Computational Design of Novel Tau-Tubulin Kinase 1 Inhibitors for Neurodegenerative Diseases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pharmacophore Modeling
2.1.1. E-Pharmacophore Modeling
2.1.2. Cavity-Based Pharmacophore Modeling
2.2. Ligand Design via Scaffold Hopping
2.3. Pharmacological and ADME/T Properties
2.4. MD Simulation
RMS Deviation and RMS Fluctuations
2.5. Free Energy Landscape (FEL) Analysis
2.6. Density Functional Theory (DFT) Studies
3. Materials and Methods
3.1. Hardware and Software
3.1.1. Protein and Ligand Preparation
3.1.2. Post-VS Receptor Grid Generation
3.1.3. E-Pharmacophore Modeling
3.2. Receptor Cavity-Based Pharmacophore Modeling and Lead Optimization
3.3. Bioactivity and Toxicity Prediction (Drug-Likeliness and ADMET Study)
3.4. MMGBSA Free Energy Calculations
3.5. MD Simulations
3.6. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Jimenez, F.J.; Ureña-Peralto, J.; Jendelova, P.; Erceg, S. Alzheimer’s Disease and Synapse Loss: What Can We Learn from Induced Pluripotent Stem Cells? J. Adv. Res. 2023, 54, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.H.; Zahid, M.F.; Zain, S.; Kabir, A.; Hassan, S.U. The neuroprotective effects of exercise on cognitive decline: A preventive approach to Alzheimer disease. Cureus 2020, 12, e6958. [Google Scholar] [CrossRef] [PubMed]
- Sehar, U.; Rawat, P.; Reddy, A.P.; Kopel, J.; Reddy, P.H. Amyloid Beta in Aging and Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 12924. [Google Scholar] [CrossRef]
- Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol. 2021, 69, 131–138. [Google Scholar] [CrossRef]
- Ahamad, S.; Hema, K.; Kumar, V.; Gupta, D. The structural, functional, and dynamic effect of Tau tubulin kinase1 upon a mutation: A neuro-degenerative hotspot. J. Cell. Biochem. 2021, 122, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Song, Y.; Chen, C.; Zhao, L.; Ma, W.; Meng, S.; Zhuang, X.; Lin, H.; Liang, J.; Cui, Y. Molecular hydrogen attenuates sepsis-induced cognitive dysfunction through regulation of tau phosphorylation. Int. Immunopharmacol. 2023, 114, 109603. [Google Scholar] [CrossRef] [PubMed]
- Dillon, G.M.; Henderson, J.L.; Bao, C.; Joyce, J.A.; Calhoun, M.; Amaral, B.; King, K.W.; Bajrami, B.; Rabah, D. Acute inhibition of the CNS-specific kinase TTBK1 significantly lowers tau phosphorylation at several disease relevant sites. PLoS ONE 2020, 15, e0228771. [Google Scholar] [CrossRef] [PubMed]
- Houlden, H.; Johnson, J.; Gardner-Thorpe, C.; Lashley, T.; Hernandez, D.; Worth, P.; Singleton, A.B.; Hilton, D.A.; Holton, J.; Revesz, T. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat. Genet. 2007, 39, 1434–1436. [Google Scholar] [CrossRef] [PubMed]
- Nozal, V.; Martínez-González, L.; Gomez-Almeria, M.; Gonzalo-Consuegra, C.; Santana, P.; Chaikuad, A.; Pérez-Cuevas, E.; Knapp, S.; Lietha, D.; Ramírez, D. TDP-43 modulation by tau-tubulin kinase 1 inhibitors: A new avenue for future amyotrophic lateral sclerosis therapy. J. Med. Chem. 2022, 65, 1585–1607. [Google Scholar] [CrossRef] [PubMed]
