Prolonged Impact of Bisphosphonates and Glucocorticoids on Bone Mechanical Properties
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animal Model
4.2. Mechanical Bending Test
4.3. Tensile Strength Test
4.4. Micro-Computed Tomography (Micro-CT) Examination
4.5. Powder X-Ray Diffraction (PXRD)
4.6. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)
4.7. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rizzoli, R.; Body, J.J.; Brandi, M.L.; Cannata-Andia, J.; Chappard, D.; El Maghraoui, A.; Glüer, C.C.; Kendler, D.; Napoli, N.; Papaioannou, A.; et al. Cancer-associated bone disease. Osteoporos. Int. 2013, 24, 2929–2953. [Google Scholar] [CrossRef] [PubMed]
- Lane, N.E. Glucocorticoid-Induced Osteoporosis: New Insights into the Pathophysiology and Treatments. Curr. Osteoporos. Rep. 2019, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Green, J.R. Bisphosphonates in cancer therapy. Curr. Opin. Oncol. 2002, 14, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Black, D.M.; Geiger, E.J.; Eastell, R.; Vittinghoff, E.; Li, B.H.; Ryan, D.S.; Dell, R.M.; Adams, A.L. Atypical Femur Fracture Risk versus Fragility Fracture Prevention with Bisphosphonates. N. Engl. J. Med. 2020, 383, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Aldea, M.; Orillard, E.; Mansi, L.; Marabelle, A.; Scotte, F.; Lambotte, O.; Michot, J.M. How to manage patients with corticosteroids in oncology in the era of immunotherapy? Eur. J. Cancer 2020, 141, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Schilcher, J.; Koeppen, V.; Aspenberg, P.; Michaelsson, K. Risk of atypical femoral fracture during and after bisphosphonate use. N. Engl. J. Med. 2014, 371, 974–976. [Google Scholar] [CrossRef] [PubMed]
- Burr, D.B. Changes in bone matrix properties with aging. Bone 2019, 120, 85–93. [Google Scholar] [CrossRef]
- Saito, M.; Marumo, K. Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos. Int. 2009, 21, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Gong, H.S.; Kim, T.H.; Park, S.Y.; Shin, J.H.; Cho, S.W.; Byun, D.W. Position Statement: Drug Holiday in Osteoporosis Treatment with Bisphosphonates in South Korea. J. Bone Metab. 2015, 22, 167–174. [Google Scholar] [CrossRef]
- McClung, M.R. Bisphosphonate therapy: How long is long enough? Osteoporos. Int. 2015, 26, 1455–1457. [Google Scholar] [CrossRef]
- Strom, O.; Landfeldt, E.; Garellick, G. Residual effect after oral bisphosphonate treatment and healthy adherer effects—The Swedish Adherence Register Analysis (SARA). Osteoporos. Int. 2015, 26, 315–325. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; ur Rehman, D.I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Severcan, F.; Haris, P.I. Vibrational Spectroscopy in Diagnosis and Screening; IOS Press: Amsterdam, The Netherlands, 2012; Volume 6. [Google Scholar]
- Lebon, M.; Reiche, I.; Gallet, X.; Bellot-Gurlet, L.; Zazzo, A. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 2016, 58, 131–145. [Google Scholar] [CrossRef]
- Petibois, C.; Gouspillou, G.; Wehbe, K.; Delage, J.-P.; Déléris, G. Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Anal. Bioanal. Chem. 2006, 386, 1961–1966. [Google Scholar] [CrossRef]
- Kourkoumelis, N.; Tzaphlidou, M. Spectroscopic assessment of normal cortical bone: Differences in relation to bone site and sex. Sci. World J. 2010, 10, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Miller, L.M.; Carlson, C.S.; Chance, M.R. In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 2003, 33, 514–521. [Google Scholar] [CrossRef]
