Bioequivalence Analysis of Terazosin Hydrochloride Tablets Based on Parallel Artificial Membrane Permeability Analysis
Abstract
:1. Introduction
2. Results
2.1. In Vitro Dissolution Profiles of TH Tablets
2.2. MacroFlux Assay of TH Tablets
2.3. Permeability of API
2.4. Permeability of the Powder of TH Tablets
2.5. Bioequivalence Studies of TH Tablets in Dogs
3. Discussion
3.1. In Vitro Dissolution Experiment
3.2. In Vitro Permeability Experiment
4. Materials and Methods
4.1. Instruments
4.2. Agents
4.3. In Vitro Dissolution Study
4.3.1. Experiment Conditions of Dissolution
4.3.2. Chromatographic Conditions
4.3.3. Calculation of In Vitro Dissolution Data
4.4. MacroFlux Assay for Evaluating the Permeation of TH Tablets
4.5. µFlux Assay for Evaluating the Permeability of API
4.6. µFlux Assay for Evaluating the Influence of Excipient
4.7. Bioequivalence Studies in Dogs
4.7.1. Experimental Method
4.7.2. Chromatographic and Mass Spectrometry Conditions
4.8. Statistical Analysis
4.8.1. Comparison of In Vitro Dissolution Profiles
4.8.2. PAMPA Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Fan, P.; Han, S.; Lin, F.; Shi, L. Analysis of generic drug policy in China. World Clin. Drugs 2021, 42, 16–20. [Google Scholar] [CrossRef]
- Zhu, S.; Wen, Z.; Zhu, S.; Jiang, X.; Liu, C.; Zhang, Y.; Cao, C. Impact of consistency evaluation on the development of generic drugs. Cent. South Pharm. 2021, 19, 1259–1263. [Google Scholar] [CrossRef]
- Li, D.; Du, H.; Zhou, Y.; Liu, D.; Liu, Y.; Ha, L.; Li, F.; Yang, J. Analysis and discussion of generic drug consistency evaluation in NMPA and relevant drug policies in FDA and PMDA. Chin. J. New Drugs 2021, 30, 1164–1167. [Google Scholar]
- Lionberger, R. Decision Science for Generic Drug Development and Review. J. Clin. Pharmacol. 2019, 59, 1249–1251. [Google Scholar] [CrossRef] [PubMed]
- Lionberger, R.; Uhl, K. Generic Drugs: Expanding Possibilities for Clinical Pharmacology. Clin. Pharmacol. Ther. 2019, 105, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Guo, R. The background, implementation and outcome of the consistency evaluation of generic drug. Chin. J. Hosp. Pharm. 2022, 42, 1502–1505. [Google Scholar] [CrossRef]
- Kyncl, J.J. Pharmacology of terazosin. Am. J. Med. 1986, 80, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Achari, R.; Hosmane, B.; Bonacci, E.; O’Dea, R. The Relationship between Terazosin Dose and Blood Pressure Response in Hypertensive Patients. J. Clin. Pharmacol. 2000, 40, 1166–1172. [Google Scholar] [CrossRef]
- Li, H.; Xu, T.Y.; Li, Y.; Chia, Y.C.; Buranakitjaroen, P.; Cheng, H.M.; Van Huynh, M.; Sogunuru, G.P.; Tay, J.C.; Wang, T.D.; et al. Role of alpha1-blockers in the current management of hypertension. J. Clin. Hypertens. 2022, 24, 1180–1186. [Google Scholar] [CrossRef]
- Loh, G.O.K.; Wong, E.Y.L.; Tan, Y.T.F.; Ong, L.M.; Ng, R.S.; Wee, H.C.; Peh, K.K. Simple and fast LC-MS/MS method for quantification of terazosin in human plasma and application to bioequivalence study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1163, 122517. [Google Scholar] [CrossRef]
- Fu, H.; Wang, L.; Hu, Q.; Zhang, Z. Dissolution and Permeability Behavior of Diclofenac Sodiumenteric-Coated Tablets In-Vitro. Chin. Pharm. J. 2018, 53, 1778–1784. [Google Scholar] [CrossRef]
- Avdeef, A. The rise of PAMPA. Expert Opin. Drug Metab. Toxicol. 2005, 1, 325–342. [Google Scholar] [CrossRef]