- Baier, A.; Szyszka, R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front. Mol. Biosci. 2022, 9, 916063. [Google Scholar] [CrossRef] [PubMed]
- Nozal, V.; Martinez, A. Tau Tubulin Kinase 1 (TTBK1), a new player in the fight against neurodegenerative diseases. Eur. J. Med. Chem. 2019, 161, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, S.E.; Chang, C.J.; Kimura, S.R.; Gao, M.; Xie, D.; Zhang, Y.; Zhang, G.; Gill, M.B.; Mastalerz, H.; Thompson, L.A. The structure of human tau-tubulin kinase 1 both in the apo form and in complex with an inhibitor. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2014, 70, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.; Wang, W.; Qin, J.X.; Shi, Z.D.; Hao, L.; Ma, Y.Y.; Xu, H.; Wu, Z.X.; Pan, D.; Chen, Z.S. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm 2022, 3, e175. [Google Scholar] [CrossRef] [PubMed]
- Halkina, T.; Henderson, J.L.; Lin, E.Y.; Himmelbauer, M.K.; Jones, J.H.; Nevalainen, M.; Feng, J.; King, K.; Rooney, M.; Johnson, J.L. Discovery of potent and brain-penetrant tau tubulin kinase 1 (TTBK1) inhibitors that lower tau phosphorylation in vivo. J. Med. Chem. 2021, 64, 6358–6380. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wan, P.T.; Hillertz, P.; Schweikart, F.; Zhao, Y.; Wissler, L.; Dekker, N. X-ray structural analysis of Tau-Tubulin kinase 1 and its interactions with small molecular inhibitors. ChemMedChem 2013, 8, 1846–1854. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Singh, S.K. Identification of human tau-tubulin kinase 1 inhibitors: An integrated e-pharmacophore-based virtual screening and molecular dynamics simulation. J. Biomol. Struct. Dyn. 2019, 38, 886–900. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Yang, L.; Zhu, Y. Pharmacophore based drug design approach as a practical process in drug discovery. Curr. Comput.-Aided Drug Des. 2010, 6, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef]
- Horvath, D. Pharmacophore-based virtual screening. Chemoinformatics Comput. Chem. Biol. 2011, 672, 261–298. [Google Scholar]
- Maestro, version 12.8.117; Schrödinger, LLC: New York, NY, USA, 2023.
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Raha, K.; Peters, M.B.; Wang, B.; Yu, N.; Wollacott, A.M.; Westerhoff, L.M.; Merz, K.M., Jr. The role of quantum mechanics in structure-based drug design. Drug Discov. Today 2007, 12, 725–731. [Google Scholar] [CrossRef] [PubMed]
- LaPointe, S.M.; Weaver, D.F. A review of density functional theory quantum mechanics as applied to pharmaceutically relevant systems. Curr. Comput.-Aided Drug Des. 2007, 3, 290–296. [Google Scholar] [CrossRef]
- Haque, A.; Al-Balushi, R.; Al-Busaidi, I.J.; Al-Rasbi, N.K.; Al-Bahri, S.; Al-Suti, M.K.; Khan, M.S.; Abou-Zied, O.K.; Skelton, J.M.; Raithby, P.R. Two Is Better than One? Investigating the Effect of Incorporating Re (CO) 3Cl Side Chains into Pt (II) Diynes and Polyynes. Inorg. Chem. 2020, 60, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Al-Balushi, R.A.; Haque, A.; Jayapal, M.; Al-Suti, M.K.; Husband, J.; Khan, M.S.; Skelton, J.M.; Molloy, K.C.; Raithby, P.R. Impact of the alkyne substitution pattern and metalation on the photoisomerization of azobenzene-based platinum (II) diynes and polyynes. Inorg. Chem. 2016, 55, 10955–10967. