Intranasal Human-Recombinant Nerve Growth Factor Enhances Motor and Cognitive Function Recovery in a Child with Severe Traumatic Brain Injury
Abstract
:1. Introduction
2. Case Presentation
2.1. Initial Therapy Results
2.1.1. Neurological Assessment
2.1.2. Behavioral and Cognitive Aspects
2.1.3. Fine Motor Coordination
2.2. Intranasal Human-Recombinant NGF (hr-NGF) Administration
3. Results
3.1. Clinical Results After hr-NGF Treatment
3.1.1. Motor Function
3.1.2. Language and Verbale Cognitive Skills
3.1.3. Electroencephalogram (EEG)
3.1.4. Neuroimaging
3.2. Somatosensory-Evoked Potential (SSEP), Motor Evoked Potentials (MEPs), Auditory Brainstem Evoked Potentials (BAEPs)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ben Abdeljelil, A.; Freire, G.C.; Yanchar, N.; Turgeon, A.F.; Beno, S.; Bérubé, M.; Stang, A.; Stelfox, T.; Zemek, R.; Beaulieu, E.; et al. Pediatric Moderate and Severe Traumatic Brain Injury: A Systematic Review of Clinical Practice Guideline Recommendations. J. Neurotrauma 2023, 40, 2270–2281. [Google Scholar] [CrossRef] [PubMed]
- Dewan, M.C.; Mummareddy, N.; Wellons, J.C., 3rd; Bonfield, C.M. Epidemiology of Global Pediatric Traumatic Brain Injury: Qualitative Review. World Neurosurg. 2016, 91, 497–509.e1. [Google Scholar] [CrossRef] [PubMed]
- Mohamadpour, M.; Whitney, K.; Bergold, P.J. The Importance of Therapeutic Time Window in the Treatment of Traumatic Brain Injury. Front. Neurosci. 2019, 13, 07. [Google Scholar] [CrossRef] [PubMed]
- Anderson, V.; Catroppa, C.; Morse, S.; Haritou, F.; Rosenfeld, J. Functional plasticity or vulnerability after early brain injury? Pediatrics 2005, 116, 1374–1382. [Google Scholar] [CrossRef]
- Meekes, J.; Jennekens-Schinkel, A.; van Schooneveld, M.M. Recovery after childhood traumatic brain injury: Vulnerability and plasticity. Pediatrics 2006, 117, 2330. [Google Scholar] [CrossRef]
- Di Sarno, L.; Curatola, A.; Cammisa, I.; Capossela, L.; Eftimiadi, G.; Gatto, A.; Chiaretti, A. Non-pharmacologic approaches to neurological stimulation in patients with severe brain injuries: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6856–6870. [Google Scholar]
- da Silva Meirelles, L.; Simon, D.; Regner, A. Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int. J. Mol. Sci. 2017, 18, 1082. [Google Scholar] [CrossRef] [PubMed]
- Manni, L.; Conti, G.; Chiaretti, A.; Soligo, M. Intranasal nerve growth factor for prevention and recovery of the outcomes of traumatic brain injury. Neural Regen. Res. 2023, 18, 773–778. [Google Scholar]
- Chen, X.Q.; Fawcett, J.R.; Rahman, Y.E.; Ala, T.A.; Frey, W.H. Delivery of Nerve Growth Factor to the Brain via the Olfactory Pathway. J. Alzheimers Dis. 1998, 1, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Eftimiadi, G.; Buonsenso, D.; Rendeli, C.; Staccioli, S.; Conti, G. Intranasal nerve growth factor administration improves neurological outcome after GBS meningitis. Childs Nerv. Syst. 2020, 36, 2083–2088. [Google Scholar] [CrossRef]
- Gatto, A.; Capossela, L.; Conti, G.; Eftimiadi, G.; Ferretti, S.; Manni, L.; Curatola, A.; Graglia, B.; Di Sarno, L.; Calcagni, M.L.; et al. Intranasal human-recombinant NGF administration improves outcome in children with post-traumatic unresponsive wakefulness syndrome. Biol. Direct 2023, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Curatola, A.; Graglia, B.; Granata, G.; Conti, G.; Capossela, L.; Manni, L.; Ferretti, S.; Di Giuda, D.; Romeo, D.M.; Calcagni, M.L.; et al. Combined treatment of nerve growth factor and transcranical direct current stimulations to improve outcome in children with vegetative state after out-of-hospital cardiac arrest. Biol. Direct 2023, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Conti, G.; Falsini, B.; Buonsenso, D.; Crasti, M.; Manni, L.; Soligo, M.; Fantacci, C.; Genovese, O.; Calcagni, M.L.; et al. Intranasal Nerve Growth Factor administration improves cerebral functions in a child with severe traumatic brain injury: A case report. Brain Inj. 2017, 31, 1538–1547. [Google Scholar] [CrossRef]
