Utilization of Nanoparticles for Treating Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Nanoparticles for AMD Treatment
2.1. In Vivo Studies
2.1.1. Lipid Nanoparticles In Vivo
2.1.2. Liposomes In Vivo
2.1.3. Poly(Lactic-co-Glycolic Acid) (PLGA) NPs In Vivo
2.1.4. Polymeric NPs In Vivo
2.1.5. Polysialic Acid-NPs (PolySia-NPs) In Vivo
2.1.6. Quantum Dots In Vivo
2.1.7. Nanoceria In Vivo
2.1.8. Light-Sensitive NPs In Vivo
2.1.9. Gene Therapy Delivery with NPs In Vivo
2.1.10. Dendrimers In Vivo
2.1.11. Nanoballs In Vivo
2.1.12. Nanoemulsions In Vivo
2.1.13. Nanofibers In Vivo
2.1.14. Gold NPs (AuNPs) In Vivo
2.2. In Vitro Studies
2.2.1. PLGA NPs In Vitro
2.2.2. Biomimetic NPs In Vitro
2.2.3. Polymeric NPs In Vitro
2.2.4. Nanoemulsions In Vitro
2.2.5. Quantum Dots In Vitro
2.2.6. Gold NPs In Vitro
2.2.7. Niosomes In Vitro
2.2.8. Silica NPs In Vitro
2.2.9. Liposomes In Vitro
2.3. In Silico—Radiosurgery Modeling Studies
3. Discussion
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Increasing Eye Care Interventions to Address Vision Impairment. Available online: https://www.who.int/publications/m/item/increasing-eye-care-interventions-to-address-vision-impairment (accessed on 26 November 2024).
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Guymer, R.H.; Campbell, T.G. Age-Related Macular Degeneration. Lancet 2023, 401, 1459–1472. [Google Scholar] [CrossRef]
- Thomas, C.J.; Mirza, R.G.; Gill, M.K. Age-Related Macular Degeneration. Med. Clin. N. Am. 2021, 105, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W. Comparison of Age-Related Macular Degeneration Treatments Trials 2: Introducing Comparative Effectiveness Research. Ophthalmology 2020, 127, S133–S134. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research Group. Risk Factors for the Incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS) AREDS Report No. 19. Ophthalmology 2005, 112, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, W.; Chen, M.; Cao, Y.; Lu, W.; Li, X. The Retinal Pigment Epithelium: Functions and Roles in Ocular Diseases. Fundam. Res. 2023, 4, 1710–1718. [Google Scholar] [CrossRef]
- Pennington, K.L.; DeAngelis, M.M. Epidemiology of Age-Related Macular Degeneration (AMD): Associations with Cardiovascular Disease Phenotypes and Lipid Factors. Eye Vis. 2016, 3, 34. [Google Scholar] [CrossRef]
- Homayouni, M. Vascular Endothelial Growth Factors and Their Inhibitors in Ocular Neovascular Disorders. J. Ophthalmic Vis. Res. 2009, 4, 105–114. [Google Scholar] [PubMed]
- Fritsche, L.G.; Igl, W.; Bailey, J.N.C.; Grassmann, F.; Sengupta, S.; Bragg-Gresham, J.L.; Burdon, K.P.; Hebbring, S.J.; Wen, C.; Gorski, M.; et al. A Large Genome-Wide Association Study of Age-Related Macular Degeneration Highlights Contributions of Rare and Common Variants. Nat. Genet. 2016, 48, 134–143. [Google Scholar] [CrossRef]
- Gehrs, K.M.; Anderson, D.H.; Johnson, L.V.; Hageman, G.S. Age-related Macular Degeneration—Emerging Pathogenetic and Therapeutic Concepts. Ann. Med. 2006, 38, 450–471. [Google Scholar] [CrossRef] [PubMed]
- The Age-Related Eye Disease Study 2 (AREDS2) Research Group. Lutein + Zeaxanthin and Omega-3 Fatty Acids for Age-Related Macular Degeneration: The Age-Related Eye Disease Study 2 (AREDS2) Randomized Clinical Trial. JAMA 2013, 309, 2005–2015. [Google Scholar] [CrossRef]
- Shen, J.; He, J.; Wang, F. Association of Lipids with Age-Related Macular Degeneration. Discov. Med. 2016, 22, 129–145. [Google Scholar]
- Yu, J.S.; Carlton, R.; Agashivala, N.; Hassan, T.; Wykoff, C.C. Brolucizumab vs Aflibercept and Ranibizumab for Neovascular Age-Related Macular Degeneration: A Cost-Effectiveness Analysis. J. Manag. Care Spec. Pharm. 2021, 27, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Chong, V.; Loewenstein, A.; Larsen, M.; Souied, E.; Schlingemann, R.; Eldem, B.; Monés, J.; Richard, G.; Bandello, F. Guidelines for the Management of Neovascular Age-Related Macular Degeneration by the European Society of Retina Specialists (EURETINA). Br. J. Ophthalmol. 2014, 98, 1144–1167. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, M.H.; Faramarzi, M.A.; Nikfar, S.; Falavarjani, K.G.; Abdollahi, M. Ranibizumab and Aflibercept for the Treatment of Wet Age-Related Macular Degeneration. Expert Opin. Biol. Ther. 2015, 15, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Avery, R.L.; Pieramici, D.J.; Rabena, M.D.; Castellarin, A.A.; Nasir, M.A.; Giust, M.J. Intravitreal Bevacizumab (Avastin) for Neovascular Age-Related Macular Degeneration. Ophthalmology 2006, 113, 363–372.e5. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Moshfeghi, A.A.; Puliafito, C.A. Optical Coherence Tomography Findings after an Intravitreal Injection of Bevacizumab (Avastin) for Neovascular Age-Related Macular Degeneration. Ophthalmic Surg. Lasers Imaging Off. J. Int. Soc. Imaging Eye 2005, 36, 331–335. [Google Scholar]
