbroek, R.E. Cannabidiol Attenuates Seizures and Social Deficits in a Mouse Model of Dravet Syndrome. Proc. Natl. Acad. Sci. USA 2017, 114, 11229–11234. [Google Scholar] [CrossRef]
- Celorrio, M.; Rojo-Bustamante, E.; Fernández-Suárez, D.; Sáez, E.; Estella-Hermoso De Mendoza, A.; Müller, C.E.; Ramírez, M.J.; Oyarzábal, J.; Franco, R.; Aymerich, M.S. GPR55: A Therapeutic Target for Parkinson’s Disease? Neuropharmacology 2017, 125, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Martin, B.; Brenneman, R.; Luttrell, L.M.; Maudsley, S. Allosteric Modulators of G Protein-Coupled Receptors: Future Therapeutics for Complex Physiological Disorders. J. Pharmacol. Exp. Ther. 2009, 331, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Wold, E.A.; Chen, J.; Cunningham, K.A.; Zhou, J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J. Med. Chem. 2019, 62, 88–127. [Google Scholar] [CrossRef] [PubMed]
- Green, H.M.; Yang, L.; Zhu, X.; Finlay, D.B.; Duffull, S.B.; Glass, M. Insight into the Mechanism of Action of ORG27569 at the Cannabinoid Type One Receptor Utilising a Unified Mathematical Model. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 5105–5118. [Google Scholar] [CrossRef] [PubMed]
- Aderibigbe, A.O.; Pandey, P.; Doerksen, R.J. Negative Allosteric Modulators of Cannabinoid Receptor 1: Ternary Complexes Including CB1, Orthosteric CP55940 and Allosteric ORG27569. J. Biomol. Struct. Dyn. 2022, 40, 5729–5747. [Google Scholar] [CrossRef] [PubMed]
- Mielnik, C.A.; Lam, V.M.; Ross, R.A. CB1 Allosteric Modulators and Their Therapeutic Potential in CNS Disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 106, 110163. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Lan, X.; Wei, Z.; Yu, J.; Zhang, J. Allosteric Modulation of G Protein-Coupled Receptors as a Novel Therapeutic Strategy in Neuropathic Pain. Acta Pharm. Sin. B 2024, 14, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Meini, S.; Gado, F.; Stevenson, L.A.; Digiacomo, M.; Saba, A.; Codini, S.; Macchia, M.; Pertwee, R.G.; Bertini, S.; Manera, C. PSNCBAM-1 Analogs: Structural Evolutions and Allosteric Properties at Cannabinoid CB1 Receptor. Eur. J. Med. Chem. 2020, 203, 112606. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Gamage, T.F.; Decker, A.M.; Finlay, D.B.; Langston, T.L.; Barrus, D.; Glass, M.; Harris, D.L.; Zhang, Y. Rational Design of Cannabinoid Type-1 Receptor Allosteric Modulators: Org27569 and PSNCBAM-1 Hybrids. Bioorg. Med. Chem. 2021, 41, 116215. [Google Scholar] [CrossRef]
- Fu, T.; Tu, G.; Ping, M.; Zheng, G.; Yang, F.; Yang, J.; Zhang, Y.; Yao, X.; Xue, W.; Zhu, F. Subtype-Selective Mechanisms of Negative Allosteric Modulators Binding to Group I Metabotropic Glutamate Receptors. Acta Pharmacol. Sin. 2021, 42, 1354–1367. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, M.; Wang, W.; Zhao, S.; Yin, Y.; Mi, Q.; Yang, M.; Song, Y.; Sun, B.; Zhang, Z. Selective mGluR1 Negative Allosteric Modulator Reduces Blood–Brain Barrier Permeability and Cerebral Edema after Experimental Subarachnoid Hemorrhage. Transl. Stroke Res. 2020, 11, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, X.; Xu, Z.; Wu, C.; Zhou, Y.; Wang, Y.; Lin, G.; Li, K.; Wu, M.; Xia, A.; et al. Molecular Mechanism of Allosteric Modulation for the Cannabinoid Receptor CB1. Nat. Chem. Biol. 2022, 18, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Alali, S.; Riazi, G.; Ashrafi-Kooshk, M.R.; Meknatkhah, S.; Ahmadian, S.; Hooshyari Ardakani, M.; Hosseinkhani, B. Cannabidiol Inhibits Tau Aggregation In Vitro. Cells 2021, 10, 3521. [Google Scholar] [CrossRef] [PubMed]
