Sex-Gender Differences Are Completely Neglected in Treatments for Neuropathic Pain
Abstract
:1. Introduction
2. Relevant Sections
3. Recommendation for the Treatment of Neuropathic Pain
4. Evidence of Sex-Gender Differences
4.1. Amitriptyline
4.1.1. Studies Focused on the Treatment of Neuropathic Pain
4.1.2. Studies Focused on Diseases Other than Neuropathic Pain
4.1.3. Data Sheet
4.2. Nortriptyline
4.2.1. Studies Focused on the Treatment of Neuropathic Pain
4.2.2. Studies Focused on Diseases Other than Neuropathic Pain
4.2.3. Data Sheet
4.3. Duloxetine
4.3.1. Studies Focused on the Treatment of Neuropathic Pain
4.3.2. Studies Focused on Diseases Other than Neuropathic Pain
4.3.3. Data Sheet
4.4. Venlafaxine
4.4.1. Studies Focused on the Treatment of Neuropathic Pain
4.4.2. Studies Focused on Diseases Other than Neuropathic Pain
4.4.3. Data Sheet
4.5. Gabapentin
4.5.1. Studies Focused on the Treatment of Neuropathic Pain
4.5.2. Studies Focused on Diseases Other than Neuropathic Pain
4.5.3. Data Sheet
4.6. Pregabalin
4.6.1. Studies Focused on the Treatment of Neuropathic Pain
4.6.2. Studies Focused on Diseases Other than Neuropathic Pain
4.6.3. Data Sheet
4.7. Capsaicin
4.7.1. Studies Focused on the Treatment of Neuropathic Pain
4.7.2. Studies Focused on Diseases Other than Neuropathic Pain
4.7.3. Data Sheet
4.8. Lidocaine
4.8.1. Studies Focused on the Treatment of Neuropathic Pain
4.8.2. Studies Focused on Diseases Other than Neuropathic Pain
4.8.3. Data Sheet
4.9. Tramadol
4.9.1. Studies Focused on the Treatment of Neuropathic Pain
4.9.2. Studies Focused on Diseases Other than Neuropathic Pain
4.9.3. Data Sheet
4.10. Tapentadol
4.10.1. Studies Focused on the Treatment of Neuropathic Pain
4.10.2. Studies Focused on Diseases Other than Neuropathic Pain
4.10.3. Data Sheet
5. Discussion
6. Conclusions
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.H.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; et al. Neuropathic pain: An updated grading system for research and clinical practice. Pain 2016, 157, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From Mechanisms to Treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Primers 2017, 3, 17002. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.K.; Nones, C.F.; Reis, R.C.; Chichorro, J.G.; Cunha, J.M. Diabetic neuropathic pain: Physiopathology and treatment. World J. Diabetes 2015, 6, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Barnett, C.; Katzberg, H.D.; Lovblom, L.E.; Perkins, B.A.; Bril, V. Sex differences in neuropathic pain intensity in diabetes. J. Neurol. Sci. 2018, 388, 103–106. [Google Scholar] [CrossRef]
- Cardinez, N.; Lovblom, L.E.; Bai, J.W.; Lewis, E.; Abraham, A.; Scarr, D.; Lovshin, J.A.; Lytvyn, Y.; Boulet, G.; Farooqi, M.A.; et al. Sex differences in neuropathic pain in longstanding diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. J. Diabetes Complicat. 2018, 32, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.; Sloan, G.; Stevens, L.; Selvarajah, D.; Cruccu, G.; Gandhi, R.A.; Kempler, P.; Fuller, J.H.; Chaturvedi, N.; Tesfaye, S.; et al. Female sex is a risk factor for painful diabetic peripheral neuropathy: The EURODIAB prospective diabetes complications study. Diabetologia 2024, 67, 190–198. [Google Scholar] [CrossRef]
- Barcelon, E.; Chung, S.; Lee, J.; Lee, S.J. Sexual Dimorphism in the Mechanism of Pain Central Sensitization. Cells 2023, 12, 2028. [Google Scholar] [CrossRef]
- Mogil, J.S. Qualitative sex differences in pain processing: Emerging evidence of a biased literature. Nat. Rev. Neurosci. 2020, 21, 353–365. [Google Scholar] [CrossRef]