- Jönhagen, M.E.; Nordberg, A.; Amberla, K.; Backman, L.; Ebendal, T.; Meyerson, B.; Olson, L.; Shigeta, M.; Theodorsoon, E.; Viitanen, M.; et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 1998, 9, 246–257. [Google Scholar] [CrossRef]
- Capossela, L.; Gatto, A.; Ferretti, S.; Di Sarno, L.; Graglia, B.; Massese, M.; Soligo, M.; Chiaretti, A. Multifaceted Roles of Nerve Growth Factor: A Comprehensive Review with a Special Insight into Pediatric Perspectives. Biology 2024, 13, 546. [Google Scholar] [CrossRef]
- Giofrè, D.; Toffalini, E.; Esposito, L.; Cornoldi, C. Gender Differences in the Wechsler Intelligence Scale for Children in a Large Group of Italian Children with Attention Deficit Hyperactivity Disorder. J. Intell. 2023, 11, 178. [Google Scholar] [CrossRef]
- Kaplan, E.; Goodglass, H.; Weintraub, S. The Boston Naming Test; Lea & Febiger Publishers: Philadelphia, PA, USA, 1983. [Google Scholar]
- Rustioni Metz Lancaster, D. PVCL: Prove di Valutazione Della Comprensione Linguistica; Giunti: Firenze, Italy, 2008. [Google Scholar]
- Marotta, L.; Vicari, S.; Luci, A. Test Fono-Lessicale TFL; Erickson: Trento, Italy, 2007. [Google Scholar]
- Renfrew, C. The Bus Story: A Test of Continuous Speech; North Place, Old Headington: Oxford, UK, 1969. [Google Scholar]
- Preda, C. Test of visual-motor integration: Construct validity in a comparison with the Beery-Buktenica Developmental Test of Visual-Motor Integration. Percept. Mot. Skills 1997, 84, 1439–1443. [Google Scholar] [CrossRef]
- Usai, M.C.; Traverso, L.; Gandolfi, E.; Viterbori, P. FE-PS 2-6: Battery for the Assessment of Executive Functions in Preschool; Erickson: Trento, Italy, 2017. [Google Scholar]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal pathology in traumatic brain injury. Exp. Neurol. 2013, 246, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Hefti, F.; Hartikka, J.; Salvatierra, A.; Weiner, W.J.; Mash, D.C. Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neurosci. Lett. 1986, 69, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Manni, L.; Leotta, E.; Mollica, I.; Serafino, A.; Pignataro, A.; Salvatori, I.; Conti, G.; Chiaretti, A.; Soligo, M. Acute intranasal treatment with nerve growth factor limits the onset of traumatic brain injury in young rats. Br. J. Pharmacol. 2023, 180, 1949–1964. [Google Scholar] [CrossRef] [PubMed]
- Young, J.; Pionk, T.; Hiatt, I.; Geeck, K.; Smith, J.S. Environmental enrichment aides in functional recovery following unilateral controlled cortical impact of the forelimb sensorimotor area however intranasal administration of nerve growth factor does not. Brain Res. Bull. 2015, 115, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Wake, H.; Ortiz, F.C.; Woo, D.H.; Lee, P.R.; Angulo, M.C.; Fields, R.D. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat. Commun. 2015, 6, 7844. [Google Scholar] [CrossRef]
- Takase, H.; Washida, K.; Hayakawa, K.; Arai, K.; Wang, X.; Lo, E.H.; Lok, J. Oligodendrogenesis after traumatic brain injury. Behav. Brain Res. 2018, 340, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Maki, T.; Liang, A.C.; Miyamoto, N.; Lo, E.H.; Arai, K. Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases. Front. Cell Neurosci. 2013, 7, 275. [Google Scholar] [CrossRef]
- Chiaretti, A.; Antonelli, A.; Genovese, O.; Pezzotti, P.; Rocco, C.D.; Viola, L.; Riccardi, R. Nerve growth factor and doublecortin expression correlates with improved outcome in children with severe traumatic brain injury. J. Trauma 2008, 65, 80–85. [Google Scholar] [CrossRef]