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.J.; Huang, W.W. Chemistry with Computation: An Introduction to SPARTAN; Wavefunction, Incorporated: Irvine, CA, USA, 1995. [Google Scholar]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Sterling, T.; Irwin, J.J. ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys. 2015, 48, 488–515. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Ganeshpurkar, A.; Singh, S.K. Multiple 3D-QSAR modeling, e-pharmacophore, molecular docking, and in vitro study to explore novel AChE inhibitors. RSC Adv. 2018, 8, 39477–39495. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Kalyanaraman, C.; Irwin, J.J.; Jacobson, M.P. Physics-based scoring of protein− ligand complexes: Enrichment of known inhibitors in large-scale virtual screening. J. Chem. Inf. Model. 2006, 46, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Rohini, K.; Ramanathan, K.; Shanthi, V. Multi-dimensional screening strategy for drug repurposing with statistical framework—A new road to influenza drug discovery. Cell Biochem. Biophys. 2019, 77, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, S.; Kanipakam, H.; Birla, S.; Ali, M.S.; Gupta, D. Screening Malaria-box compounds to identify potential inhibitors against SARS-CoV-2 Mpro, using molecular docking and dynamics simulation studies. Eur. J. Pharmacol. 2021, 890, 173664. [Google Scholar] [CrossRef]
- Lemkul, J.A.; Allen, W.J.; Bevan, D.R. Practical considerations for building GROMOS-compatible small-molecule topologies. J. Chem. Inf. Model. 2010, 50, 2221–2235. [Google Scholar] [CrossRef] [PubMed]
- Van Aalten, D.M.; Bywater, R.; Findlay, J.B.; Hendlich, M.; Hooft, R.W.; Vriend, G. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput.-Aided Mol. Des. 1996, 10, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Schüttelkopf, A.W.; Van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Gready, J.E. Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J. Comput. Chem. 2011, 32, 2031–2040. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A.T.; Wormit, M.; Kussmann, J.; Lange, A.W.; Behn, A.; Deng, J.; Feng, X. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015, 113, 184–215. [Google Scholar] [CrossRef]
PDB ID | Hypothesis | Pharmacophore Features | No. of Hits | ZINC ID |
---|---|---|---|---|
4BTK | AADHRRR | A: Aromatic Ring (two features) D: Donor Atom (hydrogen-bond donor) H: Hydrophobic Region R: Rotatable Bond (three features) | 369 | ZINC000095101333, ZINC001209984530, and ZINC000095101335 |
4BTM | AADRRR | A: Aromatic Ring (two features) D: Donor Atom (hydrogen-bond donor) R: Rotatable Bond (three features) | 1169 | ZINC000009936617, ZINC000017180924, and ZINC000095101333 |
4NFN | ADDHRR | A: Aromatic Ring D: Donor Atom (two features) H: Hydrophobic Region R: Rotatable Bond (two features) | 819 | ZINC000095101333, ZINC000020798038, and ZINC001209984530 |