- Aso, E.; Ferrer, I. CB2 Cannabinoid Receptor As Potential Target against Alzheimer’s Disease. Front. Neurosci. 2016, 10, 202288. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.; Ahmadi, S.; De Costa, F.; Li, N.; Kerman, K. Attenuation of Oxidative Stress by Cannabinoids and Cannabis Extracts in Differentiated Neuronal Cells. Pharmaceuticals 2020, 13, 328. [Google Scholar] [CrossRef] [PubMed]
- Marsicano, G.; Moosmann, B.; Hermann, H.; Lutz, B.; Behl, C. Neuroprotective Properties of Cannabinoids against Oxidative Stress: Role of the Cannabinoid Receptor CB1. J. Neurochem. 2002, 80, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B. Cannabis Therapeutics and the Future of Neurology. Front. Integr. Neurosci. 2018, 12, 51. [Google Scholar] [CrossRef]
- Baker, D.; Pryce, G.; Giovannoni, G.; Thompson, A.J. The Therapeutic Potential of Cannabis. Lancet Neurol. 2003, 2, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Voicu, V.; Brehar, F.-M.; Toader, C.; Covache-Busuioc, R.-A.; Corlatescu, A.D.; Bordeianu, A.; Costin, H.P.; Bratu, B.-G.; Glavan, L.-A.; Ciurea, A.V. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules 2023, 13, 1388. [Google Scholar] [CrossRef]
- Vuic, B.; Milos, T.; Tudor, L.; Konjevod, M.; Nikolac Perkovic, M.; Jazvinscak Jembrek, M.; Nedic Erjavec, G.; Svob Strac, D. Cannabinoid CB2 Receptors in Neurodegenerative Proteinopathies: New Insights and Therapeutic Potential. Biomedicines 2022, 10, 3000. [Google Scholar] [CrossRef]
- Young, A.P.; Denovan-Wright, E.M. The Dynamic Role of Microglia and the Endocannabinoid System in Neuroinflammation. Front. Pharmacol. 2022, 12, 806417. [Google Scholar] [CrossRef] [PubMed]
- Cassano, T.; Villani, R.; Pace, L.; Carbone, A.; Bukke, V.N.; Orkisz, S.; Avolio, C.; Serviddio, G. From Cannabis Sativa to Cannabidiol: Promising Therapeutic Candidate for the Treatment of Neurodegenerative Diseases. Front. Pharmacol. 2020, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.; Joers, V.; Tansey, M.G.; McKernan, D.P.; Dowd, E. Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson’s Disease. Molecules 2020, 25, 453. [Google Scholar] [CrossRef] [PubMed]
- Stella, N. Cannabinoid and Cannabinoid-like Receptors in Microglia, Astrocytes, and Astrocytomas. Glia 2010, 58, 1017–1030. [Google Scholar] [CrossRef] [PubMed]
- Cassano, T.; Calcagnini, S.; Pace, L.; De Marco, F.; Romano, A.; Gaetani, S. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Front. Neurosci. 2017, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jin, M.-Z.; Yang, Z.-Y.; Jin, W.-L. Microglia in Neurodegenerative Diseases. Neural Regen. Res. 2021, 16, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Murnion, B.; Campbell, G.; Young, H.; Hall, W. Cannabinoids for the Treatment of Spasticity. Dev. Med. Child Neurol. 2019, 61, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Farshbaf, M.; Ghaedi, K. Huntington’s Disease and Mitochondria. Neurotox. Res. 2017, 32, 518–529. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Singh, K.; Kumar, S.; Kim, Y.-S.; Lee, Y.-M.; Kim, J.-J. Therapeutic Advances for Huntington’s Disease. Brain Sci. 2020, 10, 43. [Google Scholar] [CrossRef]
