Antidepressant Activity of Agarwood Essential Oil: A Mechanistic Study on Inflammatory and Neuroprotective Signaling Pathways
Abstract
:1. Introduction
2. Results
2.1. SAEO Attenuates LPS-Induced Depression-like Behavior in Mice
2.2. SAEO Has Stronger Antidepressant Activity than CAEO
2.3. SAEO Reduces LPS-Induced Inflammation in Mice
2.4. SAEO Blocks the LPS-Induced Expression of NF-κB and IκB-α in the Hippocampus of Mice
2.5. SAEO Increases LPS-Induced CREB/BDNF Expression in the Mouse Hippocampus
3. Discussion
4. Materials and Methods
4.1. Drugs and Animals
4.2. Experimental Procedure
4.2.1. Behavior Test
Open-Field Test (OFT)
Tail Suspension Test (TST)
Forced Swimming Test (FST)
4.2.2. Enzyme-Linked Immunosorbent Assay (ELISA)
4.2.3. Western Blotting
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Thompson, R.J.; Liu, D.Y.; Sudit, E.; Boden, M. Emotion Differentiation in Current and Remitted Major Depressive Disorder. Front. Psychol. 2021, 12, 685851. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global Prevalence and Burden of Depressive and Anxiety Disorders in 204 Countries and Territories in 2020 Due to the COVID-19 Pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Page, C.E.; Epperson, C.N.; Novick, A.M.; Duffy, K.A.; Thompson, S.M. Beyond the Serotonin Deficit Hypothesis: Communicating a Neuroplasticity Framework of Major Depressive Disorder. Mol. Psychiatry 2024, 29, 3802–3813. [Google Scholar] [CrossRef]
- Lotrich, F.E. Inflammatory Cytokine-Associated Depression. Brain Res. 2015, 1617, 113–125. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Haapakoski, R.; Mathieu, J.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Cumulative Meta-Analysis of Interleukins 6 and 1β, Tumour Necrosis Factor α and C-Reactive Protein in Patients with Major Depressive Disorder. Brain Behav. Immun. 2015, 49, 206–215. [Google Scholar] [CrossRef]
- Majd, M.; Saunders, E.F.H.; Engeland, C.G. Inflammation and the Dimensions of Depression: A Review. Front. Neuroendocr. 2020, 56, 100800. [Google Scholar] [CrossRef]
- Galletta, D.; Mazzarino, C.; Cusumano, G.; Santoro, A. Evaluation of Plasma Levels of BDNF in Patients with Disorder Depressive. Eur. Psychiat. 2021, 64, S335. [Google Scholar] [CrossRef]
- Yang, T.; Nie, Z.; Shu, H.; Kuang, Y.; Chen, X.; Cheng, J.; Yu, S.; Liu, H. The Role of BDNF on Neural Plasticity in Depression. Front. Cell. Neurosci. 2020, 14, 82. [Google Scholar] [CrossRef]
- Kakarla, R.; Karuturi, P.; Siakabinga, Q.; Kasi Viswanath, M.; Dumala, N.; Guntupalli, C.; Nalluri, B.N.; Venkateswarlu, K.; Prasanna, V.S.; Gutti, G.; et al. Current Understanding and Future Directions of Cruciferous Vegetables and Their Phytochemicals to Combat Neurological Diseases. Phytother. Res. 2024, 38, 1381–1399. [Google Scholar] [CrossRef] [PubMed]
- Unschuld, P.U.; Zhang, Z. Dictionary of the Ben Cao Gang Mu. In Chinese Historical Illness Terminology; University of California Press: Berkeley, CA, USA, 2014; Volume 1. [Google Scholar]
- Chen, S.-T.; Rao, Y.K. An Overview of Agarwood, Phytochemical Constituents, Pharmacological Activities, and Analyses. Tradit. Med. 2022, 3, 1–71. [Google Scholar] [CrossRef]
- Alamil, J.M.R.; Paudel, K.R.; Chan, Y.; Xenaki, D.; Panneerselvam, J.; Singh, S.K.; Gulati, M.; Jha, N.K.; Kumar, D.; Prasher, P.; et al. Rediscovering the Therapeutic Potential of Agarwood in the Management of Chronic Inflammatory Diseases. Molecules 2022, 27, 3038. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Zhang, H.; Hu, M.; Sun, W.; Li, Z.; Cao, G.; Geng, X.; Wei, S. Inhalation Administration of Agarwood Incense Rescues Scopolamine-Induced Learning and Memory Impairment in Mice. Front. Pharmacol. 2021, 12, 821356. [Google Scholar] [CrossRef] [PubMed]