7JXX | AADDDHRRR | A: Aromatic Ring (two features) D: Donor Atom (three features) H: Hydrophobic Region R: Rotatable Bond (three features) | 643 | ZINC000009936617, ZINC000017180924, and ZINC001209984530 |
7JXY | AAADDDHRRR | A: Aromatic Ring (three features) D: Donor Atom (three features) H: Hydrophobic Region R: Rotatable Bond (three features) | 83 | ZINC000095534860, ZINC000428178776, and ZINC000095101333 |
ZINC ID | 3D Structure | Docking Score (kcal/mol) | MMGBSA (kcal/mol) | Interacting Residues | |
---|---|---|---|---|---|
H-Bonded | Others | ||||
Co-crystal ligand 2KC | −6.83 | −36.85 | Lys63, Glu77, Gln110, Asn159, and Asp176 | Lys38, Ile40, Gly41, Gly42, Ile48, Glu50, Ala61, Leu62, Cys91, Val105, Val106, Met107, Gln108, Leu109, Gly111, Asn113, Ser158, Ala161, Leu175, and Phe177 | |
ZINC000095101333 | −8.64 | −48.26 | Gln110 and Asn113 | Ile40, Gly41, Gly42, Ile48, Ala61, Lys63, Glu77, Cys91, Val105, Met107, Gln108, Leu109, Gly111, Ser158, Asn159, Leu175, Asp176, and Phe177 | |
ZINC000009936617 | −8.94 | −44.19 | Gly111, Arg112, and Asp116 | Ile40, Ile48, Ala61, Lys63, Glu77, Cys91, Met107, Gln108, Leu109, Arg112, Asn113, Leu175, Asp176, and Phe177 | |
ZINC001209984530 | −8.27 | −44.14 | Gln110, Gly111, and Asn113 | Ile40, Gly41, Ile48, Ala61, Lys63, Cys91, Met107, Gln108, Leu109, Arg112, Ala161, Leu175, and Asp176 | |
ZINC000892508112 | −8.15 | −48.37 | Ile40, Gln108, Gln110, and Asn113 | Lys38, Gly41, Gly42, Ile48, Glu50, Ala61, Lys63, Glu77, Cys91, Met107, Leu109, Gly111, Arg112, Ser158, Asn159, Ala161, Leu175, Asp176, and Phe177 | |
ZINC000012184325 | −8.01 | −49.15 | Gln110 | Lys38, Ile40, Gly41, Gly42, Ile48, Glu50, Ala61, Lys63, Glu77, Val105, Met107, Gln108, Leu109, Gly111, Arg112, Asn113, Ser158, Asn159, Ala161, Arg164, Leu175, Asp176, Phe177, and Gly178 | |
ZINC001243164470 | −7.42 kcal/mol | −41.71 | Glu51, Gln110, Gly111, and Asn113 | Ile40, Gly41, Ile48, Ala61, Lys63, Glu77, Cys91, Met107, Leu109, Gly111, Asn113, Ser158, Asn159, Ala161, Leu175, Phe177, and Gly178 |
Code | 3D Structure | Docking Score (kcal/mol) | MMGBSA (kcal/mol) | Interacting Residues | |
---|---|---|---|---|---|
H-Bonded | Others | ||||
LD7 | −10.37 | −46.71 | Glu77, Gln110, Asn159, and Asp176 | Ile40, Gly41, Gly42, Ile48, Ala61, Leu62, Lys63, Leu74, Cys91, Val105, Val106, Met107, Gln108, Leu109, Gly111, Asn113, Asp154, Lys156, Ser158, Ala161, Leu175, Phe177, and Gly178 | |
LD10 | −10.10 | −39.43 | Glu77, Gln110, Asn159, and Asp176 | Ile40, Gly41, Gly42, Ile48, Ala61, Leu62, Lys63, Leu74, Cys91, Val105, Val106, Met107, Gln108, Leu109, Gly111, Arg112, Asn113, Lys156, Ser158, Ala161, Leu175, Phe177, and Gly178 | |
LD51 | −9.98 | −54.02 | Glu77, Gln110, Asn113, Asn159, and Asp176 | Ile40, Gly41, Gly42, Ile48, Ala61, Leu62, Lys63, Leu74, Cys91, Val105, Val106, Met107, Gln108, Leu109, Gly111, Arg112, Asn113, Asp116, Lys156, Ser158, Ala161, Leu175, Phe177, and Gly178 | |
LD55 | −9.87 | −57.00 | Glu77, Gln110, Gly111, Asn159, and Asp176 | Ile40, Gly41, Gly42, Ile48, Ala61, Leu62, Lys63, Leu74, Cys91, Val105, Val106, Met107, Gln108, Leu109, Arg112, Asn113, Asp116, Lys156, Ser158, Ala161, Leu175, Phe177, and Gly178 | |
