Liver Fibrosis Stages Affect Organic Cation Transporter 1/2 Activities in Hepatitis C Virus-Infected Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods and Materials
4.1. Clinical Study
4.2. Metformin Analysis in Plasma
4.3. Power Analysis
4.4. Pharmacokinetics Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO) Hepatitis C. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 21 February 2024).
- Li, K.; Li, N.L.; Wei, D.; Pfeffer, S.R.; Fan, M.; Pfeffer, L.M. Activation of Chemokine and Inflammatory Cytokine Response in Hepatitis C Virus-Infected Hepatocytes Depends on Toll-like Receptor 3 Sensing of Hepatitis C Virus Double-Stranded RNA Intermediates. Hepatology 2012, 55, 666–675. [Google Scholar] [CrossRef]
- Li, H.; Huang, M.H.; Jiang, J.D.; Peng, Z.G. Hepatitis C: From Inflammatory Pathogenesis to Antiinflammatory/Hepatoprotective Therapy. World J. Gastroenterol. 2018, 24, 5297–5311. [Google Scholar] [CrossRef]
- Zampino, R.; Marrone, A.; Restivo, L.; Guerrera, B.; Sellitto, A.; Rinaldi, L.; Romano, C.; Adinolfi, L.E. Chronic HCV Infection and Inflammation: Clinical Impact on Hepatic and Extra-Hepatic Manifestations. World J. Hepatol. 2013, 5, 528–540. [Google Scholar] [CrossRef]
- Nishitsuji, H.; Funami, K.; Shimizu, Y.; Ujino, S.; Sugiyama, K.; Seya, T.; Takaku, H.; Shimotohno, K. Hepatitis C Virus Infection Induces Inflammatory Cytokines and Chemokines Mediated by the Cross Talk between Hepatocytes and Stellate Cells. J. Virol. 2013, 87, 8169–8178. [Google Scholar] [CrossRef]
- Bedossa, P.; Poynard, T. An Algorithm for the Grading of Activity in Chronic Hepatitis C. Hepatology 1996, 24, 289–293. [Google Scholar] [CrossRef]
- Atzori, L.; Poli, G.; Perra, A. Hepatic Stellate Cell: A Star Cell in the Liver. Int. J. Biochem. Cell Biol. 2009, 41, 1639–1642. [Google Scholar] [CrossRef]
- Lenoir, C.; Terrier, J.; Gloor, Y.; Curtin, F.; Rollason, V.; Desmeules, J.A.; Daali, Y.; Reny, J.L.; Samer, C.F. Impact of SARS-CoV-2 Infection (COVID-19) on Cytochromes P450 Activity Assessed by the Geneva Cocktail. Clin. Pharmacol. Ther. 2021, 110, 1358–1367. [Google Scholar] [CrossRef]
- Lenoir, C.; Daali, Y.; Rollason, V.; Curtin, F.; Gloor, Y.; Bosilkovska, M.; Walder, B.; Gabay, C.; Nissen, M.J.; Desmeules, J.A.; et al. Impact of Acute Inflammation on Cytochromes P450 Activity Assessed by the Geneva Cocktail. Clin. Pharmacol. Ther. 2021, 109, 1668–1676. [Google Scholar] [CrossRef]
- Lanchote, V.L.; Almeida, R.; Barral, A.; Barral-Netto, M.; Marques, M.P.; Moraes, N.V.; Da Silva, A.M.; Souza, T.M.V.; Suarez-Kurtz, G. Impact of Visceral Leishmaniasis and Curative Chemotherapy on Cytochrome P450 Activity in Brazilian Patients. Br. J. Clin. Pharmacol. 2015, 80, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.C.; Elias, A.B.R.; Marques, M.P.; de Melo, G.C.; da Costa, A.G.; Figueiredo, E.F.G.; Brasil, L.W.; Rodrigues-Soares, F.; Monteiro, W.M.; de Lacerda, M.V.G.; et al. Impact of Plasmodium Vivax Malaria and Antimalarial Treatment on Cytochrome P450 Activity in Brazilian Patients. Br. J. Clin. Pharmacol. 2021, 87, 1859–1868. [Google Scholar] [CrossRef]
- Cressman, A.M.; Petrovic, V.; Piquette-Miller, M. Inflammation-Mediated Changes in Drug Transporter Expression/Activity: Implications for Therapeutic Drug Response. Expert Rev. Clin. Pharmacol. 2012, 5, 69–89. [Google Scholar] [CrossRef]
- FDA US Department of Health and Human Services Food. Drug Development and Drug Interactions | Table of Substrates, Inhibitors and Inducers. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers (accessed on 21 February 2024).