- Hashim, Y.Z.H.-Y.; Kerr, P.G.; Abbas, P.; Salleh, H.M. Aquilaria Spp. (Agarwood) as Source of Health Beneficial Compounds: A Review of Traditional Use, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2016, 189, 331–360. [Google Scholar] [CrossRef]
- Tan, C.S.; Isa, N.M.; Ismail, I.; Zainal, Z. Agarwood Induction: Current Developments and Future Perspectives. Front. Plant Sci. 2019, 10, 122. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Feng, J.; Chen, D.; Wei, J.; Liu, Y. Comparative analysis of chemical constituents and anti-oxidant and anti-inflammatory activities of six representative agarwood essential oils. Chin. Tradit. Herb. Drugs 2022, 53, 5720–5730. [Google Scholar]
- Chen, X.; Wang, C.; He, Q.; Feng, J.; Chen, D.; Wei, J.; Liu, Y. Chemical Composition and Potential Properties in Mental Illness (Anxiety, Depression and Insomnia) of Agarwood Essential Oil: A Review. Molecules 2022, 27, 4528. [Google Scholar] [CrossRef]
- Tian, C.; Song, Y.; Xu, H.; Niu, S.; Wu, Z.; Shen, L. Composition analysis, antioxidative and antibacterial activities comparison of agarwood oils extracted by supercritical and steam distillation. China J. Chin. Mater. Med. 2019, 44, 4000–4008. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Zhang, X.; Ren, G.; Wang, L.; Li, J.; Wang, M.; Ren, T.; Zhao, Y.; Yang, M.; et al. The Combination of Aquilaria Sinensis (Lour.) Gilg and Aucklandia Costus Falc. Volatile Oils Exerts Antidepressant Effects in a CUMS-Induced Rat Model by Regulating the HPA Axis and Levels of Neurotransmitters. Front. Pharmacol. 2021, 11, 614413. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Gong, B.; Wu, Y.; Chen, X.; Liu, Y.; Wei, J. Effective Components and Molecular Mechanism of Agarwood Essential Oil Inhalation and the Sedative and Hypnotic Effects Based on GC-MS-Qtof and Molecular Docking. Molecules 2022, 27, 3483. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, C.; Yu, Z.; Wu, C.; Peng, D.; Liu, X.; Liu, Y.; Yang, Y.; Guo, P.; Wei, J. Agarwood Essential Oil Ameliorates Restrain Stress-Induced Anxiety and Depression by Inhibiting HPA Axis Hyperactivity. Int. J. Mol. Sci. 2018, 19, 3468. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Jeon, Y.-J.; Kang, J.-Y.; Lee, S.-K.; Lee, H.-D.; Son, C.-G. Aquilariae Lignum Methylene Chloride Fraction Attenuates IL-1β-Driven Neuroinflammation in BV2 Microglial Cells. Int. J. Mol. Sci. 2020, 21, 5465. [Google Scholar] [CrossRef]
- Ueda, J.; Imamura, L.; Tezuka, Y.; Tran, Q.L.; Tsuda, M.; Kadota, S. New Sesquiterpene from Vietnamese Agarwood and Its Induction Effect on Brain-Derived Neurotrophic Factor mRNA Expression in Vitro. Bioorg Med. Chem. 2006, 14, 3571–3574. [Google Scholar] [CrossRef]
- Yadav, D.K.; Mudgal, V.; Agrawal, J.; Maurya, A.K.; Bawankule, D.U.; Chanotiya, C.S.; Khan, F.; Thul, S.T. Molecular Docking and ADME Studies of Natural Compounds of Agarwood Oil for Topical Anti-Inflammatory Activity. Curr. Comput. Aided Drug Des. 2013, 9, 360–370. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Lee, J.-S.; Kim, H.-G.; Kim, W.-Y.; Lee, S.-B.; Choi, Y.-H.; Son, C.-G. The Ethanol Extract of Aquilariae Lignum Ameliorates Hippocampal Oxidative Stress in a Repeated Restraint Stress Mouse Model. BMC Complement. Altern. Med. 2017, 17, 397. [Google Scholar] [CrossRef]
- Gong, G.; Ganesan, K.; Wang, Y.; Zhang, Z.; Liu, Y.; Wang, J.; Yang, F.; Zheng, Y. Ononin Ameliorates Depression-like Behaviors by Regulating BDNF-TrkB-CREB Signaling in Vitro and in Vivo. J. Ethnopharmacol. 2024, 320, 117375. [Google Scholar] [CrossRef]
- Zhao, X.; Kong, D.; Zhou, Q.; Wei, G.; Song, J.; Liang, Y.; Du, G. Baicalein Alleviates Depression-like Behavior in Rotenone- Induced Parkinson’s Disease Model in Mice through Activating the BDNF/TrkB/CREB Pathway. Biomed. Pharmacother. 2021, 140, 111556. [Google Scholar] [CrossRef]