LD75 | −9.79 | −50.75 | Glu77, Gln110, Asn113, Asn159, and Asp176 | Lys38, Ile40, Gly41, Gly42, Ile48, Glu50, Ala61, Leu62, Lys63, Leu74, Cys91, Val105, Val106, Met107, Gln108, Leu109, Gly111, Lys156, Ser158, Leu175, Phe177, and Gly178 |
Compound ID | MD Simulation | ||||
---|---|---|---|---|---|
RMSD (nm) | RMSF (nm) | Rg (nm) | SASA (nm2) | H-Bonds | |
Native TTBK1 | 0.42 | 0.14 | 1.87 | 163.94 | - |
Co-Crystal-2KC | 0.41 | 0.15 | 1.91 | 166.08 | 0.61 |
ZINC000095101333 | 0.38 | 0.16 | 1.90 | 164.75 | 0.42 |
ZINC000009936617 | 0.42 | 0.16 | 1.92 | 167.53 | 1.02 |
ZINC001209984530 | 0.41 | 0.13 | 1.89 | 164.61 | 0.30 |
ZINC000892508112 | 0.50 | 0.15 | 1.90 | 164.93 | 0.49 |
ZINC000012184325 | 0.41 | 0.16 | 1.91 | 167.34 | 1.35 |
ZINC001243164470 | 0.43 | 0.17 | 1.93 | 166.66 | 2.10 |
LD7 | 0.36 | 0.14 | 1.89 | 167.51 | 1.34 |
LD10 | 0.45 | 0.18 | 1.99 | 167.23 | 1.74 |
LD51 | 0.51 | 0.18 | 1.95 | 167.77 | 0.73 |
LD55 | 0.39 | 0.15 | 1.94 | 166.71 | 1.61 |
LD75 | 0.36 | 0.14 | 1.91 | 166.92 | 1.02 |
Compound S. No. | EHOMO (eV) | ELUMO (eV) | ΔE a (eV) | Ib (eV) | Ac (eV) | χ d (eV) | ηe (eV) | σf (eV−1) | μg (eV) | ωh (eV) |
---|---|---|---|---|---|---|---|---|---|---|
Co-crystal-2KC | −8.16 | −3.85 | 4.31 | 8.16 | 3.85 | 6.00 | 2.15 | 0.23 | −6.00 | 8.36 |
ZINC000095101333 | −5.48 | −0.24 | 5.24 | 5.48 | 0.24 | 2.86 | 2.62 | 0.19 | −2.86 | 1.56 |
ZINC000009936617 | −5.87 | −1.79 | 4.08 | 5.87 | 1.79 | 3.83 | 2.04 | 0.24 | −3.83 | 3.60 |
ZINC001209984530 | −5.66 | −1.90 | 3.76 | 5.66 | 1.90 | 3.78 | 1.88 | 0.26 | −3.78 | 3.80 |
ZINC000892508112 | −5.36 | −0.71 | 4.65 | 5.36 | 0.71 | 3.03 | 2.32 | 0.21 | −3.03 | 1.97 |
ZINC000012184325 | −6.08 | −1.10 | 4.98 | 6.08 | 1.10 | 3.59 | 2.49 | 0.20 | −3.59 | 2.58 |
ZINC001243164470 | −6.27 | −1.34 | 4.93 | 6.27 | 1.34 | 3.80 | 2.46 | 0.20 | −3.80 | 2.89 |
LD7 | −7.98 | −3.72 | 4.26 | 7.98 | 3.72 | 5.85 | 2.13 | 0.23 | −5.85 | 8.22 |
LD10 | −7.68 | −3.33 | 4.35 | 7.68 | 3.33 | 5.50 | 2.17 | 0.23 | −5.50 | 6.97 |
LD51 | −7.93 | −3.88 | 4.05 | 7.93 | 3.88 | 5.90 | 2.02 | 0.24 | −5.90 | 8.60 |
LD55 | −7.67 | −3.91 | 3.76 | 7.67 | 3.91 | 5.79 | 1.88 | 0.26 | −5.79 | 8.91 |
LD75 | −8.16 | −3.85 | 4.31 | 8.16 | 3.85 | 6.00 | 2.15 | 0.23 | −6.00 | 8.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahamad, S.; Junaid, I.T.; Gupta, D. Computational Design of Novel Tau-Tubulin Kinase 1 Inhibitors for Neurodegenerative Diseases. Pharmaceuticals 2024, 17, 952. https://doi.org/10.3390/ph17070952
Ahamad S, Junaid IT, Gupta D. Computational Design of Novel Tau-Tubulin Kinase 1 Inhibitors for Neurodegenerative Diseases. Pharmaceuticals. 2024; 17(7):952. https://doi.org/10.3390/ph17070952
Chicago/Turabian StyleAhamad, Shahzaib, Iqbal Taliy Junaid, and Dinesh Gupta. 2024. "Computational Design of Novel Tau-Tubulin Kinase 1 Inhibitors for Neurodegenerative Diseases" Pharmaceuticals 17, no. 7: 952. https://doi.org/10.3390/ph17070952
APA StyleAhamad, S., Junaid, I. T., & Gupta, D. (2024). Computational Design of Novel Tau-Tubulin Kinase 1 Inhibitors for Neurodegenerative Diseases. Pharmaceuticals, 17(7), 952. https://doi.org/10.3390/ph17070952