- Ghazisaeidi, S.; Muley, M.M.; Salter, M.W. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 565–583. [Google Scholar] [CrossRef]
- Madsen, T.E.; Bourjeily, G.; Hasnain, M.; Jenkins, M.; Morrison, M.F.; Sandberg, K.; Tong, I.L.; Trott, J.; Werbinski, J.L.; McGregor, A.J. Article Commentary: Sex- and Gender-Based Medicine: The Need for Precise Terminology. Gend. Genome 2017, 1, 122–128. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Berthold, H.K.; Campesi, I.; Carrero, J.J.; Dakal, S.; Franconi, F.; Gouni-Berthold, I.; Heiman, M.L.; Kautzky-Willer, A.; Klein, S.L.; et al. Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacol. Rev. 2021, 73, 730–762, Erratum in Pharmacol. Rev. 2021, 73, 860. [Google Scholar] [CrossRef]
- Deal, B.; Reynolds, L.M.; Patterson, C.; Janjic, J.M.; Pollock, J.A. Behavioral and inflammatory sex differences revealed by celecoxib nanotherapeutic treatment of peripheral neuroinflammation. Sci. Rep. 2022, 12, 8472. [Google Scholar] [CrossRef] [PubMed]
- Zucker, D.R.; Griffith, J.L.; Beshansky, J.R.; Selker, H.P. Presentations of acute myocardial infarction in men and women. J. Gen. Intern. Med. 1997, 12, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Attal, N.; Bouhassira, D.; Colvin, L. Advances and challenges in neuropathic pain: A narrative review and future directions. Br. J. Anaesth. 2023, 131, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Haroutounian, S.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpaa, M.; Jensen, T.S.; Kamerman, P.R.; McNicol, E.; Moore, A.; et al. Neuropathic pain clinical trials: Factors associated with decreases in estimated drug efficacy. Pain 2018, 159, 2339–2346. [Google Scholar] [CrossRef]
- Pisanu, C.; Franconi, F.; Gessa, G.L.; Mameli, S.; Pisanu, G.M.; Campesi, I.; Leggio, L.; Agabio, R. Sex differences in the response to opioids for pain relief: A systematic review and meta-analysis. Pharmacol. Res. 2019, 148, 104447. [Google Scholar] [CrossRef]
- Franconi, F.; Finocchi, C.; Allais, G.; Omboni, S.; Tullo, V.; Campesi, I.; Reggiardo, G.; Benedetto, C.; Bussone, G. Gender and triptan efficacy: A pooled analysis of three double-blind, randomized, crossover, multicenter, Italian studies comparing frovatriptan vs. other triptans. Neurol. Sci. 2014, 35 (Suppl. 1), 99–105. [Google Scholar] [CrossRef]
- Moore, R.A.; Derry, S.; Aldington, D.; Cole, P.; Wiffen, P.J. Amitriptyline for neuropathic pain in adults. Cochrane Database Syst. Rev. 2015, 2015, CD008242. [Google Scholar] [CrossRef]
- Derry, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Nortriptyline for neuropathic pain in adults. Cochrane Database Syst. Rev. 2015, 1, CD011209. [Google Scholar] [CrossRef]
- Birkinshaw, H.; Friedrich, C.M.; Cole, P.; Eccleston, C.; Serfaty, M.; Stewart, G.; White, S.; Moore, R.A.; Phillippo, D.; Pincus, T. Antidepressants for pain management in adults with chronic pain: A network meta-analysis. Cochrane Database Syst. Rev. 2023, 5, CD014682. [Google Scholar]
- Gallagher, H.C.; Gallagher, R.M.; Butler, M.; Buggy, D.J.; Henman, M.C. Venlafaxine for neuropathic pain in adults. Cochrane Database Syst. Rev. 2015, 8, CD011091. [Google Scholar] [CrossRef] [PubMed]
- Wiffen, P.J.; Derry, S.; Bell, R.F.; Rice, A.S.; Tölle, T.R.; Phillips, T.; Moore, R.A. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 6, CD007938. [Google Scholar] [CrossRef]
- Derry, S.; Bell, R.F.; Straube, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Pregabalin for neuropathic pain in adults. Cochrane Database Syst. Rev. 2019, 1, CD007076. [Google Scholar] [CrossRef]