- Paschalis, E.; Verdelis, K.; Doty, S.; Boskey, A.; Mendelsohn, R.; Yamauchi, M. Spectroscopic characterization of collagen cross-links in bone. J. Bone Miner. Res. 2001, 16, 1821–1828. [Google Scholar] [CrossRef]
- Lozano, L.; Pena-Rico, M.; Heredia, A.; Ocotlan-Flores, J.; Gomez-Cortes, A.; Velazquez, R.; Belio, I.; Bucio, L. Thermal analysis study of human bone. J. Mater. Sci. 2003, 38, 4777–4782. [Google Scholar] [CrossRef]
- León-Mancilla, B.; Araiza-Téllez, M.; Flores-Flores, J.; Piña-Barba, M. Physico-chemical characterization of collagen scaffolds for tissue engineering. J. Appl. Res. Technol. 2016, 14, 77–85. [Google Scholar] [CrossRef]
- Shane, E.; Burr, D.; Abrahamsen, B.; Adler, R.A.; Brown, T.D.; Cheung, A.M.; Cosman, F.; Curtis, J.R.; Dell, R.; Dempster, D.W.; et al. Atypical subtrochanteric and diaphyseal femoral fractures: Second report of a task force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 2014, 29, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.J.; Montgomery, S.M.; Al Dabbagh, Z.; Jansson, K.A. National data of 6409 Swedish inpatients with femoral shaft fractures: Stable incidence between 1998 and 2004. Injury 2009, 40, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.H.; Lin, S.C.; Chang, F.L.; Hsieh, S.S.; Liu, S.H.; Yang, R.S. Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J. Appl. Physiol. 2003, 95, 300–307. [Google Scholar] [CrossRef]
- Jonas, J.; Burns, J.; Abel, E.W.; Cresswell, M.J.; Strain, J.J.; Paterson, C.R. A technique for the tensile testing of demineralised bone. J. Biomech. 1993, 26, 271–273. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Mu, C.; Shi, J.; Zhang, Q.; Shi, B.; Lin, W. Modification of collagen with a natural cross-linker, procyanidin. Int. J. Biol. Macromol. 2011, 48, 354–359. [Google Scholar] [CrossRef]
- Munch, E.; Launey, M.E.; Alsem, D.H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Tough, bio-inspired hybrid materials. Science 2008, 322, 1516–1520. [Google Scholar] [CrossRef]
- Wegst, U.G.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [Google Scholar] [CrossRef]
- Teitelbaum, S.L.; Seton, M.P.; Saag, K.G. Should bisphosphonates be used for long-term treatment of glucocorticoid-induced osteoporosis? Arthritis Rheumatol. 2011, 63, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Ferrari, S.; Russell, R.G. Denosumab and bisphosphonates: Different mechanisms of action and effects. Bone 2011, 48, 677–692. [Google Scholar] [CrossRef] [PubMed]
- Essex, A.L.; Pin, F.; Huot, J.R.; Bonewald, L.F.; Plotkin, L.I.; Bonetto, A. Bisphosphonate Treatment Ameliorates Chemotherapy-Induced Bone and Muscle Abnormalities in Young Mice. Front. Endocrinol. 2019, 10, 809. [Google Scholar] [CrossRef]
- Dalle Carbonare, L.; Bertoldo, F.; Valenti, M.T.; Zenari, S.; Zanatta, M.; Sella, S.; Giannini, S.; Cascio, V.L. Histomorphometric analysis of glucocorticoid-induced osteoporosis. Micron 2005, 36, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Kaibuchi, N.; Iwata, T.; Onizuka, S.; Yano, K.; Tsumanuma, Y.; Yamato, M.; Okano, T.; Ando, T. Allogeneic multipotent mesenchymal stromal cell sheet transplantation promotes healthy healing of wounds caused by zoledronate and dexamethasone in canine mandibular bones. Regen. Ther. 2019, 10, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Sonis, S.T.; Watkins, B.A.; Lyng, G.D.; Lerman, M.A.; Anderson, K.C. Bony changes in the jaws of rats treated with zoledronic acid and dexamethasone before dental extractions mimic bisphosphonate-related osteonecrosis in cancer patients. Oral Oncol. 2009, 45, 164–172. [Google Scholar] [CrossRef]