- FDA US Department of Health and Human Services Food; CDER Guidance for Industry. Clinical Drug Interaction Studies–Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions (accessed on 21 February 2024).
- European Medicines Agency Committee for Medicinal Products for Human Use. ICH Guideline M12 on Drug Interaction Studies Step 2b. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m12-drug-interaction-studies-step-2b_en.pdf (accessed on 21 February 2024).
- Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.R.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; Hillgren, K.M.; et al. Membrane Transporters in Drug Development. Nat. Rev. Drug Discov. 2010, 9, 215–236. [Google Scholar] [CrossRef]
- Ogasawara, K.; Terada, T.; Toshiya, K.; Hatano, E.; Ikai, I.; Yamaoka, Y.; Inui, K.I. Hepatitis C Virus-Related Cirrhosis Is a Major Determinant of the Expression Levels of Hepatic Drug Transporters. Drug Metab. Pharmacokinet. 2010, 25, 190–199. [Google Scholar] [CrossRef]
- Hanada, K.; Nakai, K.; Tanaka, H.; Suzuki, F.; Kumada, H.; Ohno, Y.; Ozawa, S.; Ogata, H. Effect of Nuclear Receptor Downregulation on Hepatic Expression of Cytochrome P450 and Transporters in Chronic Hepatitis C in Association with Fibrosis Development. Drug Metab. Pharmacokinet. 2012, 27, 301–306. [Google Scholar] [CrossRef]
- Nakai, K.; Tanaka, H.; Hanada, K.; Ogata, H.; Suzuki, F.; Kumada, H.; Miyajima, A.; Ishida, S.; Sunouchi, M.; Habano, W.; et al. Decreased Expression of Cytochromes P450 1A2, 2E1, and 3A4 and Drug Transporters Na+-Taurocholate-Cotransporting Polypeptide, Organic Cation Transporter 1, and Organic Anion-Transporting Peptide-C Correlates with the Progression of Liver Fibrosis in Chronic Hepatitis C Patients. Drug Metab. Dispos. 2008, 36, 1786–1793. [Google Scholar] [CrossRef]
- Billington, S.; Ray, A.S.; Salphati, L.; Xiao, G.; Chu, X.; Humphreys, W.G.; Liao, M.; Lee, C.A.; Mathias, A.; Hop, C.E.C.A.; et al. Transporter Expression in Noncancerous and Cancerous Liver Tissue from Donors with Hepatocellular Carcinoma and Chronic Hepatitis C Infection Quantified by LC-MS/MS Proteomics. Drug Metab. Dispos. 2018, 46, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Collins, C.; Kelly, E.J.; Chu, X.; Ray, A.S.; Salphati, L.; Xiao, G.; Lee, C.; Lai, Y.; Liao, M.; et al. Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics. Drug Metab. Dispos. 2016, 44, 1752–1758. [Google Scholar] [CrossRef]
- Drozdzik, M.; Szelag-Pieniek, S.; Post, M.; Zeair, S.; Wrzesinski, M.; Kurzawski, M.; Prieto, J.; Oswald, S. Protein Abundance of Hepatic Drug Transporters in Patients With Different Forms of Liver Damage. Clin. Pharmacol. Ther. 2020, 107, 1138–1148. [Google Scholar] [CrossRef]