- Dludla, P.V.; Nkambule, B.B.; Cirilli, I.; Marcheggiani, F.; Mabhida, S.E.; Ziqubu, K.; Ntamo, Y.; Jack, B.; Nyambuya, T.M.; Hanser, S.; et al. Capsaicin, its clinical significance in patients with painful diabetic neuropathy. Biomed. Pharmacother. 2022, 153, 113439. [Google Scholar] [CrossRef] [PubMed]
- Cabañero, D.; Villalba-Riquelme, E.; Fernández-Ballester, G.; Fernández-Carvajal, A.; Ferrer-Montiel, A. ThermoTRP channels in pain sexual dimorphism: New insights for drug intervention. Pharmacol. Ther. 2022, 240, 108297. [Google Scholar] [CrossRef] [PubMed]
- Derry, S.; Rice, A.S.; Cole, P.; Tan, T.; Moore, R.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 1, CD007393. [Google Scholar]
- Lee, J.H.; Koutalianos, E.P.; Leimer, E.M.; Bhullar, R.K.; Argoff, C.E. Intravenous Lidocaine in Chronic Neuropathic Pain: A Systematic Review. Clin. J. Pain 2022, 38, 739–748. [Google Scholar] [CrossRef]
- Duehmke, R.M.; Derry, S.; Wiffen, P.J.; Bell, R.F.; Aldington, D.; Moore, R.A. Tramadol for neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 6, CD003726. [Google Scholar] [CrossRef] [PubMed]
- Freo, U.; Romualdi, P.; Kress, H.G. Tapentadol for neuropathic pain: A review of clinical studies. J. Pain Res. 2019, 12, 1537–1551. [Google Scholar] [CrossRef]
- Schmid, Y.; Navarini, A.; Thomas, Z.M.; Pfleiderer, B.; Krähenbühl, S.; Mueller, S.M. Sex differences in the pharmacology of itch therapies-a narrative review. Curr. Opin. Pharmacol. 2019, 46, 122–142. [Google Scholar] [CrossRef]
- Unterecker, S.; Riederer, P.; Proft, F.; Maloney, J.; Deckert, J.; Pfuhlmann, B. Effects of gender and age on serum concentrations of antidepressants under naturalistic conditions. J. Neural Transm. (Vienna) 2013, 120, 1237–1246. [Google Scholar] [CrossRef]
- Baughman, K.R.; Bourguet, C.C.; Ober, S.K. Gender differences in the association between antidepressant use and restless legs syndrome. Mov. Disord. 2009, 24, 1054–1059. [Google Scholar] [CrossRef]
- Gilron, I.; Bailey, J.M.; Vandenkerkhof, E.G. Chronobiological characteristics of neuropathic pain: Clinical predictors of diurnal pain rhythmicity. Clin. J. Pain 2013, 29, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Pomara, N.; Shao, B.; Choi, S.J.; Tun, H.; Suckow, R.F. Sex-related differences in nortriptyline-induced side-effects among depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2001, 25, 1035–1048. [Google Scholar] [CrossRef]
- Uher, R.; Mors, O.; Hauser, J.; Rietschel, M.; Maier, W.; Kozel, D.; Henigsberg, N.; Souery, D.; Placentino, A.; Perroud, N.; et al. Body weight as a predictor of antidepressant efficacy in the GENDEP project. J. Affect. Disord. 2009, 118, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Weissman, A.M.; Levy, B.T.; Hartz, A.J.; Bentler, S.; Donohue, M.; Ellingrod, V.L.; Wisner, K.L. Pooled analysis of antidepressant levels in lactating mothers, breast milk, and nursing infants. Am. J. Psychiatry 2004, 161, 1066–1078. [Google Scholar] [CrossRef]
- Knadler, M.P.; Lobo, E.; Chappell, J.; Bergstrom, R. Duloxetine: Clinical pharmacokinetics and drug interactions. Clin. Pharmacokinet. 2011, 50, 281–294. [Google Scholar] [CrossRef]
- Lobo, E.D.; Quinlan, T.; O’Brien, L.; Knadler, M.P.; Heathman, M. Population pharmacokinetics of orally administered duloxetine in patients: Implications for dosing recommendation. Clin. Pharmacokinet. 2009, 48, 189–197, Erratum in Clin. Pharmacokinet. 2011, 50, 687–688. [Google Scholar] [CrossRef]