- Khachigian, L.M.; Liew, G.; Teo, K.Y.C.; Wong, T.Y.; Mitchell, P. Emerging Therapeutic Strategies for Unmet Need in Neovascular Age-Related Macular Degeneration. J. Transl. Med. 2023, 21, 133. [Google Scholar] [CrossRef]
- Zhou, R.; Caspi, R.R. Ocular Immune Privilege. F1000 Biol. Rep. 2010, 2, 3. [Google Scholar] [CrossRef]
- Canioni, R.; Reynaud, F.; Leite-Nascimento, T.; Gueutin, C.; Guiblin, N.; Ghermani, N.-E.; Jayat, C.; Daull, P.; Garrigue, J.-S.; Fattal, E.; et al. Tiny Dexamethasone Palmitate Nanoparticles for Intravitreal Injection: Optimization and in Vivo Evaluation. Int. J. Pharm. 2021, 600, 120509. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, C.; Sugumaran, A.; Krishnaswami, V.; Kandasamy, R.; Natesan, S. Design and Development of Artemisinin and Dexamethasone Loaded Topical Nanodispersion for the Effective Treatment of Age-related Macular Degeneration. IET Nanobiotechnol. 2019, 13, 868–874. [Google Scholar] [CrossRef]
- Mei, L.; Yu, M.; Liu, Y.; Weh, E.; Pawar, M.; Li, L.; Besirli, C.G.; Schwendeman, A.A. Synthetic High-Density Lipoprotein Nanoparticles Delivering Rapamycin for the Treatment of Age-Related Macular Degeneration. Nanomedicine Nanotechnol. Biol. Med. 2022, 44, 102571. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, A.; Ge, Y.; Gou, J.; Yin, T.; He, H.; Wang, Y.; Zhang, G.; Kong, J.; Shang, L.; et al. Ultra-Small-Size Astragaloside-IV Loaded Lipid Nanocapsules Eye Drops for the Effective Management of Dry Age-Related Macular Degeneration. Expert Opin. Drug Deliv. 2020, 17, 1305–1320. [Google Scholar] [CrossRef]
- Yadav, M.; Schiavone, N.; Guzman-Aranguez, A.; Giansanti, F.; Papucci, L.; Perez de Lara, M.J.; Singh, M.; Kaur, I.P. Atorvastatin-Loaded Solid Lipid Nanoparticles as Eye Drops: Proposed Treatment Option for Age-Related Macular Degeneration (AMD). Drug Deliv. Transl. Res. 2020, 10, 919–944. [Google Scholar] [CrossRef]
- Li, W.; Chen, L.; Gu, Z.; Chen, Z.; Li, H.; Cheng, Z.; Li, H.; Zou, L. Co-Delivery of microRNA-150 and Quercetin by Lipid Nanoparticles (LNPs) for the Targeted Treatment of Age-Related Macular Degeneration (AMD). J. Control. Release 2023, 355, 358–370. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S.; Xu, N.; Liu, K.; Wei, F.; Zhang, X.; Zhang, J.; Gao, S.; Yu, Y.; Ding, X. Topical Ophthalmic Liposomes Dual-Modified with Penetratin and Hyaluronic Acid for the Noninvasive Treatment of Neovascular Age-Related Macular Degeneration. Int. J. Nanomed. 2024, 19, 1887–1908. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.M.; Normando, E.M.; Guo, L.; Turner, L.A.; Nizari, S.; O’Shea, P.; Moss, S.E.; Somavarapu, S.; Cordeiro, M.F. Topical Delivery of Avastin to the Posterior Segment of the Eye In Vivo Using Annexin A5-Associated Liposomes. Small 2014, 10, 1575–1584. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Chen, M.; Ni, N.; Zhou, R.; Wang, Y.; Xu, Y.; Wang, Y.; Gao, H.; Zhang, D.; et al. Novel Therapeutic Perspectives for Wet Age-Related Macular Degeneration: RGD-Modified Liposomes Loaded with 2-Deoxy-D-Glucose as a Promising Nanomedicine. Biomed. Pharmacother. 2024, 175, 116776. [Google Scholar] [CrossRef]
- Suri, R.; Neupane, Y.R.; Mehra, N.; Nematullah, M.; Khan, F.; Alam, O.; Iqubal, A.; Jain, G.K.; Kohli, K. Sirolimus Loaded Chitosan Functionalized Poly (Lactic-Co-Glycolic Acid) (PLGA) Nanoparticles for Potential Treatment of Age-Related Macular Degeneration. Int. J. Biol. Macromol. 2021, 191, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.; Li, G.; Xu, F.; Li, S.; Teng, L.; Li, Y.; Sun, F. Anti-Angiogenic Activity Of Bevacizumab-Bearing Dexamethasone-Loaded PLGA Nanoparticles For Potential Intravitreal Applications. Int. J. Nanomed. 2019, 14, 8819–8834. [Google Scholar] [CrossRef]
- Xin, G.; Zhang, M.; Zhong, Z.; Tang, L.; Feng, Y.; Wei, Z.; Li, S.; Li, Y.; Zhang, J.; Zhang, B.; et al. Ophthalmic Drops with Nanoparticles Derived from a Natural Product for Treating Age-Related Macular Degeneration. ACS Appl. Mater. Interfaces 2020, 12, 57710–57720. [Google Scholar] [CrossRef]
- Qiu, F.; Meng, T.; Chen, Q.; Zhou, K.; Shao, Y.; Matlock, G.; Ma, X.; Wu, W.; Du, Y.; Wang, X.; et al. Fenofibrate-Loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration. Mol. Pharm. 2019, 16, 1958–1970. [Google Scholar] [CrossRef]
- Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric Nanoparticles: The Future of Nanomedicine. WIREs Nanomed. Nanobiotechnol. 2016, 8, 271–299. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-H.; Hoang, L.N.; Lin, C.C.; Pan, L.-C.; Wu, C.-L.; Lin, I.-C.; Wang, P.-Y.; Tseng, C.-L. Evaluation of Topical and Subconjunctival Injection of Hyaluronic Acid-Coated Nanoparticles for Drug Delivery to Posterior Eye. Pharmaceutics 2022, 14, 1253. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-Y.; Lu, B.; Feng, Q.; Alfaro, J.S.; Chen, P.-H.; Loscalzo, J.; Wei, W.-B.; Zhang, Y.-Y.; Lu, S.-J.; Wang, S. Retinal Protection by Sustained Nanoparticle Delivery of Oncostatin M and Ciliary Neurotrophic Factor Into Rodent Models of Retinal Degeneration. Transl. Vis. Sci. Technol. 2021, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, L.; Xu, F.; Li, G.; Chen, J.; Teng, L.; Li, Y.; Sun, F. Cyclic RGD Peptide Targeting Coated Nano Drug Co-Delivery System for Therapeutic Use in Age-Related Macular Degeneration Disease. Molecules 2020, 25, 4897. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Chen, L.; Lv, X.; Liu, N.; Miao, Y.; Zhang, Q.; Xiao, Z.; Li, M.; Yang, Y.; Liu, Z.; et al. Emerging Co-Assembled and Sustained Released Natural Medicinal Nanoparticles for Multitarget Therapy of Choroidal Neovascularization. Adv. Mater. 2024, 36, 2314095. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Xu, H.; Wu, M.; Lei, W.; Li, L.; Liu, D.; Wang, Z.; Ran, H.; Ma, H.; Zhou, X. Targeted Long-Term Noninvasive Treatment of Choroidal Neovascularization by Biodegradable Nanoparticles. Acta Biomater. 2023, 166, 536–551. [Google Scholar] [CrossRef]
- Kim, H.; Csaky, K.G. Nanoparticle–Integrin Antagonist C16Y Peptide Treatment of Choroidal Neovascularization in Rats. J. Control. Release 2010, 142, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.S.D.; Dos Reis Teixeira, A.; De Vasconcelos Quaresma, A.; Almeida, T.C.; Arribada, R.G.; Neto, J.T.; Da Silva, F.H.R.; Silva-Cunha, A.; Lima De Moura, S.A.; Da Silva, G.N.; et al. Sodium Butyrate-Loaded Nanoparticles Coated with Chitosan for the Treatment of Neovascularization in Age-Related Macular Degeneration: Ocular Biocompatibility and Antiangiogenic Activity. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV 2022, 179, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Sendra, V.G.; Patel, D.; Lad, A.; Greene, M.K.; Smyth, P.; Gallaher, S.A.; Herron, Ú.M.; Scott, C.J.; Genead, M.; et al. PolySialic Acid-Nanoparticles Inhibit Macrophage Mediated Inflammation through Siglec Agonism: A Potential Treatment for Age Related Macular Degeneration. Front. Immunol. 2023, 14, 1237016. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Callanan, D.G.; Sendra, V.G.; Lad, A.; Christian, S.; Earla, R.; Khanehzar, A.; Tolentino, A.J.; Vailoces, V.A.S.; Greene, M.K.; et al. Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials. Pharmaceuticals 2024, 17, 481. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.L.; Krishnan, A.; Patel, D.; Khanehzar, A.; Lad, A.; Shaughnessy, J.; Ram, S.; Callanan, D.; Kunimoto, D.; Genead, M.A.; et al. PolySialic Acid Nanoparticles Actuate Complement-Factor-H-Mediated Inhibition of the Alternative Complement Pathway: A Safer Potential Therapy for Age-Related Macular Degeneration. Pharmaceuticals 2024, 17, 517. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liu, X.; Lv, Z.; Zhang, D.; Zhou, Y.; Lin, Z.; Guo, J. MMP9-Responsive Graphene Oxide Quantum Dot-Based Nano-in-Micro Drug Delivery System for Combinatorial Therapy of Choroidal Neovascularization. Small 2023, 19, 2207335. [Google Scholar] [CrossRef]
- Badia, A.; Duarri, A.; Salas, A.; Rosell, J.; Ramis, J.; Gusta, M.F.; Casals, E.; Zapata, M.A.; Puntes, V.; García-Arumí, J. Repeated Topical Administration of 3 Nm Cerium Oxide Nanoparticles Reverts Disease Atrophic Phenotype and Arrests Neovascular Degeneration in AMD Mouse Models. ACS Nano 2023, 17, 910–926. [Google Scholar] [CrossRef] [PubMed]
- Tisi, A.; Flati, V.; Delle Monache, S.; Lozzi, L.; Passacantando, M.; Maccarone, R. Nanoceria Particles Are an Eligible Candidate to Prevent Age-Related Macular Degeneration by Inhibiting Retinal Pigment Epithelium Cell Death and Autophagy Alterations. Cells 2020, 9, 1617. [Google Scholar] [CrossRef]
- Tisi, A.; Pulcini, F.; Carozza, G.; Mattei, V.; Flati, V.; Passacantando, M.; Antognelli, C.; Maccarone, R.; Delle Monache, S. Antioxidant Properties of Cerium Oxide Nanoparticles Prevent Retinal Neovascular Alterations In Vitro and In Vivo. Antioxidants 2022, 11, 1133. [Google Scholar] [CrossRef] [PubMed]
- Mitra, R.N.; Gao, R.; Zheng, M.; Wu, M.-J.; Voinov, M.A.; Smirnov, A.I.; Smirnova, T.I.; Wang, K.; Chavala, S.; Han, Z. Glycol Chitosan Engineered Autoregenerative Antioxidant Significantly Attenuates Pathological Damages in Models of Age-Related Macular Degeneration. ACS Nano 2017, 11, 4669–4685. [Google Scholar] [CrossRef]
- Wang, K.; Mitra, R.N.; Zheng, M.; Han, Z. Nanoceria-Loaded Injectable Hydrogels for Potential Age-Related Macular Degeneration Treatment. J. Biomed. Mater. Res. A 2018, 106, 2795–2804. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, M.; Lester, K.L.; Han, Z. Light-Induced Nrf2−/− Mice as Atrophic Age-Related Macular Degeneration Model and Treatment with Nanoceria Laden Injectable Hydrogel. Sci. Rep. 2019, 9, 14573. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Cui, K.; Long, K.; Li, J.; Fan, N.; Lam, W.; Liang, X.; Wang, W. Red Light-Triggered Anti-Angiogenic and Photodynamic Combination Therapy of Age-Related Macular Degeneration. Adv. Sci. 2023, 10, 2301985. [Google Scholar] [CrossRef]