- Droździk, M.; Lapczuk-Romanska, J.; Wenzel, C.; Skalski, Ł.; Szeląg-Pieniek, S.; Post, M.; Syczewska, M.; Kurzawski, M.; Oswald, S. Protein Abundance of Drug Transporters in Human Hepatitis C Livers. Int. J. Mol. Sci. 2022, 23, 7947. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.T.; Tian, D.D.; Tanna, R.S.; Hadi, D.L.; Bansal, S.; Calamia, J.C.; Arian, C.M.; Shireman, L.M.; Molnár, B.; Horváth, M.; et al. Assessing Transporter-Mediated Natural Product-Drug Interactions Via In Vitro-In Vivo Extrapolation: Clinical Evaluation With a Probe Cocktail. Clin. Pharmacol. Ther. 2021, 109, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
- Burt, H.J.; Neuhoff, S.; Almond, L.; Gaohua, L.; Harwood, M.D.; Jamei, M.; Rostami-Hodjegan, A.; Tucker, G.T.; Rowland-Yeo, K. Metformin and Cimetidine: Physiologically Based Pharmacokinetic Modelling to Investigate Transporter Mediated Drug-Drug Interactions. Eur. J. Pharm. Sci. 2016, 88, 70–82. [Google Scholar] [CrossRef]
- Kwon, M.; Jeon, J.H.; Choi, M.K.; Song, I.S. The Development and Validation of a Novel “Dual Cocktail” Probe for Cytochrome P450s and Transporter Functions to Evaluate Pharmacokinetic Drug-Drug and Herb-Drug Interactions. Pharmaceutics 2020, 12, 938. [Google Scholar] [CrossRef]
- Stopfer, P.; Giessmann, T.; Hohl, K.; Sharma, A.; Ishiguro, N.; Taub, M.E.; Zimdahl-Gelling, H.; Gansser, D.; Wein, M.; Ebner, T.; et al. Pharmacokinetic Evaluation of a Drug Transporter Cocktail Consisting of Digoxin, Furosemide, Metformin, and Rosuvastatin. Clin. Pharmacol. Ther. 2016, 100, 259–267. [Google Scholar] [CrossRef]
- Nishiyama, K.; Toshimoto, K.; Lee, W.; Ishiguro, N.; Bister, B.; Sugiyama, Y. Physiologically-Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 396–406. [Google Scholar] [CrossRef]
- Trueck, C.; Hsin, C.H.; Scherf-Clavel, O.; Schaeffeler, E.; Lenssen, R.; Gazzaz, M.; Gersie, M.; Taubert, M.; Quasdorff, M.; Schwab, M.; et al. A Clinical Drug-Drug Interaction Study Assessing a Novel Drug Transporter Phenotyping Cocktail With Adefovir, Sitagliptin, Metformin, Pitavastatin, and Digoxin. Clin. Pharmacol. Ther. 2019, 106, 1398–1407. [Google Scholar] [CrossRef]
- McGill, M.R. The Past and Present of Serum Aminotransferases and the Future of Liver Injury Biomarkers. EXCLI J. 2016, 15, 817–828. [Google Scholar] [CrossRef]
- Krauzová, E.; Tůma, P.; de Glisezinski, I.; Štich, V.; Šiklová, M. Metformin Does Not Inhibit Exercise-Induced Lipolysis in Adipose Tissue in Young Healthy Lean Men. Front. Physiol. 2018, 9, 604. [Google Scholar] [CrossRef]
- Santoro, A.B.; Botton, M.R.; Struchiner, C.J.; Suarez-Kurtz, G. Influence of Pharmacogenetic Polymorphisms and Demographic Variables on Metformin Pharmacokinetics in an Admixed Brazilian Cohort. Br. J. Clin. Pharmacol. 2018, 84, 987–996. [Google Scholar] [CrossRef]
- Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of Orally Administered Drugs on the World Health Organization Model List of Essential Medicines According to the Biopharmaceutics Classification System. Eur. J. Pharm. Biopharm. 2004, 58, 265–278. [Google Scholar] [CrossRef]
- Liang, X.; Giacomini, K.M. Transporters Involved in Metformin Pharmacokinetics and Treatment Response. J. Pharm. Sci. 2017, 106, 2245–2250. [Google Scholar] [CrossRef]
- Graham, G.G.; Punt, J.; Arora, M.; Day, R.O.; Doogue, M.P.; Duong, J.K.; Furlong, T.J.; Greenfield, J.R.; Greenup, L.C.; Kirkpatrick, C.M.; et al. Clinical Pharmacokinetics of Metformin. Clin. Pharmacokinet. 2011, 50, 81–98. [Google Scholar] [CrossRef]
- Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin Pathways: Pharmacokinetics and Pharmacodynamics. Pharmacogenet. Genom. 2012, 22, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Verbeeck, R.K. Pharmacokinetics and Dosage Adjustment in Patients with Hepatic Dysfunction. Eur. J. Clin. Pharmacol. 2008, 64, 1147–1161. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Leen, E.; Norman, R.; Er, M.; En, M.; John, A.; Rris, M. O Hepatic Blood Flow Changes in Chronic Hepatitis C Measured by Duplex Doppler Color Sonography Relationship to Histological Features. Dig. Dis. Sci. 1998, 43, 2584–2590. [Google Scholar] [CrossRef]
- Le Couteur, D.G.; Fraser, R.; Hilmer, S.; Rivory, L.P.; Mclean, A.J. The Hepatic Sinusoid in Aging and Cirrhosis Effects on Hepatic Substrate Disposition and Drug Clearance. Clin. Pharmacokinet. 2005, 44, 187–200. [Google Scholar] [CrossRef]
- Henriksson, E.; Huber, A.L.; Soto, E.K.; Kriebs, A.; Vaughan, M.E.; Duglan, D.; Chan, A.B.; Papp, S.J.; Nguyen, M.; Afetian, M.E.; et al. The Liver Circadian Clock Modulates Biochemical and Physiological Responses to Metformin. J. Biol. Rhythms 2017, 32, 345–358. [Google Scholar] [CrossRef]
- Türk, D.; Scherer, N.; Selzer, D.; Dings, C.; Hanke, N.; Dallmann, R.; Schwab, M.; Timmins, P.; Nock, V.; Lehr, T. Significant Impact of Time-of-Day Variation on Metformin Pharmacokinetics. Diabetologia 2023, 66, 1024–1034. [Google Scholar] [CrossRef]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.L.; Strawbridge, S.A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef] [PubMed]
- Tarragô, A.M.; da Costa, A.G.; Pimentel, J.P.D.; Gomes, S.T.M.; Freitas, F.B.; Lalwani, P.; de Araújo, A.R.S.; da Silva Victória, F.; Victória, M.B.; Vallinoto, A.C.R.; et al. Combined Impact of Hepatitis C Virus Genotype 1 and Interleukin-6 and Tumor Necrosis Factor-α Polymorphisms on Serum Levels of pro-Inflammatory Cytokines in Brazilian HCV-Infected Patients. Hum. Immunol. 2014, 75, 1075–1083. [Google Scholar] [CrossRef]