- Huang, Y.; Shan, Y.; Zhang, W.; Lee, A.M.; Li, F.; Stranger, B.E.; Huang, R.S. Deciphering genetic causes for sex differences in human health through drug metabolism and transporter genes. Nat. Commun. 2023, 14, 175. [Google Scholar] [CrossRef]
- Farrar, J.T.; Pritchett, Y.L.; Robinson, M.; Prakash, A.; Chappell, A. The clinical importance of changes in the 0 to 10 numeric rating scale for worst, least, and average pain intensity: Analyses of data from clinical trials of duloxetine in pain disorders. J. Pain 2010, 11, 109–118. [Google Scholar] [CrossRef]
- Goldstein, D.J.; Lu, Y.; Detke, M.J.; Lee, T.C.; Iyengar, S. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 2005, 116, 109–118. [Google Scholar] [CrossRef]
- Raskin, J.; Pritchett, Y.L.; Wang, F.; D’Souza, D.N.; Waninger, A.L.; Iyengar, S.; Wernicke, J.F. A double-blind, randomized multicenter trial comparing duloxetine with placebo in the management of diabetic peripheral neuropathic pain. Pain Med. 2005, 6, 346–356. [Google Scholar] [CrossRef]
- Wernicke, J.F.; Pritchett, Y.L.; D’Souza, D.N.; Waninger, A.; Tran, P.; Iyengar, S.; Raskin, J. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology 2006, 67, 1411–1420. [Google Scholar] [CrossRef]
- Govil, N.; Arora, P.; Parag, K.; Tripathi, M.; Garg, P.K.; Goyal, T. Postoperative acute pain management with duloxetine as compared to placebo: A systematic review with meta-analysis of randomized clinical trials. Pain Pract. 2023, 23, 818–837. [Google Scholar] [CrossRef]
- Arnold, L.M. Duloxetine and other antidepressants in the treatment of patients with fibromyalgia. Pain Med. 2007, 8 (Suppl. 2), S63–S74. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.A. Fibromyalgia: Diagnosis and treatment options. Gend. Med. 2009, 6 (Suppl. 2), 139–151. [Google Scholar] [CrossRef]
- National Institute of Child Health and Human Development. Drugs and Lactation Database (LactMed®). Available online: https://www.ncbi.nlm.nih.gov/books/NBK501470 (accessed on 6 January 2024).
- Ipser, J.C.; Stein, D.J. Evidence-based pharmacotherapy of post-traumatic stress disorder (PTSD). Int. J. Neuropsychopharmacol. 2012, 15, 825–840. [Google Scholar] [CrossRef]
- Davidson, J.; Baldwin, D.; Stein, D.J.; Kuper, E.; Benattia, I.; Ahmed, S.; Pedersen, R.; Musgnung, J. Treatment of posttraumatic stress disorder with venlafaxine extended release: A 6-month randomized controlled trial. Arch. Gen. Psychiatry 2006, 63, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.; Rothbaum, B.O.; Tucker, P.; Asnis, G.; Benattia, I.; Musgnung, J.J. Venlafaxine extended release in posttraumatic stress disorder: A sertraline- and placebo-controlled study. J. Clin. Psychopharmacol. 2006, 26, 259–267, Erratum in J. Clin. Psychopharmacol. 2006, 26, 473. [Google Scholar] [CrossRef] [PubMed]
- Muriel, J.; Escorial, M.; Margarit, C.; Barrachina, J.; Carvajal, C.; Morales, D.; Peiró, A.M. Long-term deprescription in chronic pain and opioid use disorder patients: Pharmacogenetic and sex differences. Acta Pharm. 2023, 73, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Schoretsanitis, G.; Haen, E.; Hiemke, C.; Fay, B.; Unholzer, S.; Correll, C.U.; Gründer, G.; Paulzen, M. Sex and body weight are major determinants of venlafaxine pharmacokinetics. Int. Clin. Psychopharmacol. 