- Anh Nguyen Huu, V.; Luo, J.; Zhu, J.; Zhu, J.; Patel, S.; Boone, A.; Mahmoud, E.; McFearin, C.; Olejniczak, J.; de Gracia Lux, C.; et al. Light-Responsive Nanoparticle Depot to Control Release of a Small Molecule Angiogenesis Inhibitor in the Posterior Segment of the Eye. J. Control. Release Off. J. Control. Release Soc. 2015, 200, 71–77. [Google Scholar] [CrossRef]
- Ideta, R.; Tasaka, F.; Jang, W.-D.; Nishiyama, N.; Zhang, G.-D.; Harada, A.; Yanagi, Y.; Tamaki, Y.; Aida, T.; Kataoka, K. Nanotechnology-Based Photodynamic Therapy for Neovascular Disease Using a Supramolecular Nanocarrier Loaded with a Dendritic Photosensitizer. Nano Lett. 2005, 5, 2426–2431. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswami, V.; Ponnusamy, C.; Sankareswaran, S.; Paulsamy, M.; Madiyalakan, R.; Palanichamy, R.; Kandasamy, R.; Natesan, S. Development of Copolymeric Nanoparticles of Hypocrellin B: Enhanced Phototoxic Effect and Ocular Distribution. Eur. J. Pharm. Sci. 2018, 116, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bohner, A.; Bhuvanagiri, S.; Uehara, H.; Upadhyay, A.K.; Emerson, L.L.; Bondalapati, S.; Muddana, S.K.; Fang, D.; Li, M.; et al. Targeted Intraceptor Nanoparticle for Neovascular Macular Degeneration: Preclinical Dose Optimization and Toxicology Assessment. Mol. Ther. 2017, 25, 1606–1615. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, X.; Hirano, Y.; Tyagi, P.; Barabás, P.; Uehara, H.; Miya, T.R.; Singh, N.; Archer, B.; Qazi, Y.; et al. Targeted Intraceptor Nanoparticle Therapy Reduces Angiogenesis and Fibrosis in Primate and Murine Macular Degeneration. ACS Nano 2013, 7, 3264–3275. [Google Scholar] [CrossRef] [PubMed]
- Dasari, B.C.; Cashman, S.M.; Kumar-Singh, R. Reducible PEG-POD/DNA Nanoparticles for Gene Transfer In Vitro and In Vivo: Application in a Mouse Model of Age-Related Macular Degeneration. Mol. Ther. Nucleic Acids 2017, 8, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Liu, C.; Kannan, R.M. Systemic Dendrimer-Peptide Therapies for Wet Age-Related Macular Degeneration. Pharmaceutics 2023, 15, 2428. [Google Scholar] [CrossRef] [PubMed]
- Kambhampati, S.P.; Bhutto, I.A.; Wu, T.; Ho, K.; McLeod, D.S.; Lutty, G.A.; Kannan, R.M. Systemic Dendrimer Nanotherapies for Targeted Suppression of Choroidal Inflammation and Neovascularization in Age-Related Macular Degeneration. J. Control. Release Off. J. Control. Release Soc. 2021, 335, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, N.-K.; Lee, J.; Lee, H.; Hong, H.K.; Kim, H.; Lee, J.B.; Woo, S.J.; Park, K.H.; Kim, H. Therapeutic Effects of a Novel siRNA-Based Anti-VEGF (siVEGF) Nanoball for the Treatment of Choroidal Neovascularization. Nanoscale 2017, 9, 15461–15469. [Google Scholar] [CrossRef]
- Huang, L.; Liang, W.; Zhou, K.; Wassel, R.A.; Ridge, Z.D.; Ma, J.-X.; Wang, B. Therapeutic Effects of Fenofibrate Nano-Emulsion Eye Drops on Retinal Vascular Leakage and Neovascularization. Biology 2021, 10, 1328. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, A.; Sun, R.; Xu, J.; Yin, T.; He, H.; Gou, J.; Kong, J.; Zhang, Y.; Tang, X. Penetratin-Modified Lutein Nanoemulsion in-Situ Gel for the Treatment of Age-Related Macular Degeneration. Expert Opin. Drug Deliv. 2020, 17, 603–619. [Google Scholar] [CrossRef]
- Gao, H.; Chen, M.; Liu, Y.; Zhang, D.; Shen, J.; Ni, N.; Tang, Z.; Ju, Y.; Dai, X.; Zhuang, A.; et al. Injectable Anti-Inflammatory Supramolecular Nanofiber Hydrogel to Promote Anti-VEGF Therapy in Age-Related Macular Degeneration Treatment. Adv. Mater. 2023, 35, 2204994. [Google Scholar] [CrossRef] [PubMed]
- Roh, Y.-J.; Rho, C.R.; Cho, W.-K.; Kang, S. The Antiangiogenic Effects of Gold Nanoparticles on Experimental Choroidal Neovascularization in Mice. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6561–6567. [Google Scholar] [CrossRef]
- Song, H.B.; Wi, J.-S.; Jo, D.H.; Kim, J.H.; Lee, S.-W.; Lee, T.G.; Kim, J.H. Intraocular Application of Gold Nanodisks Optically Tuned for Optical Coherence Tomography: Inhibitory Effect on Retinal Neovascularization without Unbearable Toxicity. Nanomedicine Nanotechnol. Biol. Med. 2017, 13, 1901–1911. [Google Scholar] [CrossRef]
- Ni Shen, R.Z.; Ni Shen, R.Z. Inhibition of Retinal Angiogenesis by Gold Nanoparticles via Inducing Autophagy. Int. J. Ophthalmol. 2018, 11, 1269–1276. [Google Scholar] [CrossRef]