- Fardel, O.; Le Vée, M. Regulation of Human Hepatic Drug Transporter Expression by Pro-Inflammatory Cytokines. Expert. Opin. Drug Metab. Toxicol. 2009, 5, 1469–1481. [Google Scholar] [CrossRef]
- Le Vee, M.; Lecureur, V.; Stieger, B.; Fardel, O. Regulation of Drug Transporter Expression in Human Hepatocytes Exposed to the Proinflammatory Cytokines Tumor Necrosis Factor-α or Interleukin-6. Drug Metab. Dispos. 2009, 37, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Radmanić, L.; Bodulić, K.; Šimičić, P.; Vince, A.; Židovec Lepej, S. The Effect of Treatment-Induced Viral Eradication on Cytokine and Growth Factor Expression in Chronic Hepatitis, C. Viruses 2022, 14, 1613. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, C.; Terri, M.; Riccioni, V.; Battistelli, C.; Bordoni, V.; D’Offizi, G.; Prado, M.G.; Trionfetti, F.; Vescovo, T.; Tartaglia, E.; et al. Fibrogenic Signals Persist in DAA-Treated HCV Patients after Sustained Virological Response. J. Hepatol. 2021, 75, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Sheardown, S.A.; Brown, C.; Owen, R.P.; Zhang, S.; Castro, R.A.; Ianculescu, A.G.; Yue, L.; Lo, J.C.; Burchard, E.G.; et al. Effect of Genetic Variation in the Organic Cation Transporter 1 (OCT1) on Metformin Action. J. Clin. Invest. 2007, 117, 1422–1431. [Google Scholar] [CrossRef]
- Kumar, P.P.; Murth, T.E.G.K.; Basaveswara Rao, M.V. Development, validation of liquid chromatography-tandem mass spectrometry method for simultaneous determination of rosuvastatin and metformin in human plasma and its application to a pharmacokinetic study. J. Adv. Pharm. Technol. Res. 2015, 6, 118–124. [Google Scholar] [CrossRef]
- Chaudhari, K.; Wang, J.; Xu, Y.; Winters, A.; Wang, L.; Dong, X.; Cheng, E.Y.; Liu, R.; Yang, S.-H. Determination of metformin bio-distribution by LC-MS/MS in mice treated with a clinically relevant paradigm. PLoS ONE 2020, 15, e0234571. [Google Scholar] [CrossRef]
- Clinical Pharmacology & Therapeutics Editorial Team; Statistical Guide for Clinical Pharmacology Therapeutics. Clin. Pharmacol. Ther. 2010, 88, 150–152. [CrossRef]
Reference Values | Phase of the Study | Group 1 (n = 15) | Group 2 (n = 13) | |||
---|---|---|---|---|---|---|
Median | Range | Median | Range | |||
Age (years) | - | - | 48 | 35–65 | 56 | 37–68 |
Sex | - | - | Male = 9, female = 6 | Male = 7, female = 6 | ||
Weight (kg) | - | - | 64 | 55–119 | 79 | 53–113 |
Height (m) | - | - | 1.64 | 1.50–1.78 | 1.68 | 1.58–1.82 |
BMI (kg/m2) | - | - | 24 | 20–45 | 30 | 21–39 |
METAVIR score | - | - | F0 + F1 (n = 7), F2 (n = 8) | F3 (n = 4), F4 (n = 9) | ||
Glycemia (mg/dL) | 70–99 | 1 | 87 | 53–96 | 84 | 78–118 |