- Jabbour, Z.; El-Hakim, M.; Henderson, J.E.; de Albuquerque Junior, R.F. Bisphosphonates inhibit bone remodeling in the jaw bones of rats and delay healing following tooth extractions. Oral Oncol. 2014, 50, 485–490. [Google Scholar] [CrossRef]
- Tarantino, U.; Cerocchi, I.; Celi, M.; Scialdoni, A.; Saturnino, L.; Gasbarra, E. Pharmacological agents and bone healing. Clin. Cases Miner. Bone Metab. 2009, 6, 144–148. [Google Scholar]
- Turner, C.H.; Burr, D.B. Basic biomechanical measurements of bone: A tutorial. Bone 1993, 14, 595–608. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Doube, M.; Klosowski, M.M.; Arganda-Carreras, I.; Cordelieres, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef]
- Bowman, S.M.; Zeind, J.; Gibson, L.J.; Hayes, W.C.; McMahon, T.A. The tensile behavior of demineralized bovine cortical bone. J. Biomech. 1996, 29, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
Property Mineralized Samples | Control (n = 5) | Treatment (n = 8) | p-Value |
---|---|---|---|
Bone length (mm) | 49.73 ± 2.7 | 49.26 ± 1.76 | 0.284 |
Max chord length from centroidal axis (mm) | 1.64 ± 0.1 | 1.63 ± 0.1 | 0.943 |
Cross-sectional area of cortical bone (mm2) | 6.37 ± 0.4 | 6.94 ± 0.67 | 0.065 |
Average cortical thickness (mm) | 0.78 ± 0.06 * | 0.88 ± 0.04 * | 0.006 |
2nd moment of area (mm4) | 4.51 ± 0.75 | 4.85 ± 1.01 | 0.512 |
Max force (N) | 137 ± 11.6 * | 157 ± 11.5 * | 0.030 |
Stiffness (N mm−1) | 278 ± 107 | 290 ± 20 | 0.354 |
Flexural strength (MPa) | 250.8 ± 9 | 269 ± 25 | 0.152 |
Elastic modulus (GPa) | 10.1 ± 2.5 | 10.3 ± 2.2 | 0.943 |
Flexural strain | 0.032 ± 0.01 | 0.037 ± 0.01 | 0.354 |
Energy to ultimate load (toughness) (MPa) | 4.7 ± 1.6 * | 8.1 ± 1.8 * | 0.003 |
Property Demineralized Samples | Control (n = 9) | Treatment (n = 8) | p-Value |
Max force (N) | 19.48 ± 2.96 | 17.17 ± 3.6 | 0.167 |
Tensile strength (MPa) | 3.4 ± 0.28 * | 2.47 ± 0.44 * | 0.001 |
Stiffness (N mm−1) | 16.3 ± 4.1 | 13.8 ± 5.4 | 0.339 |
Strain at failure | 0.40 ± 0.14 | 0.27 ± 0.1 | 0.057 |
Crystal Size of Mineralized Samples | Control (n = 10) | Treatment (n = 10) | p-Value |
---|---|---|---|
Crystal size 002 plane (Å) | 186.5 ± 30.6 | 195.1 ± 24 | 0.6 |
Crystal size 211 plane (Å) | 50.9 ± 1.5 * | 53.6 ± 3.4 * | 0.037 |
Crystal size 310 plane (Å) | 85.6 ± 16.5 | 102.3 ± 17.5 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, A.; Jabbour, Z.; Alsheghri, A.; Elhadad, A.; Berridi, K.R.; Moussa, H.; Ramirez-Garcialuna, J.L.; Tamimi, I.; Santos dos Santos, S.; Henderson, J.; et al. Prolonged Impact of Bisphosphonates and Glucocorticoids on Bone Mechanical Properties. Pharmaceuticals 2025, 18, 164. https://doi.org/10.3390/ph18020164
Mansour A, Jabbour Z, Alsheghri A, Elhadad A, Berridi KR, Moussa H, Ramirez-Garcialuna JL, Tamimi I, Santos dos Santos S, Henderson J, et al. Prolonged Impact of Bisphosphonates and Glucocorticoids on Bone Mechanical Properties. Pharmaceuticals. 2025; 18(2):164. https://doi.org/10.3390/ph18020164
Chicago/Turabian StyleMansour, Alaa, Zaher Jabbour, Ammar Alsheghri, Amir Elhadad, Karla R. Berridi, Hanan Moussa, Jose Luis Ramirez-Garcialuna, Iskandar Tamimi, Sailer Santos dos Santos, Janet Henderson, and et al. 2025. "Prolonged Impact of Bisphosphonates and Glucocorticoids on Bone Mechanical Properties" Pharmaceuticals 18, no. 2: 164. https://doi.org/10.3390/ph18020164
APA StyleMansour, A., Jabbour, Z., Alsheghri, A., Elhadad, A., Berridi, K. R., Moussa, H., Ramirez-Garcialuna, J. L., Tamimi, I., Santos dos Santos, S., Henderson, J., Song, J., & Tamimi, F. (2025). Prolonged Impact of Bisphosphonates and Glucocorticoids on Bone Mechanical Properties. Pharmaceuticals, 18(2), 164. https://doi.org/10.3390/ph18020164