- Narvekar, P.; Bhatt, P.; Fnu, G.; Sutariya, V. Axitinib-Loaded Poly(Lactic-Co-Glycolic Acid) Nanoparticles for Age-Related Macular Degeneration: Formulation Development and In Vitro Characterization. ASSAY Drug Dev. Technol. 2019, 17, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Fnu, G.; Bhatia, D.; Shahid, A.; Sutariya, V. Nanodelivery of Resveratrol-Loaded PLGA Nanoparticles for Age-Related Macular Degeneration. AAPS PharmSciTech 2020, 21, 291. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.J.; Hirani, A.; Shahidadpury, V.; Solanki, A.; Halasz, K.; Varghese Gupta, S.; Madow, B.; Sutariya, V. Aflibercept Nanoformulation Inhibits VEGF Expression in Ocular In Vitro Model: A Preliminary Report. Biomedicines 2018, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.J.; Halasz, K.; Smalling, R.; Sutariya, V. Nanodelivery of Doxorubicin for Age-Related Macular Degeneration. Drug Dev. Ind. Pharm. 2019, 45, 715–723. [Google Scholar] [CrossRef]
- Rudeen, K.M.; Liu, W.; Mieler, W.F.; Kang-Mieler, J.J. Simultaneous Release of Aflibercept and Dexamethasone from an Ocular Drug Delivery System. Curr. Eye Res. 2022, 47, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Hirani, A.; Grover, A.; Lee, Y.W.; Pathak, Y.; Sutariya, V. Triamcinolone Acetonide Nanoparticles Incorporated in Thermoreversible Gels for Age-Related Macular Degeneration. Pharm. Dev. Technol. 2016, 21, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Narvekar, P.; Lalani, R.; Chougule, M.B.; Pathak, Y.; Sutariya, V. An in Vitro Assessment of Thermo-Reversible Gel Formulation Containing Sunitinib Nanoparticles for Neovascular Age-Related Macular Degeneration. AAPS PharmSciTech 2019, 20, 281. [Google Scholar] [CrossRef]
- Yan, J.; Peng, X.; Cai, Y.; Cong, W. Development of Facile Drug Delivery Platform of Ranibizumab Fabricated PLGA-PEGylated Magnetic Nanoparticles for Age-Related Macular Degeneration Therapy. J. Photochem. Photobiol. B 2018, 183, 133–136. [Google Scholar] [CrossRef]
- Elsaid, N.; Jackson, T.L.; Elsaid, Z.; Alqathama, A.; Somavarapu, S. PLGA Microparticles Entrapping Chitosan-Based Nanoparticles for the Ocular Delivery of Ranibizumab. Mol. Pharm. 2016, 13, 2923–2940. [Google Scholar] [CrossRef] [PubMed]
- McCormick, R.; Pearce, I.; Kaye, S.; Haneef, A. Optimisation of a Novel Bio-Substrate as a Treatment for Atrophic Age-Related Macular Degeneration. Front. Bioeng. Biotechnol. 2020, 8, 456. [Google Scholar] [CrossRef]
- Xia, W.; Li, C.; Chen, Q.; Huang, J.; Zhao, Z.; Liu, P.; Xu, K.; Li, L.; Hu, F.; Zhang, S.; et al. Intravenous Route to Choroidal Neovascularization by Macrophage-Disguised Nanocarriers for mTOR Modulation. Acta Pharm. Sin. B 2022, 12, 2506–2521. [Google Scholar] [CrossRef]
- Khin, S.Y.; Soe, H.M.S.H.; Chansriniyom, C.; Pornputtapong, N.; Asasutjarit, R.; Loftsson, T.; Jansook, P. Development of Fenofibrate/Randomly Methylated β-Cyclodextrin-Loaded Eudragit® RL 100 Nanoparticles for Ocular Delivery. Molecules 2022, 27, 4755. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, X.; Liu, R.; Su, W.; Song, Y.; Tan, M. Preparation of Lutein Nanoparticles by Glycosylation of Saccharides and Casein for Protecting Retinal Pigment Epithelial Cells. J. Agric. Food Chem. 2024, 72, 6347–6359. [Google Scholar] [CrossRef]
- Wang, W.; Sreekumar, P.G.; Valluripalli, V.; Shi, P.; Wang, J.; Lin, Y.-A.; Cui, H.; Kannan, R.; Hinton, D.R.; MacKay, J.A. Protein Polymer Nanoparticles Engineered as Chaperones Protect against Apoptosis in Human Retinal Pigment Epithelial Cells. J. Control. Release Off. J. Control. Release Soc. 2014, 191, 4–14. [Google Scholar] [CrossRef]
- Fernandes, A.R.; dos Santos, T.; Granja, P.L.; Sanchez-Lopez, E.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Permeability, Anti-Inflammatory and Anti-VEGF Profiles of Steroidal-Loaded Cationic Nanoemulsions in Retinal Pigment Epithelial Cells under Oxidative Stress. Int. J. Pharm. 2022, 617, 121615. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Yan, P.; Wan, G.; Liang, S.; Dong, Y.; Wang, J. Facile Synthetic Photoluminescent Graphene Quantum Dots Encapsulated β-Cyclodextrin Drug Carrier System for the Management of Macular Degeneration: Detailed Analytical and Biological Investigations. J. Photochem. Photobiol. B 2018, 189, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Hoshikawa, A.; Tagami, T.; Morimura, C.; Fukushige, K.; Ozeki, T. Ranibizumab Biosimilar/Polyethyleneglycol-Conjugated Gold Nanoparticles as a Novel Drug Delivery Platform for Age-Related Macular Degeneration. J. Drug Deliv. Sci. Technol. 2017, 38, 45–50. [Google Scholar] [CrossRef]
- De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.A.M.; Geertsma, R.E. Particle Size-Dependent Organ Distribution of Gold Nanoparticles after Intravenous Administration. Biomaterials 2008, 29, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-M.; Hsiao, C.-Y.; Li, H.-J.; Fang, J.-Y.; Chang, D.-C.; Hung, C.-F. The Inhibitory Effects of Gold Nanoparticles on VEGF-A-Induced Cell Migration in Choroid-Retina Endothelial Cells. Int. J. Mol. Sci. 2020, 21, 109. [Google Scholar] [CrossRef] [PubMed]