- Valdeolivas, S.; Navarrete, C.; Cantarero, I.; Bellido, M.L.; Muñoz, E.; Sagredo, O. Neuroprotective Properties of Cannabigerol in Huntington’s Disease: Studies in R6/2 Mice and 3-Nitropropionate-Lesioned Mice. Neurotherapeutics 2015, 12, 185–199. [Google Scholar] [CrossRef]
- Nadal, X.; Del Río, C.; Casano, S.; Palomares, B.; Ferreiro-Vera, C.; Navarrete, C.; Sánchez-Carnerero, C.; Cantarero, I.; Bellido, M.L.; Meyer, S.; et al. Tetrahydrocannabinolic Acid Is a Potent PPARγ Agonist with Neuroprotective Activity. Br. J. Pharmacol. 2017, 174, 4263–4276. [Google Scholar] [CrossRef]
- Vasincu, A.; Rusu, R.-N.; Ababei, D.-C.; Larion, M.; Bild, W.; Stanciu, G.D.; Solcan, C.; Bild, V. Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. Biology 2022, 11, 440. [Google Scholar] [CrossRef]
- Antonazzo, M.; Botta, M.; Bengoetxea, H.; Ruiz-Ortega, J.Á.; Morera-Herreras, T. Therapeutic Potential of Cannabinoids as Neuroprotective Agents for Damaged Cells Conducing to Movement Disorders. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 146, pp. 229–257. ISBN 978-0-12-816754-0. [Google Scholar]
- Pérez-Arancibia, R.; Cisternas-Olmedo, M.; Sepúlveda, D.; Troncoso-Escudero, P.; Vidal, R.L. Small Molecules to Perform Big Roles: The Search for Parkinson’s and Huntington’s Disease Therapeutics. Front. Neurosci. 2023, 16, 1084493. [Google Scholar] [CrossRef]
- Bhat, S.A.; Ahamad, S.; Dar, N.J.; Siddique, Y.H.; Nazir, A. The Emerging Landscape of Natural Small-Molecule Therapeutics for Huntington’s Disease. Curr. Neuropharmacol. 2023, 21, 867–889. [Google Scholar] [CrossRef]
- Rodríguez-Cueto, C.; Gómez-Almería, M.; García Toscano, L.; Romero, J.; Hillard, C.J.; De Lago, E.; Fernández-Ruiz, J. Inactivation of the CB2 Receptor Accelerated the Neuropathological Deterioration in TDP-43 Transgenic Mice, a Model of Amyotrophic Lateral Sclerosis. Brain Pathol. 2021, 31, e12972. [Google Scholar] [CrossRef]
- Sáez, J.C.; Contreras-Duarte, S.; Gómez, G.I.; Labra, V.C.; Santibañez, C.A.; Gajardo-Gómez, R.; Avendaño, B.C.; Díaz, E.F.; Montero, T.D.; Velarde, V.; et al. Connexin 43 Hemichannel Activity Promoted by Pro-Inflammatory Cytokines and High Glucose Alters Endothelial Cell Function. Front. Immunol. 2018, 9, 1899. [Google Scholar] [CrossRef]
- Gajardo-Gómez, R.; Labra, V.C.; Maturana, C.J.; Shoji, K.F.; Santibañez, C.A.; Sáez, J.C.; Giaume, C.; Orellana, J.A. Cannabinoids Prevent the Amyloid Β-induced Activation of Astroglial Hemichannels: A Neuroprotective Mechanism. Glia 2017, 65, 122–137. [Google Scholar] [CrossRef]
- Ren, R.; Zhang, L.; Wang, M. Specific Deletion Connexin43 in Astrocyte Ameliorates Cognitive Dysfunction in APP/PS1 Mice. Life Sci. 2018, 208, 175–191. [Google Scholar] [CrossRef]
- He, J.-T.; Li, X.-Y.; Yang, L.; Zhao, X. Astroglial Connexins and Cognition: Memory Formation or Deterioration? Biosci. Rep. 2020, 40, BSR20193510. [Google Scholar] [CrossRef]