- Guan, H.; Zhang, G.; Niu, J.; Xu, M. Application of PAMPA in Drug Evaluation of Drug Consistency. Chin. Pharm. Aff. 2020, 34, 891–896. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, G.; Liu, Q.; Xu, M. Research on in vitro Flux tests of spironolactone tablets with parallel artificial membrane permeability assay. Chin. Pharm. Aff. 2021, 35, 415–421. [Google Scholar] [CrossRef]
- Li, N.; Ye, Y.; Yang, M.; Jiang, X. The application of parallel artificial membrane permeability assay (PAMPA) in the research of drug absorption. Pharm. Clin. Chin. Mater. Medica 2011, 2, 28–30. [Google Scholar]
- de Souza Teixeira, L.; Vila Chagas, T.; Alonso, A.; Gonzalez-Alvarez, I.; Bermejo, M.; Polli, J.; Rezende, K.R. Biomimetic Artificial Membrane Permeability Assay over Franz Cell Apparatus Using BCS Model Drugs. Pharmaceutics 2020, 12, 988. [Google Scholar] [CrossRef]
- Radan, M.; Djikic, T.; Obradovic, D.; Nikolic, K. Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates. Eur. J. Pharm. Sci. 2022, 168, 106056. [Google Scholar] [CrossRef]
- Dargo, G.; Vincze, A.; Muller, J.; Kiss, H.J.; Nagy, Z.Z.; Balogh, G.T. Corneal-PAMPA: A novel, non-cell-based assay for prediction of corneal drug permeability. Eur. J. Pharm. Sci. 2019, 128, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Sinko, B.; Bardos, V.; Vesztergombi, D.; Kadar, S.; Malcsiner, P.; Moustie, A.; Jouy, C.; Takacs-Novak, K.; Gregoire, S. Use of an In Vitro Skin Parallel Artificial Membrane Assay (Skin-PAMPA) as a Screening Tool to Compare Transdermal Permeability of Model Compound 4-Phenylethyl-Resorcinol Dissolved in Different Solvents. Pharmaceutics 2021, 13, 1758. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, H.; Ni, J. Advances in parallel artificial membrane permeability assay and its applications. Acta Pharm. Sin. 2011, 46, 890–895. [Google Scholar] [CrossRef]
- Avdeef, A.; Bendels, S.; Di, L.; Faller, B.; Kansy, M.; Sugano, K.; Yamauchi, Y. PAMPA–critical factors for better predictions of absorption. J. Pharm. Sci. 2007, 96, 2893–2909. [Google Scholar] [CrossRef] [PubMed]
- Borbas, E.; Nagy, Z.K.; Nagy, B.; Balogh, A.; Farkas, B.; Tsinman, O.; Tsinman, K.; Sinko, B. The effect of formulation additives on in vitro dissolution-absorption profile and in vivo bioavailability of telmisartan from brand and generic formulations. Eur. J. Pharm. Sci. 2018, 114, 310–317. [Google Scholar] [CrossRef] [PubMed]
- National Medical Products Administration. Statistical Guidelines for Bioequivalence Studies. Available online: https://www.nmpa.gov.cn/zhuanti/ypqxgg/ggzhcfg/20181029173101911.html (accessed on 10 January 2024).
- Shi, J.; Wang, D.; Han, X.; Wang, Z.; Zheng, A.; Zhang, H.; Xiang, M. Characterization in vitro and pharmacokinetics of paliperidone palmitate sustained release injection. Chin. J. Hosp. Pharm. 2022, 42, 2481–2487. [Google Scholar]
- Center for Drug Evaluation of NMPA. Disclosure of Consistency Evaluation Enterprise Research Report and Bioequivalence test Data Information. Available online: https://www.cde.org.cn/yzxpj/listpage/baccb6ea4350170164a8141548c32f2e (accessed on 10 January 2024).
- National Medical Products Administration. Guidelines for the Determination and Comparison of Dissolution Profiles of Ordinary Oral Solid Preparations. Available online: https://www.nmpa.gov.cn/zhuanti/ypqxgg/ggzhcfg/20160318210001633.html (accessed on 10 January 2024).