- Arvizo, R.R.; Rana, S.; Miranda, O.R.; Bhattacharya, R.; Rotello, V.M.; Mukherjee, P. Mechanism of Anti-Angiogenic Property of Gold Nanoparticles: Role of Nanoparticle Size and Surface Charge. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Dastaviz, F.; Vahidi, A.; Khosravi, T.; Khosravi, A.; Sheikh Arabi, M.; Bagheri, A.; Rashidi, M.; Oladnabi, M. Impact of Umbelliprenin-Containing Niosome Nanoparticles on VEGF-A and CTGF Genes Expression in Retinal Pigment Epithelium Cells. Int. J. Ophthalmol. 2024, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ultimo, A.; Orzaez, M.; Santos-Martinez, M.J.; Martínez-Máñez, R.; Marcos, M.D.; Sancenón, F.; Ruiz-Hernández, E. High-Capacity Mesoporous Silica Nanocarriers of siRNA for Applications in Retinal Delivery. Int. J. Mol. Sci. 2023, 24, 2753. [Google Scholar] [CrossRef] [PubMed]
- Behroozi, F.; Abdkhodaie, M.-J.; Abandansari, H.S.; Satarian, L.; Ashtiani, M.K.; Jaafari, M.R.; Baharvand, H. Smart Liposomal Drug Delivery for Treatment of Oxidative Stress Model in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Int. J. Pharm. 2018, 548, 62–72. [Google Scholar] [CrossRef]
- Brivio, D.; Zygmanski, P.; Arnoldussen, M.; Hanlon, J.; Chell, E.; Sajo, E.; Makrigiorgos, G.M.; Ngwa, W. Kilovoltage Radiosurgery with Gold Nanoparticles for Neovascular Age-Related Macular Degeneration (AMD): A Monte Carlo Evaluation. Phys. Med. Biol. 2015, 60, 9203–9213. [Google Scholar] [CrossRef] [PubMed]
- Ngwa, W.; Makrigiorgos, G.M.; Berbeco, R.I. Gold Nanoparticle Enhancement of Stereotactic Radiosurgery for Neovascular Age-Related Macular Degeneration. Phys. Med. Biol. 2012, 57, 6371–6380. [Google Scholar] [CrossRef]
- Ngwa, W.; Makrigiorgos, M.; Berbeco, R. SU-E-T-408: Enhancing Stereotactic Radiosurgery for Neovascular Age-Related Macular Degeneration, Using Gold Nanoparticles. Med. Phys. 2012, 39, 3798. [Google Scholar] [CrossRef] [PubMed]
- Sutariya, V.B.; Bhatt, P.S.; Amin, V.B.; Tipparaju, S.M. Nanoparticles and Nanogel Drug Compositions for Treatment of Age-Related Macular Degeneration. US Patent 20230041815A1, 9 February 2023. Available online: https://patents.google.com/patent/US20230041815A1/en (accessed on 7 January 2025).
- Deschatelets, P.; Olson, P.; Francois, C. Methods of Treating Age-Related Macular Degeneration by Compstatin and Analogs Thereof. US Patent 8168584B2, 1 May 2012. [Google Scholar]
- Kompella, U.B.; Singh, S.R.; Sundaram, S. Methods and Compositions for Targeted Delivery of Therapeutic Agents. US Patent 20090087494A1, 2 April 2009. [Google Scholar]
- Venkatraman, S.; Joseph, R.R.; Boey, Y.C.F. Subconjunctival Depot Forming Formulations for Ocular Drug Delivery. US Patent 20190133931A1, 9 May 2019. [Google Scholar]
- Dobmeyer, R. Nanoparticles for the Treatment of Macular Degeneration. Patent WO2018162271A1, 13 September 2018. [Google Scholar]
- Smith, H.J. Treatment of Age-Related Macular Degeneration. US Patent 20200262903A1, 20 August 2020. [Google Scholar]
- Lanzani, G.; Benfenati, F.; Pertile, G.; Mete, M.; Maya-Vetencourt, J.F. Eye-Injectable Polymeric Nanoparticles and Method of Use Therefor. US Patent 20200113843A1, 16 April 2020. [Google Scholar]
- Theodoropoulou, S.; Dick, A.; Clare, A.; Chan, Y.K. Il-33 Therapy for Use in the Treatment, Prevention or Management of Age-Related Macular Degeneration (Amd). US Patent 2019374477A1, 12 December 2019. [Google Scholar]
- Lee, T.G.; Kim, J.H.; Jo, D.H. Composition Containing Inorganic Nanoparticles as an Active Ingredient for Preventing or Treating of Angiogenesis-Related Diseases. US Patent 20140044753, 13 February 2014. [Google Scholar]
- Sutariya, V.B.; Hirani, A.A.; Pathak, Y.V. Nanoparticles in Thermoreversible Gels for Enhanced Therapeutics. USF Patent 10,729,663 B1, 4 August 2020. [Google Scholar]
- Yeo, Y.; Chobisa, D.; Corson, T.W. Pharmaceutical Formulations of Griseofulvin for Long-Term Ocular Delivery. Patent WO/2021/262916, 30 December 2021. [Google Scholar]
- Malsanka-Figueroa, S.; Fleischmann, D.; Göpferich, A. Virus-Mimetic Nanoparticles. US Patent 2022409743A1, 29 December 2022. [Google Scholar]
- Roizman, K.; Requard, J.J., III; Cogan, F.J.D. Topical Delivery of Therapeutic Agents Using Cell-Penetrating Peptides for the Treatment of Age-Related Macular Degeneration and Other Eye Diseases. US Patent 10,905,770, 2 February 2021. [Google Scholar]
- Zhang, Y.; Li, T.; Bai, Y. Use of Anthracycline Antibiotics in Preparation of Medicines for Treating Age-Related Macular Degeneration. Patent CN103083341A, 8 May 2013. [Google Scholar]
- Swetledge, S.; Jung, J.P.; Carter, R.; Sabliov, C. Distribution of Polymeric Nanoparticles in the Eye: Implications in Ocular Disease Therapy. J. Nanobiotechnol. 2021, 19, 10. [Google Scholar] [CrossRef]
- Yang, C.; Yang, J.; Lu, A.; Gong, J.; Yang, Y.; Lin, X.; Li, M.; Xu, H. Nanoparticles in Ocular Applications and Their Potential Toxicity. Front. Mol. Biosci. 2022, 9, 931759. [Google Scholar] [CrossRef]
- Chittasupho, C.; Posritong, P.; Ariyawong, P. Stability, Cytotoxicity, and Retinal Pigment Epithelial Cell Binding of Hyaluronic Acid-Coated PLGA Nanoparticles Encapsulating Lutein. AAPS PharmSciTech 2018, 20, 4. [Google Scholar] [CrossRef]