- Vik-Mo, A.O.; Hortobagyi, T.; Módis, L.; Aarsland, D. A Prospective Long-term Study of TDP-43 Pathology in Alzheimer’s Disease Aggression: Human Neuropathology: Non-AD Neurodegenerative Disease Neuropathology. Alzheimer’s Dement. 2020, 16, e043659. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- DeTure, M.A.; Dickson, D.W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.H.; Yokotsuka, M.; Tobiume, M.; Sato, Y.; Hasegawa, H.; Nagao, T.; Gouras, G.K. Accumulation of Cellular Prion Protein within Β-amyloid Oligomer Plaques in Aged Human Brains. Brain Pathol. 2021, 31, e12941. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.; Bemelmans, A.-P.; Joséphine, C.; Brouillet, E.; McKernan, D.P.; Dowd, E. Time-Course of Alterations in the Endocannabinoid System after Viral-Mediated Overexpression of α-Synuclein in the Rat Brain. Molecules 2022, 27, 507. [Google Scholar] [CrossRef] [PubMed]
- Patricio, F.; Morales-Andrade, A.A.; Patricio-Martínez, A.; Limón, I.D. Cannabidiol as a Therapeutic Target: Evidence of Its Neuroprotective and Neuromodulatory Function in Parkinson’s Disease. Front. Pharmacol. 2020, 11, 595635. [Google Scholar] [CrossRef]
- da Cruz Guedes, E.; Erustes, A.G.; Leão, A.H.F.F.; Carneiro, C.A.; Abílio, V.C.; Zuardi, A.W.; Hallak, J.E.C.; Crippa, J.A.; Bincoletto, C.; Smaili, S.S.; et al. Cannabidiol Recovers Dopaminergic Neuronal Damage Induced by Reserpine or α-Synuclein in Caenorhabditis Elegans. Neurochem. Res. 2023, 48, 2390–2405. [Google Scholar] [CrossRef]
- Konieczka, P.; Szkopek, D.; Kinsner, M.; Kowalczyk, P.; Michalczuk, M.; Bień, D.; Banach, J.; Matusevičius, P.; Bogucka, J. Cannabidiol and Nano-Selenium Increase Microvascularization and Reduce Degenerative Changes in Superficial Breast Muscle in C. perfringens-Infected Chickens. Int. J. Mol. Sci. 2022, 24, 237. [Google Scholar] [CrossRef]
- Butola, L.K.; Kanyal, D.; Ambad, R.; Jha, R.K. Role of Omega 3 Fatty Acids, Vitamin D, Vitamin B12, Vitamin B6 and Folate in Mental Wellbeing-A Short Review of Literature. Indian J. Forensic Med. Toxicol. 2021, 15, 283–288. [Google Scholar] [CrossRef]
- Kemse, N.G.; Kale, A.A.; Joshi, S.R. A Combined Supplementation of Omega-3 Fatty Acids and Micronutrients (Folic Acid, Vitamin B12) Reduces Oxidative Stress Markers in a Rat Model of Pregnancy Induced Hypertension. PLoS ONE 2014, 9, e111902. [Google Scholar] [CrossRef]
- Khaire, A.; Rathod, R.; Kale, A.; Joshi, S. Vitamin B12 and Omega-3 Fatty Acids Together Regulate Lipid Metabolism in Wistar Rats. Prostaglandins Leukot. Essent. Fat. Acids 2015, 99, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Rathod, R.; Kale, A.; Joshi, S. Novel Insights into the Effect of Vitamin B12 and Omega-3 Fatty Acids on Brain Function. J. Biomed. Sci. 2016, 23, 17. [Google Scholar] [CrossRef] [PubMed]
- Ceafalan, L.C.; Fertig, T.E.; Gheorghe, T.C.; Hinescu, M.E.; Popescu, B.O.; Pahnke, J.; Gherghiceanu, M. Age-related Ultrastructural Changes of the Basement Membrane in the Mouse Blood-brain Barrier. J. Cell. Mol. Med. 2019, 23, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Fuso, A.; Nicolia, V.; Ricceri, L.; Cavallaro, R.A.; Isopi, E.; Mangia, F.; Fiorenza, M.T.; Scarpa, S. S-Adenosylmethionine Reduces the Progress of the Alzheimer-like Features Induced by B-Vitamin Deficiency in Mice. Neurobiol. Aging 2012, 33, 1482.e1–1482.e16. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Ge, B.; Zhou, D.; Li, M.; Li, W.; Ma, F.; Liu, Z.; Ji, Y.; Huang, G. Effects of Folic Acid and Vitamin B12 Supplementation on Cognitive Impairment and Inflammation in Patients with Alzheimer’s Disease: A Randomized, Single-Blinded, Placebo-Controlled Trial. J. Prev. Alzheimer’s Dis. 2021, 8, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Lauer, A.A.; Grimm, H.S.; Apel, B.; Golobrodska, N.; Kruse, L.; Ratanski, E.; Schulten, N.; Schwarze, L.; Slawik, T.; Sperlich, S.; et al. Mechanistic Link between Vitamin B12 and Alzheimer’s Disease. Biomolecules 2022, 12, 129. [Google Scholar] [CrossRef] [PubMed]