- Chinese Pharmacopoeia Commission. ChP 2022. Vol II, 2020; pp. 1276–1277. Available online: https://ydz.chp.org.cn/#/main (accessed on 10 January 2024).
Enterprise | FaSSIF | FeSSIF | ||
---|---|---|---|---|
Flux (µg·min−1·cm−2) | Total Permeated Amount (µg) | Flux (µg·min−1·cm−2) | Total Permeated Amount (µg) | |
Abbott Laboratories | 0.00801 ± 0.00016 | 5.82 ± 0.03 | 0.00165 ± 0.00018 | 1.31 ± 0.21 |
A | 0.00729 ± 0.00018 | 5.32 ± 0.23 | 0.00153 ± 0.00007 | 1.32 ± 0.06 |
B | 0.00696 ± 0.00033 | 5.20 ± 0.20 | 0.00148 ± 0.00009 | 1.07 ± 0.08 |
C | 0.00752 ± 0.00030 | 5.36 ± 0.15 | 0.00166 ± 0.00010 | 1.29 ± 0.09 |
D | 0.00782 ± 0.00033 | 5.56 ± 0.16 | 0.00166 ± 0.00020 | 1.39 ± 0.13 |
E | 0.00705 ± 0.00021 | 5.11 ± 0.22 | 0.00152 ± 0.00005 | 1.21 ± 0.04 |
F | 0.00786 ± 0.00030 | 5.77 ± 0.36 | 0.00149 ± 0.00008 | 1.24 ± 0.06 |
G | 0.00667 ± 0.00028 | 5.46 ± 0.47 | 0.00142 ± 0.00013 | 1.24 ± 0.17 |
Enterprise | FaSSIF | FeSSIF | ||
---|---|---|---|---|
Flux (µg·min−1·cm−2) | Total Permeated Amount (µg) | Flux (µg·min−1·cm−2) | Total Permeated Amount (µg) | |
A | 87.20–94.60% | 84.81–98.10% | 85.22–99.70% | 93.07–108.56% |
B | 79.83–93.76% | 83.46–95.14% | 80.07–98.96% | 71.25–92.24% |
C | 87.48–100.23% | 87.83–96.45% | 90.86–110.33% | 86.33–110.85% |
D | 90.61–104.56% | 91.00–100.07% | 79.53–121.15% | 89.22–123.69% |
E | 83.59–92.26% | 81.47–94.16% | 86.74–97.39% | 87.23–98.13% |
F | 91.82–104.37% | 88.81–109.42% | 82.12–98.17% | 87.40–103.00% |
G | 77.39–89.14% | 80.26–107.57% | 72.42–99.78% | 73.30–116.15% |
pH | Enterprise | Pe (10−6 cm·s−1) | p-Value (t-Test) |
---|---|---|---|
5.0 | I | 2.61 ± 0.264 | 0.032 * |
II | 3.41 ± 0.333 | ||
6.5 | I | 75.67 ± 2.487 | 0.234 |
II | 78.70 ± 2.807 | ||
7.4 | I | 82.54 ± 5.939 | 0.091 |
II | 100.69 ± 12.885 |
Condition | Enterprise | Pe (10−6 cm·s−1) | p-Value (t-Test) |
---|---|---|---|
FaSSIF | Abbott Laboratories | 35.42 ± 3.02 | - |
B | 33.85 ± 2.16 | 0.503 | |
G | 31.27 ± 1.99 | 0.117 | |
FeSSIF | Abbott Laboratories | 4.74 ± 0.32 | - |
B | 5.14 ± 0.39 | 0.239 | |
D | 5.20 ± 0.38 | 0.186 | |
G | 5.70 ± 0.72 | 0.104 |
Enterprise | AUC(0–t) (ng·mL−1·h−2) | AUC(0–∞) (ng·mL−1·h−2) | Cmax (ng·mL−1) | Tmax (h) | t1/2β (h) |
---|---|---|---|---|---|
Abbott Laboratories | 545.27 ± 70.76 | 558.18 ± 72.66 | 55.68 ± 10.80 | 1.58 ± 0.66 | 8.18 ± 0.86 |
B | 535.50 ± 77.18 | 554.83 ± 76.97 | 56.49 ± 9.65 | 1.17 ± 0.41 | 9.14 ± 1.76 |
Enterprise | Parameter | T | R | T/R (%) | 90% Confidence Interval |
---|---|---|---|---|---|
A | Cmax | 49.36 | 50.04 | 97.68 | 91.05~104.79% |
AUC0–t | 481.3771 | 484.7605 | 99.30 | 96.44~102.25% | |