- Kuo, T.-R.; Lee, C.-F.; Lin, S.-J.; Dong, C.-Y.; Chen, C.-C.; Tan, H.-Y. Studies of Intracorneal Distribution and Cytotoxicity of Quantum Dots: Risk Assessment of Eye Exposure. Chem. Res. Toxicol. 2011, 24, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Lee, Y.-H.; Chou, C.-L.; Chang, Y.-S.; Liu, W.-C.; Chiu, H.-W. Oxidative Stress and Potential Effects of Metal Nanoparticles: A Review of Biocompatibility and Toxicity Concerns. Environ. Pollut. 2024, 346, 123617. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.-J.; Liao, P.-L.; Tsai, C.-H.; Cheng, Y.-W.; Lin, F.-L.; Ho, J.-D.; Chen, C.-Y.; Li, C.-H. Titanium Dioxide Nanoparticles Impair the Inner Blood-Retinal Barrier and Retinal Electrophysiology through Rapid ADAM17 Activation and Claudin-5 Degradation. Part. Fibre Toxicol. 2021, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, J.; Wang, P.; Sun, J.; Lv, X.; Diao, Y. Toxic Effect of Titanium Dioxide Nanoparticles on Corneas in Vitro and in Vivo. Aging 2021, 13, 5020–5033. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Liu, J.; Liu, Z.; Zhou, H. Immune Modulating Nanoparticles for the Treatment of Ocular Diseases. J. Nanobiotechnol. 2022, 20, 496. [Google Scholar] [CrossRef] [PubMed]
Study | NP Category | Use of NPs | AMD Type | Proposed Administration | Study Design |
---|---|---|---|---|---|
[21] | Lipid NPs | Drug delivery (dexamethasone) | Dry and wet AMD | Intravitreal injection | in vivo |
[22] | Lipid NPs | Drug co-delivery (artemisinin and dexamethasone) | Wet AMD | Topical (eye drops) | in vitro and in vivo |
[23] | Lipid NPs | Drug delivery (rapamycin) | Not specified | Intravitreal injection | in vitro and in vivo |
[24] | Lipid NPs | Drug delivery (astragaloside IV) | Dry AMD | Topical (eye drops) | in vivo |
[25] | Lipid NPs | Drug delivery (atorvastatin) | Not specified | Topical (eye drops) | in vitro, ex vivo, and in vivo |
[26] | Lipid NPs | Drug co-delivery (mRNA-150 and quercetin) | Wet AMD, CNV | Intravitreal injection | in vitro and in vivo |
[29] | Liposomes | Drug delivery (2-deoxy-D-glucose (2-DG) | Wet AMD | Intravitreal injection | in vivo |
[27] | Liposomes | Drug delivery (conbercept) | Wet AMD | Topical (eye drops) | in vivo |
[91] | Liposomes | Drug delivery (N-acetyl cysteine) | Dry AMD | Topical or intravitreal injection | in vitro |
[28] | Liposomes | Drug delivery (bevacizumab) | Wet AMD | Topical (eye drops) | in vivo |
[68] | PLGA NPs | Drug delivery (axitinib) | Wet AMD | Intravitreal injection | in vitro |
[30] | PLGA NPs | Drug delivery (sirolimus) | Wet AMD | Subconjunctival injection | in vivo, ex vivo and in vitro |
[69] | PLGA NPs | Drug delivery (resveratrol) | Wet AMD | Intravitreal injection | in vitro |
[75] | PLGA NPs | Biomimetic (Bruchs membrane) | Dry AMD | Not specified | in vitro |
[79] | PLGA NPs | Biomimetic and drug delivery (rapamycin) | CNV | Intravenous injection | in vitro and in vivo |
[31] | PLGA NPs | Drug delivery (bevacizumab) | CNV | Intravitreal injection | in vitro and in vivo |
[70] | PLGA NPs | Drug delivery (aflibercept) | Not specified | Not specified | in vitro |
[74] | PLGA NPs | Drug delivery (rabibizumab) | Wet AMD | Intravitreal injection | in vitro |
[33] | PLGA NPs | Drug delivery (fenofibrate) | CNV | Intravitreal injection | in vivo and in vitro |
[56] | PLGA NPs | Photodynamic therapy dose-enhancement | Not specified | Intravenous injection | in vitro and in vivo |
[71] | PLGA NPs | Drug delivery (anti-VEGF and corticosteroid) | Wet AMD, CNV | Injectable hydrogel | in vitro |
[32] | PLGA NPs | Immune modulation | Wet AMD, CNV | Topical (eye drops) | in vivo |
[75] | PLGA NPs | Drug delivery (sunitinib) | Wet AMD | Thermoreversible gel | in vitro |
[72] | PLGA NPs | Drug delivery (doxorubicin) | Wet AMD | Intravitreal injection | in vitro |
[72] | PLGA NPs | Drug delivery (triamcinolone acetonide) | Wet AMD, CNV | Thermoreversible gel | in vitro |
[73] | PLGA NPs | Drug delivery (ranibizumab) | Wet AMD | Not specified | In vitro |
[77] | Polymeric NPs | Drug delivery (fenofibrate) | Not specified | Topical (eye drops) | in vitro |
[36] | Polymeric NPs | Drug delivery (gelatin-epigallocatechin gallate NPs) | Not specified | Topical or subconjunctival | in vivo and in vitro |
[37] | Polymeric NPs | Drug delivery (oncostatin M and CNF) | Not specified | Intravitreal injection | in vitro and in vivo |
[38] | Polymeric NPs | Drug co-delivery (dexamethasone and bevacizumab) | Wet AMD, CNV | Intravitreal injection | in vivo |
[78] | Polymeric NPs | Drug delivery (lutein) | Not specified | Oral administration | in vitro |
[82] | Polymeric NPs | Anti-inflammatory agent (elastin-like-polypeptides) | Not specified | Not specified | in vitro |
[39] | Polymeric NPs | Drug co-delivery (lutein and nintedanib) | CNV | Subconjunctival injection | in vivo |