2018, 33, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Unterecker, S.; Hiemke, C.; Greiner, C.; Haen, E.; Jabs, B.; Deckert, J.; Pfuhlmann, B. The effect of age, sex, smoking and co-medication on serum levels of venlafaxine and O-desmethylvenlafaxine under naturalistic conditions. Pharmacopsychiatry 2012, 45, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, H.P.; Hefner, G.; Ben-Omar, N.; Köstlbacher, A.; Wenzel-Seifert, K.; Hiemke, C.; Haen, E. Steady-state serum concentrations of venlafaxine in patients with late-life depression. Impact of age, sex and BMI. J. Neural Transm. (Vienna) 2015, 122, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Kantor, D.; Panchal, S.; Patel, V.; Bucior, I.; Rauck, R. Treatment of Postherpetic Neuralgia With Gastroretentive Gabapentin: Interaction of Patient Demographics, Disease Characteristics, and Efficacy Outcomes. J. Pain 2015, 16, 1300–1311. [Google Scholar] [CrossRef] [PubMed]
- Shaparin, N.; Slattum, P.W.; Bucior, I.; Nalamachu, S. Relationships Among Adverse Events, Disease Characteristics, and Demographics in Treatment of Postherpetic Neuralgia With Gastroretentive Gabapentin. Clin. J. Pain 2015, 31, 983–991. [Google Scholar] [CrossRef]
- Boyd, R.A.; Türck, D.; Abel, R.B.; Sedman, A.J.; Bockbrader, H.N. Effects of age and gender on single-dose pharmacokinetics of gabapentin. Epilepsia 1999, 40, 474–479. [Google Scholar] [CrossRef]
- Johannessen Landmark, C.; Beiske, G.; Baftiu, A.; Burns, M.L.; Johannessen, S.I. Experience from therapeutic drug monitoring and gender aspects of gabapentin and pregabalin in clinical practice. Seizure 2015, 28, 88–91. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Child Health and Human Development. Drugs and Lactation Database (LactMed®). Available online: https://www.ncbi.nlm.nih.gov/books/NBK501224 (accessed on 6 January 2024).
- Hirakata, M.; Yoshida, S.; Tanaka-Mizuno, S.; Kuwauchi, A.; Kawakami, K. Pregabalin Prescription for Neuropathic Pain and Fibromyalgia: A Descriptive Study Using Administrative Database in Japan. Pain Res. Manag. 2018, 2018, 2786151. [Google Scholar] [CrossRef]
- Alexander, J.; Edwards, R.A.; Savoldelli, A.; Manca, L.; Grugni, R.; Emir, B.; Whalen, E.; Watt, S.; Brodsky, M.; Parsons, B. Integrating data from randomized controlled trials and observational studies to predict the response to pregabalin in patients with painful diabetic peripheral neuropathy. BMC Med. Res. Methodol. 2017, 17, 113. [Google Scholar] [CrossRef] [PubMed]
- Byon, W.; Ouellet, D.; Chew, M.; Ito, K.; Burger, P.; Pauer, L.; Zeiher, B.; Corrigan, B. Exposure-response analyses of the effects of pregabalin in patients with fibromyalgia using daily pain scores and patient global impression of change. J. Clin. Pharmacol. 2010, 50, 803–815. [Google Scholar] [CrossRef]
- Lockwood, P.A.; Pauer, L.; Scavone, J.M.; Allard, M.; Mendes da Costa, L.; Alebic-Kolbah, T.; Plotka, A.; Alvey, C.W.; Chew, M.L. The Pharmacokinetics of Pregabalin in Breast Milk, Plasma, and Urine of Healthy Postpartum Women. J. Hum. Lact. 2016, 32, NP1–NP8. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P.; Andersen, O.K.; Arendt-Nielsen, L. A human experimental capsaicin model for trigeminal sensitization. Gender-specific differences. Pain 2005, 118, 155–163. [Google Scholar] [CrossRef]
- Frot, M.; Feine, J.S.; Bushnell, C.M. Sex differences in pain perception and anxiety. A psychophysical study with topical capsaicin. Pain 2004, 108, 230–236. [Google Scholar] [CrossRef]
- Belfer, I.; Segall, S.K.; Lariviere, W.R.; Smith, S.B.; Dai, F.; Slade, G.D.; Rashid, N.U.; Mogil, J.S.; Campbell, C.M.; Edwards, R.R.; et al. Pain modality- and sex-specific effects of COMT genetic functional variants. Pain 2013, 154, 1368–1376. [Google Scholar] [CrossRef]
- Roukka, S.; Puputti, S.; Aisala, H.; Hoppu, U.; Seppä, L.; Sandell, M. Factors explaining individual differences in the oral perception of capsaicin, l-menthol, and aluminum ammonium sulfate. Clin. Transl. Sci. 2023, 16, 1815–1827. [Google Scholar] [CrossRef]