2 | 88 | 79–102 | 91 | 81–140 | ||
Total proteins (g/dL) | 6.0–8.0 | 1 | 7.5 | 6.0–8.7 | 8.0 | 6.8–8.8 |
2 | 7.6 | 6.6–8.0 | 7.7 | 7.3–8.7 | ||
Albumin (g/dL) | 3.5–5.5 | 1 | 4.2 | 3.0–4.6 | 3.9 | 3.1–4.9 |
2 | 4.0 | 3.6–4.5 | 4.3 | 3.3–4.8 | ||
Serum creatinine (mg/dL) | 0.6–1.2 | 1 | 0.8 | 0.7–1.1 | 0.9 | 0.5–1.6 |
2 | 0.8 | 0.6–1.1 | 0.9 | 0.6–1.6 | ||
GFR (mL/min) | ≥70 | 1 | 87 | 53–174 | 104 | 42–215 |
2 | 94 | 65–232 | 124 | 45–179 | ||
ALT (U/L) | 10–40 | 1 | 48 *# | 20–237 | 80 *# | 31–845 |
2 | 27 # | 14–63 | 27 # | 9–49 | ||
AST (U/L) | 15–40 | 1 | 37 # | 20–85 | 47 # | 24–392 |
2 | 21 *# | 11–42 | 25 *# | 20–60 | ||
Total bilirubin (mg/dL) | 0.1–1.0 | 1 | 0.6 | 0.3–65.4 | 0.6 | 0.3–3.0 |
2 | 0.5 | 0.2–1.0 | 0.7 | 0.4–1.4 | ||
Direct bilirubin (mg/dL) | <0.3 | 1 | 0.2 | 0.1–0.4 | 0.2 | 0.1–0.9 |
2 | 0.1 | 0.1–0.2 | 0.2 | 0.1–0.4 | ||
INR | 0.8–1.0 | 1 | 0.93 | 0.76–1.02 | 0.98 | 0.91–1.3 |
2 | 0.95 | 0.91–0.99 | 0.98 | 0.93–1.25 | ||
Urea (mg/dL) | 16–40 | 1 | 28 | 20–35 | 32 | 18–78 |
2 | 27 | 25–47 | 28 | 20–77 | ||
Direct-acting antiviral drugs | - | - | Daclatasvir, dasabuvir, ombitasvir, ribavirin, ritonavir, sofosbuvir, veruprevir | Daclatasvir, dasabuvir, ombitasvir, ribavirina, ritonavir, simeprevir, sofosbuvir, veruprevir |
Data | Log-Transformed Data | ||||
---|---|---|---|---|---|
PHASE | p-Value | W Value | p-Value | W Value | |
AUC0–∞ | 1 | 0.4028 | 0.9627 | 0.9951 | 0.9906 |
2 | 0.1057 | 0.9392 | 0.8989 | 0.9822 | |
AUC0–24 | 1 | 0.5075 | 0.9672 | 0.9946 | 0.9904 |
2 | 0.1251 | 0.9421 | 0.9153 | 0.9830 | |
Cmax | 1 | 0.1356 | 0.9435 | 0.1712 | 0.9475 |
2 | 0.1727 | 0.9476 | 0.7731 | 0.9770 | |
Vd/F | 1 | 0.01216 | 0.9011 | 0.1819 | 0.9485 |
2 | 0.01794 | 0.9083 | 0.3853 | 0.9618 | |
Cl/F | 1 | 0.1723 | 0.9476 | 0.9951 | 0.9906 |
2 | 0.2135 | 0.9513 | 0.8989 | 0.9822 | |
tmax | 1 | 0.0011 | 0.8540 | 0.0217 * | 0.9117 |
2 | 0.0100 | 0.8975 | 0.0493 * | 0.9261 | |
t1/2 | 1 | 0.0497 | 0.9263 | 0.1743 | 0.9478 |
2 | 0.0163 | 0.9065 | 0.1729 | 0.9476 |
Phase | Group 1 | Group 2 | |||||
---|---|---|---|---|---|---|---|
n | Geometric Mean (95% CI) | CV (%) | n | Geometric Mean (95% CI) | CV (%) | ||
AUC0–∞ (ng·h/mL) | 1 | 15 | 632.76 (538.45–743.59) | 29.77 | 13 | 787.38 (651.32–951.86) | 32.18 |
2 | 15 | 578.87 * (478.69–700.02) | 35.35 | 13 | 766.34 * (631.97–929.28) | 32.73 | |
AUC0–24 (ng·h/mL) | 1 | 15 | 624.82 (531.09–735.09) | 29.99 | 13 | 774.57 (641.79–934.81) | 31.89 |
2 | 15 | 569.02 * (470.01–688.89) | 35.57 | 13 | 754.06 * (623.89–911.39) | 32.15 | |
Cmax (ng/mL) | 1 | 15 | 109.53 (93.95–127.69) | 28.24 | 13 | 118.93 (98.05–144.25) | 32.77 |
2 | 15 | 96.63 (78.95–118.26) | 37.73 | 13 | 116.54 (99.39–136.64) | 26.80 | |