Task | Skills Investigated | Domains | Scores Pre NGF Treatment | Scores Post NGF Treatment |
---|---|---|---|---|
Wechsler Preschool and Primary Scale of Intelligence—fourth edition (WPPSI-IV; Wechsler, 2012; It Trasl: Saggino et al., 2019) [16] | Cognitive Functioning | Full Scale Intelligence Quotient (FSIQ; M = 100 ± 15) | Unavailable | 80 |
Verbal Comprehension Index (VCI; M = 100 ± 15) | 127 | 111 | ||
Visual Spatial Index (VSI; M = 100 ± 15) | Unavailable | 67 | ||
Fluid Reasoning Index (FRI; M = 100 ± 15) | Unavailable | 81 | ||
Working Memory Index (WMI; M = 100 ± 15) | Unavailable | 89 | ||
Processing Speed Index (PSI; M = 100 ± 15) | Unavailable | 66 | ||
Boston Naming Test (Kaplan et al., 1983) [17] | Language ability | Visual confrontation naming/lexical production | +0.22 sd | unavailable |
Language Comprehension Assessment Tests (PVCL; Lancaster et al., 2003) [18] | Morphosyntactic comprehension | 58.4 (medium-low average profile for age) | 53.4 (medium-low average profile for age) | |
Phono Lexical Test (TFL; Marotta et al.; 2007) [19] | Receptive language/lexical comprehension | unavailable | 25th percentile | |
Expressive language/lexical production | unavailable | 75th–90th percentile | ||
Bus story test (Renfrew; 1997; It Transl. 2015) [20] | Narrative speech | Unavailable | −2 sd | |
Developmental Test of Visual-Motor Integration (VMI; Beery and Buktenica, 1996) [21] | Coordination of visual and motor skills | Visual Motor Integration | SS 92 | SS 90 |
Visual Perception | Unavailable | SS 87 |
Tasks | Domains | Scores |
---|---|---|
Draw a circle | Inhibition of Continuous Motor Response | 50th percentile |
Stroop day and night | Inhibition of verbal response | Accuracy 75th percentile Time 50th percentile |
The elephant and the bear | Inhibition of motor response | 10th percentile |
Compare the figures | Control of impulsive response and working memory | Time 90th percentile Errors 75th percentile |
The fish game | Interference management | Accuracy 50th/75th percentile Time < 5th percentile |
The gift | Inhibition of impulsive behavior | 50th/75th percentile |
The color and shape game | Inhibition and working memory | 25th/50th percentile |
Keep in mind | Updating working memory | 75th/90th percentile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Sarno, L.; Capossela, L.; Ferretti, S.; Manni, L.; Soligo, M.; Staccioli, S.; Napoli, E.; Burattini, R.; Gatto, A.; Chiaretti, A. Intranasal Human-Recombinant Nerve Growth Factor Enhances Motor and Cognitive Function Recovery in a Child with Severe Traumatic Brain Injury. Pharmaceuticals 2025, 18, 163. https://doi.org/10.3390/ph18020163
Di Sarno L, Capossela L, Ferretti S, Manni L, Soligo M, Staccioli S, Napoli E, Burattini R, Gatto A, Chiaretti A. Intranasal Human-Recombinant Nerve Growth Factor Enhances Motor and Cognitive Function Recovery in a Child with Severe Traumatic Brain Injury. Pharmaceuticals. 2025; 18(2):163. https://doi.org/10.3390/ph18020163
Chicago/Turabian StyleDi Sarno, Lorenzo, Lavinia Capossela, Serena Ferretti, Luigi Manni, Marzia Soligo, Susanna Staccioli, Eleonora Napoli, Riccardo Burattini, Antonio Gatto, and Antonio Chiaretti. 2025. "Intranasal Human-Recombinant Nerve Growth Factor Enhances Motor and Cognitive Function Recovery in a Child with Severe Traumatic Brain Injury" Pharmaceuticals 18, no. 2: 163. https://doi.org/10.3390/ph18020163
APA StyleDi Sarno, L., Capossela, L., Ferretti, S., Manni, L., Soligo, M., Staccioli, S., Napoli, E., Burattini, R., Gatto, A., & Chiaretti, A. (2025). Intranasal Human-Recombinant Nerve Growth Factor Enhances Motor and Cognitive Function Recovery in a Child with Severe Traumatic Brain Injury. Pharmaceuticals, 18(2), 163. https://doi.org/10.3390/ph18020163