[40] | Polymeric NPs | Biomimetic (angiopoietin1-anti CD105 NPs) | CNV | Intravenous injection | in vitro and in vivo |
[42] | Polymeric NPs | Drug delivery(sodium butyrate) | Wet AMD, CNV | Intravitreal injection | in vitro and in vivo |
[41] | Polymeric NPs | Drug delivery (integrin-antagonist peptide) | CNV | Intravitreal injection | in vitro and in vivo |
[55] | Polymeric NPs | Photodynamic therapy dose-enhancement | Wet AMD, CNV | Intravenous injection | in vivo |
[59] | Polymeric NPs | Drug delivery (gene therapy—hFLT1 gene) | Wet AMD, CNV | Subretinal | in vitro and in vivo |
[44] | PolySia-NPs | Immune modulation | Geographic atrophy | Intravenous/intravitreal injection | in vitro and in vivo |
[43] | PolySia-NPs | Immune modulation | CNV | Intravitreal injection | in vitro and in vivo |
[45] | PolySia-NPs | Immune modulation | Wet AMD, CNV | Intravitreal injection | in vitro and in vivo |
[46] | Quantum Dots | Antioxidant (Graphene Oxide QDs), drug delivery (minocycline) | Wet AMD | Intravitreal injection | in vivo |
[81] | Quantum Dots | Drug co-delivery (ranibizumab and bevacizumab) | Wet AMD | Intravitreal injection | in vitro |
[47] | Nanoceria | Antioxidant (CeO₂) | Dry and wet AMD | Topical (eye drops) | in vitro and in vivo |
[49] | Nanoceria | Antioxidant (CeO₂) | CNV | Intravitreal injection | in vitro and in vivo |
[48] | Nanoceria | Antioxidant (CeO₂) | Dry AMD | Intravitreal injection | in vitro and in vivo |
[50] | Nanoceria | Antioxidant (Glycol chitosan-coated CeO₂ NPs) | Wet AMD | Intravitreal injection | in vitro and in vivo |
[52] | Nanoceria | Drug delivery | Dry AMD | Injectable hydrogel | in vivo |
[51] | Nanoceria | Antioxidant (CeO₂) | Dry and wet AMD | Injectable hydrogel | in vitro |
[53] | Light-sensitive NPs | Drug delivery (anti-angiogenic and photosensitizer) | CNV | Intravenous injection | in vitro and in vivo |
[54] | Light-sensitive NPs | Drug delivery (nintedanib) | CNV | Intravenous injection | in vitro and in vivo |
[57] | Gene therapy NPs | Drug delivery (gene therapy- Flt23k) | Wet AMD | Intravenous injection | in vivo |
[58] | Gene therapy NPs | Drug delivery (gene therapy—Flt23k) | Wet AMD | Intravenous injection | in vivo |
[60] | Dendrimers | Drug delivery (peptide-based therapeutics) | Wet AMD, CNV | Intravitreal injection and systemic | in vitro and in vivo |
[61] | Dendrimers | Drug delivery (triamcinolone) | Dry and wet AMD | Intravenous injection | in vivo and ex vivo |
[61] | Nanoballs | Drug delivery (anti-VEGF siRNA) | Wet AMD, CNV | Intravitreal injection | in vivo |
[80] | Nanoemulsions | Drug delivery (triamcinolone Acetonide) | Not specified | Not specified | in vitro |
[62] | Nanoemulsions | Drug delivery (fenofibrate) | CNV | Topical (eye drops) | in vivo |
[63] | Nanoemulsions | Drug delivery (lutein) | Dry and wet AMD | Eye drops/in situ gel | in vivo and in vitro |
[64] | Nanofibers | Drug delivery (betamethasone) | Wet AMD, CNV | Injectable hydrogel | in vivo |
[88] | AuNPs | Radiation dose-enhancement | Wet AMD, CNV | Not specified | in silico |
[90] | AuNPs | Radiation dose-enhancement | CNV | Intravenously or localized targeting | radiosurgery modeling |
[89] | AuNPs | Radiation dose-enhancement | CNV | Localized targeting | radiosurgery modeling |
[65] | AuNPs | Anti-angiogenic therapy | Not specified | Intravitreal injection | in vitro and in vivo |
[66] | AuNPs | Anti-angiogenic therapy | Not specified | Not specified | in vitro and in vivo |
[67] | AuNPs | Anti-angiogenic therapy | Not specified | Not specified | in vitro and in vivo |
[86] | Niosomes | Drug delivery (umbelliprenin) | Not specified | Not specified | in vitro |
[87] | Silica NPs | Drug delivery (anti-VEGF siRNA) | Wet AMD, CNV | Topical (eye drops) | in vitro |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaidou, A.; Spyratou, E.; Sandali, A.; Gianni, T.; Platoni, K.; Lamprogiannis, L.; Efstathopoulos, E.P. Utilization of Nanoparticles for Treating Age-Related Macular Degeneration. Pharmaceuticals 2025, 18, 162. https://doi.org/10.3390/ph18020162
Nikolaidou A, Spyratou E, Sandali A, Gianni T, Platoni K, Lamprogiannis L, Efstathopoulos EP. Utilization of Nanoparticles for Treating Age-Related Macular Degeneration. Pharmaceuticals. 2025; 18(2):162. https://doi.org/10.3390/ph18020162
Chicago/Turabian StyleNikolaidou, Anna, Ellas Spyratou, Athanasia Sandali, Theodora Gianni, Kalliopi Platoni, Lampros Lamprogiannis, and Efstathios P. Efstathopoulos. 2025. "Utilization of Nanoparticles for Treating Age-Related Macular Degeneration" Pharmaceuticals 18, no. 2: 162. https://doi.org/10.3390/ph18020162
APA StyleNikolaidou, A., Spyratou, E., Sandali, A., Gianni, T., Platoni, K., Lamprogiannis, L., & Efstathopoulos, E. P. (2025). Utilization of Nanoparticles for Treating Age-Related Macular Degeneration. Pharmaceuticals, 18(2), 162. https://doi.org/10.3390/ph18020162