Vd/F (L) | 1 | 15 | 398.26 (330.47–479.96) | 34.67 | 13 | 340.12 (283.29–408.35) | 30.96 |
2 | 15 | 460.87 * (372.4–570.36) | 39.96 | 13 | 339.16 * (289.65–397.14) | 26.57 | |
Cl/F (L/h) | 1 | 15 | 79.02 (67.24–92.86) | 29.77 | 13 | 63.50 (52.53–76.77) | 32.18 |
2 | 15 | 86.38 * (71.43–104.45) | 35.35 | 13 | 65.25 * (53.81–79.12) | 32.73 | |
tmax (h) # | 1 | 15 | 1.50 (1.00–3.00) | 55.70 | 13 | 1.50 (1.00–3.00) | 49.14 |
2 | 15 | 2.00 # (1.00–3.00) | 42.83 | 13 | 2.00 # (1.50–3.00) | 43.78 | |
t1/2 (h) | 1 | 15 | 3.49 (3.35–3.65) | 7.76 | 13 | 3.71 (3.42–4.03) | 13.70 |
2 | 15 | 3.70 (3.48–3.94) | 11.28 | 13 | 3.60 (3.27–3.97) | 15.94 |
Phase 1/Phase 2 | Group 1/Group 2 | |||
---|---|---|---|---|
Group | Ratio | Phase | Ratio | |
AUC0–∞ | 1 | 1.09 (0.97–1.23) | 1 | 0.80 (0.66–0.98) |
2 | 1.03 (0.94–1.12) | 2 | 0.76 (0.61–0.94) | |
AUC0–24 | 1 | 1.10 (0.97–1.24) | 1 | 0.81 (0.66–0.98) |
2 | 1.03 (0.94–1.12) | 2 | 0.75 (0.61–0.93) | |
Cmax | 1 | 1.13 (0.97–1.32) | 1 | 0.92 (0.76–1.12) |
2 | 1.02 (0.89–1.18) | 2 | 0.83 (0.68–1.02) | |
Vd/F | 1 | 0.86 (0.75–1.00) | 1 | 1.17 (0.95–1.44) |
2 | 1.00 (0.91–1.10) | 2 | 1.36 (1.10–1.68) | |
Cl/F | 1 | 0.91 (0.81–1.03) | 1 | 1.24 (1.02–1.51) |
2 | 0.97 (0.89–1.06) | 2 | 1.32 (1.07–1.64) | |
tmax | 1 | 0.75 (0.45–2.20) | 1 | 1.00 (---) |
2 | 0.75 (0.45–2.00) | 2 | 1.00 (---) | |
t1/2 | 1 | 0.94 (0.90–0.99) | 1 | 0.94 (0.87–1.01) |
2 | 1.03 (0.97–1.09) | 2 | 1.03 (0.94–1.12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomaz, M.D.L.; Vieira, C.P.; Caris, J.A.; Marques, M.P.; Rocha, A.; Paz, T.A.; Rezende, R.E.F.; Lanchote, V.L. Liver Fibrosis Stages Affect Organic Cation Transporter 1/2 Activities in Hepatitis C Virus-Infected Patients. Pharmaceuticals 2024, 17, 865. https://doi.org/10.3390/ph17070865
Thomaz MDL, Vieira CP, Caris JA, Marques MP, Rocha A, Paz TA, Rezende REF, Lanchote VL. Liver Fibrosis Stages Affect Organic Cation Transporter 1/2 Activities in Hepatitis C Virus-Infected Patients. Pharmaceuticals. 2024; 17(7):865. https://doi.org/10.3390/ph17070865
Chicago/Turabian StyleThomaz, Matheus De Lucca, Carolina Pinto Vieira, Juciene Aparecida Caris, Maria Paula Marques, Adriana Rocha, Tiago Antunes Paz, Rosamar Eulira Fontes Rezende, and Vera Lucia Lanchote. 2024. "Liver Fibrosis Stages Affect Organic Cation Transporter 1/2 Activities in Hepatitis C Virus-Infected Patients" Pharmaceuticals 17, no. 7: 865. https://doi.org/10.3390/ph17070865
APA StyleThomaz, M. D. L., Vieira, C. P., Caris, J. A., Marques, M. P., Rocha, A., Paz, T. A., Rezende, R. E. F., & Lanchote, V. L. (2024). Liver Fibrosis Stages Affect Organic Cation Transporter 1/2 Activities in Hepatitis C Virus-Infected Patients. Pharmaceuticals, 17(7), 865. https://doi.org/10.3390/ph17070865