- Zaleski, K.S.; Gyampo, A.O.; Lora, B.; Tomasi, T.; Lynch, M.; Giuriato, G.; Basso, E.; Finegan, E.; Schickler, J.; Venturelli, M.; et al. Sex differences in estimates of cardiac autonomic function using heart rate variability: Effects of dietary capsaicin. Eur. J. Appl. Physiol. 2023, 123, 1041–1050. [Google Scholar] [CrossRef]
- McCleskey, P.E.; Patel, S.M.; Mansalis, K.A.; Elam, A.L.; Kinsley, T.R. Serum lidocaine levels and cutaneous side effects after application of 23% lidocaine 7% tetracaine ointment to the face. Dermatol. Surg. 2013, 39, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; You, H.J. Variation of pain and vasomotor responses evoked by intramuscular infusion of hypertonic saline in human subjects: Influence of gender and its potential neural mechanisms. Brain Res. Bull. 2012, 87, 564–570. [Google Scholar] [CrossRef]
- Rozen, T.D.; Fishman, R.S. Female cluster headache in the United States of America: What are the gender differences? Results from the United States Cluster Headache Survey. J. Neurol. Sci. 2012, 317, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Sahai-Srivastava, S.; Subhani, D. Adverse effect profile of lidocaine injections for occipital nerve block in occipital neuralgia. J. Headache Pain 2010, 11, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Oztekin, S.; Mavioglu, O.; Elar, Z.; Guven, H.; Kalkan, S.; Gurpinar, T. The effects of gender and menopause on serum lidocaine levels in smokers. Eur. J. Drug Metab. Pharmacokinet. 2005, 30, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.E.; Riley, J.L., 3rd; Brown, F.F.; Gremillion, H. Sex differences in response to cutaneous anesthesia: A double blind randomized study. Pain 1998, 77, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.S.; Bielinski, S.; Moyer, A.M.; Jacobson, D.J.; Wang, L.; Jiang, R.; Larson, N.B.; Miller, V.M.; Zhu, Y.; Cavanaugh, D.C.; et al. Sex differences in type and occurrence of adverse reactions to opioid analgesics: A retrospective cohort study. BMJ Open 2021, 11, e044157. [Google Scholar] [CrossRef] [PubMed]
- Ballester, P.; Muriel, J.; Peiró, A.M. CYP2D6 phenotypes and opioid metabolism: The path to personalized analgesia. Expert Opin. Drug Metab. Toxicol. 2022, 18, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.Y.; Wang, Y.H.; Guo, T.; Li, X.L.; Su, X.Y.; Zhao, L.S. Pharmacokinetics of tramadol in a diverse healthy Chinese population. J. Clin. Pharm. Ther. 2012, 37, 599–603. [Google Scholar] [CrossRef]
- Schelde, A.B.; Sørensen, A.M.S.; Hindsø, M.; Christensen, M.B.; Jimenez-Solem, E.; Eriksson, R. Sex and age differences among tramadol users in three Nordic countries. Dan. Med. J. 2020, 67, A06190336. [Google Scholar]
- Habibollahi, P.; Garjani, A.; Shams Vahdati, S.; Sadat-Ebrahimi, S.R.; Parnianfard, N. Severe complications of tramadol overdose in Iran. Epidemiol. Health 2019, 41, e2019026. [Google Scholar] [CrossRef]
- Ahmadimanesh, M.; Shadnia, S.; Rouini, M.R.; Sheikholeslami, B.; Ahsani Nasab, S.; Ghazi-Khansari, M. Correlation between plasma concentrations of tramadol and its metabolites and the incidence of seizure in tramadol-intoxicated patients. Drug Metab. Pers. Ther. 2018, 33, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; Holford, N.; Anderson, B.J.; Holford, S.; Stuber, F.; Rochette, A.; Trocóniz, I.F.; Beier, H.; de Hoon, J.N.; Pedersen, R.S.; et al. Tramadol and o-desmethyl tramadol clearance maturation and disposition in humans: A pooled pharmacokinetic study. Clin. Pharmacokinet. 