AUC0–∞ | 493.9153 | 496.4887 | 99.48 | 96.66~102.39% | |
D | Cmax | 47.225 | 43.812 | 107.79 | 98.39~118.09% |
AUC0–t | 411.6 | 406.7 | 101.23 | 96.17~106.55% | |
AUC0–∞ | 424.7 | 419.9 | 101.14 | 96.16~106.38% |
Enterprise | Composition of the Tablets | Formulation |
---|---|---|
Abbott | Lactose, corn starch, magnesium stearate, talcum powder | Wet granulation |
A | Lactose, ethanol, magnesium stearate, MCC, pre-gelatinized starch | Wet granulation |
B | Lactose, magnesium stearate, MCC, CMS-Na | Wet granulation |
C | Lactose, corn starch, 10% corn starch pulp, magnesium stearate | Wet granulation |
D | Lactose, magnesium stearate, MCC, CMC, pre-gelatinized starch | Direct powder compression |
E | Lactose, magnesium stearate, L-HPC | Wet granulation |
F | Lactose, magnesium stearate, MCC, CMS-Na | Wet granulation |
G | Lactose, corn starch, magnesium stearate, MCC, PVP-K30 | Wet granulation |
Time (min) | Phase A (%) | Phase B (%) |
---|---|---|
0 | 80 | 20 |
1 | 80 | 20 |
1 | 10 | 90 |
4 | 10 | 90 |
4 | 80 | 20 |
5 | 80 | 20 |
Parameter | TH | Prazosin Hydrochloride |
---|---|---|
Scanning mode | Positive | Positive |
Ion source | ESI | ESI |
Spray voltage (V) | 3500 | 3500 |
Shealth gas (psi) | 35 | 35 |
Aux gas (psi) | 10 | 10 |
Capillary temperature (℃) | 400 | 400 |
Detection mode | SRM | SRM |
Precursor ion (m/z) | 388.083 | 384.027 |
Product ion (m/z) | 290.090 | 231.040 |
Tube lens (V) | 94 | 97 |
Collision energy (V) | 25 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, J.; Huang, H.; Ji, M.; Zhang, W.; Huang, Y.; Ma, L.; Wang, B.; Liu, Q. Bioequivalence Analysis of Terazosin Hydrochloride Tablets Based on Parallel Artificial Membrane Permeability Analysis. Pharmaceuticals 2024, 17, 1024. https://doi.org/10.3390/ph17081024
Niu J, Huang H, Ji M, Zhang W, Huang Y, Ma L, Wang B, Liu Q. Bioequivalence Analysis of Terazosin Hydrochloride Tablets Based on Parallel Artificial Membrane Permeability Analysis. Pharmaceuticals. 2024; 17(8):1024. https://doi.org/10.3390/ph17081024
Chicago/Turabian StyleNiu, Jianzhao, Hanhan Huang, Ming Ji, Wenjing Zhang, Yin Huang, Lingyun Ma, Baolian Wang, and Qian Liu. 2024. "Bioequivalence Analysis of Terazosin Hydrochloride Tablets Based on Parallel Artificial Membrane Permeability Analysis" Pharmaceuticals 17, no. 8: 1024. https://doi.org/10.3390/ph17081024
APA StyleNiu, J., Huang, H., Ji, M., Zhang, W., Huang, Y., Ma, L., Wang, B., & Liu, Q. (2024). Bioequivalence Analysis of Terazosin Hydrochloride Tablets Based on Parallel Artificial Membrane Permeability Analysis. Pharmaceuticals, 17(8), 1024. https://doi.org/10.3390/ph17081024