- McCarter, S.J.; Stang, C.; Turcano, P.; Mielke, M.M.; Ali, F.; Bower, J.H.; Savica, R. Higher Vitamin B12 Level at Parkinson’s Disease Diagnosis Is Associated with Lower Risk of Future Dementia. Park. Relat. Disord. 2020, 73, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Wu, R. Plasma Homocysteine, Folate and Vitamin B12 Levels in Parkinson’s Disease in China: A Meta-Analysis. Clin. Neurol. Neurosurg. 2020, 188, 105587. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Xu, J.; Xu, Q.; Guo, Z.; Ou, R.; Shang, H.; Wei, Q. Association between the Risk and Severity of Parkinson’s Disease and Plasma Homocysteine, Vitamin B12 and Folate Levels: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2023, 15, 1254824. [Google Scholar] [CrossRef]
- Ashok, T.; Puttam, H.; Tarnate, V.C.A.; Jhaveri, S.; Avanthika, C.; Trejo Treviño, A.G.; Sl, S.; Ahmed, N.T. Role of Vitamin B12 and Folate in Metabolic Syndrome. Cureus 2021, 13, e18521. [Google Scholar] [CrossRef]
- Li, X.; Yuan, J.; Han, J.; Hu, W. Serum Levels of Homocysteine, Vitamin B12 and Folate in Patients with Multiple Sclerosis: An Updated Meta-Analysis. Int. J. Med. Sci. 2020, 17, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Jonnalagadda, D.; Kihara, Y.; Groves, A.; Ray, M.; Saha, A.; Ellington, C.; Lee-Okada, H.-C.; Furihata, T.; Yokomizo, T.; Quadros, E.V.; et al. FTY720 Requires Vitamin B12-TCN2-CD320 Signaling in Astrocytes to Reduce Disease in an Animal Model of Multiple Sclerosis. Cell Rep. 2023, 42, 113545. [Google Scholar] [CrossRef] [PubMed]
- Cong, W.; Bai, R.; Li, Y.-F.; Wang, L.; Chen, C. Selenium Nanoparticles as an Efficient Nanomedicine for the Therapy of Huntington’s Disease. ACS Appl. Mater. Interfaces 2019, 11, 34725–34735. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, X.; Li, X.; Wang, H.; Wang, T. Elevated Cerebrospinal Fluid Homocysteine Is Associated with Blood-Brain Barrier Disruption in Amyotrophic Lateral Sclerosis Patients. Neurol. Sci. 2020, 41, 1865–1872. [Google Scholar] [CrossRef]
- Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Transferrin-Functionalized Liposomes Loaded with Vitamin VB12 for Alzheimer’s Disease Therapy. Int. J. Pharm. 2022, 626, 122167. [Google Scholar] [CrossRef]
- Zubair, A.S.; Saab, L.; Scharer, K.; Khokhar, B. Patients’ Experiences with Methylcobalamin Injections in Amyotrophic Lateral Sclerosis. Brain Circ. 2024, 10, 60–66. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaszyńska, A.A. Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders. Pharmaceuticals 2024, 17, 813. https://doi.org/10.3390/ph17060813
Kaszyńska AA. Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders. Pharmaceuticals. 2024; 17(6):813. https://doi.org/10.3390/ph17060813
Chicago/Turabian StyleKaszyńska, Anna Aleksandra. 2024. "Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders" Pharmaceuticals 17, no. 6: 813. https://doi.org/10.3390/ph17060813
APA StyleKaszyńska, A. A. (2024). Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders. Pharmaceuticals, 17(6), 813. https://doi.org/10.3390/ph17060813