2015, 54, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Hui-Chen, L.; Yang, Y.; Na, W.; Ming, D.; Jian-Fang, L.; Hong-Yuan, X. Pharmacokinetics of the enantiomers of trans-tramadol and its active metabolite, trans-O-demethyltramadol, in healthy male and female chinese volunteers. Chirality 2004, 16, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Ardakani, Y.H.; Rouini, M.R. Pharmacokinetics of tramadol and its three main metabolites in healthy male and female volunteers. Biopharm. Drug Dispos. 2007, 28, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.; Etropolski, M.S.; Shapiro, D.Y.; Rauschkolb, C.; Vinik, A.I.; Lange, B.; Cooper, K.; Van Hove, I.; Haeussler, J. A pooled analysis evaluating the efficacy and tolerability of tapentadol extended release for chronic, painful diabetic peripheral neuropathy. Clin. Drug Investig. 2015, 35, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.S.; Smit, J.W.; Lin, R.; Stuyckens, K.; Terlinden, R.; Nandy, P. Population pharmacokinetics of tapentadol immediate release (IR) in healthy subjects and patients with moderate or severe pain. Clin. Pharmacokinet. 2010, 49, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, L.; Scurrah, N.; Neal-Williams, T.; Zhang, W.; Chen, S.; Slifirski, H.; Liu, D.S.; Armellini, A.; Aly, A.; Clough, A.; et al. The transit of oral premedication beyond the stomach in patients undergoing laparoscopic sleeve gastrectomy: A retrospective observational multicentre study. BMC Surg. 2023, 23, 335. [Google Scholar] [CrossRef] [PubMed]
- Sramek, J.J.; Murphy, M.F.; Cutler, N.R. Sex differences in the psychopharmacological treatment of depression. Dialogues Clin. Neurosci. 2016, 18, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.G.; Baker, K.B.; Plow, E.; Malone, D.A. Cerebral stimulation for the affective component of neuropathic pain. Neuromodulation 2013, 16, 514–518. [Google Scholar] [CrossRef]
- Weizman, L.; Dayan, L.; Brill, S.; Nahman-Averbuch, H.; Hendler, T.; Jacob, G.; Sharon, H. Cannabis analgesia in chronic neuropathic pain is associated with altered brain connectivity. Neurology 2018, 91, e1285–e1294. [Google Scholar] [CrossRef] [PubMed]
- Osborne, N.R.; Davis, K.D. Sex and gender differences in pain. Int. Rev. Neurobiol. 2022, 164, 277–307. [Google Scholar] [PubMed]
- Umeda, M.; Okifuji, A. Exploring the sex differences in conditioned pain modulation and its biobehavioral determinants in healthy adults. Musculoskelet. Sci. Pract. 2023, 63, 102710. [Google Scholar] [CrossRef] [PubMed]
- Rich-Edwards, J.W.; Kaiser, U.B.; Chen, G.L.; Manson, J.E.; Goldstein, J.M. Sex and Gender Differences Research Design for Basic, Clinical, and Population Studies: Essentials for Investigators. Endocr. Rev. 2018, 39, 424–439. [Google Scholar] [CrossRef]
- Campesi, I.; Montella, A.; Seghieri, G.; Franconi, F. The Person’s Care Requires a Sex and Gender Approach. J. Clin. Med. 2021, 10, 4770. [Google Scholar] [CrossRef]
NNT | Sex and Gender Differences Found | Pregnancy (Risk Category) | Breastfeeding | Suggestions | |||
---|---|---|---|---|---|---|---|
Medication | Pharmacokinetic | Efficacy | Adverse Events | ||||
First-Line Treatments | |||||||
Amitriptyline | 3.6 (combined tricyclic antidepressants) | YES Blood levels: F > M (396 F; 297 M) | UNCLEAR No information found | UNCLEAR Sample of participants too small | C | Detectable in breastmilk. Potential serious adverse reactions in infants. | Doses required: F < M |
Nortriptyline | YES Blood levels: F > M (45 F; 33 M) | UNCLEAR No information found | UNCLEAR Different adverse events: F ≠ M | C | Low levels in breastmilk. Use is possible with caution. | Doses required: F < M | |
Duloxetine | 6.4 (combined serotonin–noradrenaline reuptake inhibitors) | YES Blood levels: F > M (43 F; 69 M) | NO Pain reduction: F = M (492 F; 647 M) | UNCLEAR No information found | C | Not recommended. | Doses required: F < M |
Venlafaxine | YES Blood levels: F > M (450 F; 287 M; and 304 F; 174 M) Dose required to achieve similar blood levels: F < M (865 F; 552 M) | NO Pain reduction: F = M (178 F; 151 M) | UNCLEAR No information found | C | Detectable in breastmilk. Potential serious adverse reactions in infants. | Doses required: F < M | |
Gabapentin | 7.2 | NO Blood levels: F = M (18 F; 18 M; and 121 F; 68 M) | UNCLEAR A difference found related to baseline pain intensity | YES F > M (335 F; 221 M) | C | Detectable in breastmilk. Unknown adverse reactions in infants. | Doses required: F < M |
Pregabalin | 7.7 | YES Blood levels: F > M (94 F; 73 M; and 2568 F; 191 M) Dose required: F < M (23,246 F; 22,085 M) | UNCLEAR A difference found without information on the direction | UNCLEAR No information found | C | Low levels in breastmilk. Not recommended (risk of tumorigenicity). | Doses required: F < M |
Second-Line Treatments | |||||||
Capsaicin | 10.6 | UNCLEAR No information found | UNCLEAR No information found | UNCLEAR No information found | B–C | Not studied. | Further studies needed |
Lidocaine | Not reported | UNCLEAR Blood levels: F < M (32 F; 20 M; topical); F = M (12 F; 6 M; intravenous) | UNCLEAR Pain reduction: F < M (10 F; 10 M); F > M (318 F; 816 M); F = M (12 F; 12 M) | YES F > M (69 F; 20 M; injected for occipital neuralgia) | B | Detectable in breastmilk. Use is possible with caution. | Doses required: F < M |
Tramadol | 4.7 | UNCLEAR Blood levels: F > M (25 F; 25 M); F = M (10 F; 10 M; 12 F; 12 M); F < M (9 F; 350 M; and 29 F; 91 M) Dose administered: F > M (number of F and M unknown); F = M (number of F and M unknown) | UNCLEAR No information found | YES F > M (2746 people, especially vomiting; 2296 F; 1427 M) | C | Detectable in breastmilk (after intravenous administration). Not recommended (insufficiently studied). | Doses required: F < M |
Third-Line Treatments | |||||||
Tapentadol | 10.2 | UNCLEAR Oral clearance: F > M 1 (1339 F; 488 M) Gut transit: F = M (66 F; 34 M) | UNCLEAR Pain reduction: F > M (141 F; 202 M; non-significant difference) | UNCLEAR No information found | C | Detectable in breastmilk. Not recommended (insufficiently studied). | Further studies needed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salis, F.; Sardo, S.; Finco, G.; Gessa, G.L.; Franconi, F.; Agabio, R. Sex-Gender Differences Are Completely Neglected in Treatments for Neuropathic Pain. Pharmaceuticals 2024, 17, 838. https://doi.org/10.3390/ph17070838
Salis F, Sardo S, Finco G, Gessa GL, Franconi F, Agabio R. Sex-Gender Differences Are Completely Neglected in Treatments for Neuropathic Pain. Pharmaceuticals. 2024; 17(7):838. https://doi.org/10.3390/ph17070838
Chicago/Turabian StyleSalis, Francesco, Salvatore Sardo, Gabriele Finco, Gian Luigi Gessa, Flavia Franconi, and Roberta Agabio. 2024. "Sex-Gender Differences Are Completely Neglected in Treatments for Neuropathic Pain" Pharmaceuticals 17, no. 7: 838. https://doi.org/10.3390/ph17070838
APA StyleSalis, F., Sardo, S., Finco, G., Gessa, G. L., Franconi, F., & Agabio, R. (2024). Sex-Gender Differences Are Completely Neglected in Treatments for Neuropathic Pain. Pharmaceuticals, 17(7), 838. https://doi.org/10.3390/ph17070838