- Fronza, M.G.; Baldinotti, R.; Fetter, J.; Rosa, S.G.; Sacramento, M.; Nogueira, C.W.; Alves, D.; Praticò, D.; Savegnago, L. Beneficial Effects of QTC-4-MeOBnE in an LPS-Induced Mouse Model of Depression and Cognitive Impairments: The Role of Blood-Brain Barrier Permeability, NF-κB Signaling, and Microglial Activation. Brain Behav. Immun. 2022, 99, 177–191. [Google Scholar] [CrossRef]
- Sekio, M.; Seki, K. Lipopolysaccharide-Induced Depressive-like Behavior Is Associated with A1-Adrenoceptor Dependent Downregulation of the Membrane GluR1 Subunit in the Mouse Medial Prefrontal Cortex and Ventral Tegmental Area. Int. J. Neuropsychopharmacol. 2014, 18, pyu005. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, T.; Zhao, Y.; Cai, E.; Zhu, H.; Liu, S. The Protective Effect of 5-O-Methylvisammioside on LPS-Induced Depression in Mice by Inhibiting the over Activation of BV-2 Microglia through Nf-κB/IκB-α Pathway. Phytomedicine 2020, 79, 153348. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cao, F.; Liu, Q.; Li, X.; Xu, G.; Liu, G.; Zhang, Y.; Yang, X.; Yi, S.; Xu, F.; et al. Behavioral, Inflammatory and Neurochemical Disturbances in LPS and UCMS-Induced Mouse Models of Depression. Behav. Brain Res. 2019, 364, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ali, T.; He, K.; Liu, Z.; Shah, F.A.; Ren, Q.; Liu, Y.; Jiang, A.; Li, S. Ibrutinib Alleviates LPS-Induced Neuroinflammation and Synaptic Defects in a Mouse Model of Depression. Brain Behav. Immun. 2021, 92, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Caviedes, A.; Lafourcade, C.; Soto, C.; Wyneken, U. BDNF/NF-ΚB Signaling in the Neurobiology of Depression. Curr. Pharm. Des. 2017, 23, 3154–3163. [Google Scholar] [CrossRef]
- Hofer, M.; Pagliusi, S.R.; Hohn, A.; Leibrock, J.; Barde, Y.A. Regional Distribution of Brain-derived Neurotrophic Factor mRNA in the Adult Mouse Brain. EMBO J. 1990, 9, 2459–2464. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, L.; Chen, J.; Liu, C.; Li, S.; Hua, M.; Qu, D.; Shao, Z.; Sun, Y. Ginsenoside Rk1 Alleviates LPS-Induced Depression-like Behavior in Mice by Promoting BDNF and Suppressing the Neuroinflammatory Response. Biochem. Biophys. Res. Commun. 2020, 530, 658–664. [Google Scholar] [CrossRef]
- Cunha, C.; Brambilla, R.; Thomas, K.L. A Simple Role for BDNF in Learning and Memory? Front. Mol. Neurosci. 2010, 3, 1. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef]
- Chen, T.; Wang, R.; Jiang, W.; Wang, H.; Xu, A.; Lu, G.; Ren, Y.; Xu, Y.; Song, Y.; Yong, S.; et al. Protective Effect of Astragaloside IV Against Paraquat-Induced Lung Injury in Mice by Suppressing Rho Signaling. Inflammation 2016, 39, 483–492. [Google Scholar] [CrossRef]
- Kaltschmidt, B.; Helweg, L.P.; Greiner, J.F.W.; Kaltschmidt, C. NF-κB in Neurodegenerative Diseases: Recent Evidence from Human Genetics. Front. Mol. Neurosci. 2022, 15, 954541. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, H.; Zhao, J.; Feldman, E.R.; Chen, S.-Y.; Yuan, W.; Huang, C.; Akbari, O.; Tibbetts, S.A.; Feng, P. IκB Kinase ε Is an NFATc1 Kinase That Inhibits T Cell Immune Response. Cell Rep. 2016, 16, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Ohgi, Y.; Futamura, T.; Kikuchi, T.; Hashimoto, K. Effects of Antidepressants on Alternations in Serum Cytokines and Depressive-like Behavior in Mice after Lipopolysaccharide Administration. Pharmacol. Biochem. Behav. 2013, 103, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yao, H.; Zhang, X.; Liu, L.; Liu, S.; Dong, Y. Comparison of LPS and MS-Induced Depressive Mouse Model: Behavior, Inflammation and Biochemical Changes. BMC Psychiatry 2022, 22, 590. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.N.; Rizavi, H.S.; Ren, X.; Fareed, J.; Hoppensteadt, D.A.; Roberts, R.C.; Conley, R.R.; Dwivedi, Y. Proinflammatory Cytokines in the Prefrontal Cortex of Teenage Suicide Victims. J. Psychiatr. Res. 2012, 46, 57–63. [Google Scholar] [CrossRef]
- Srivastava, R.; Kalita, J.; Khan, M.Y.; Misra, U.K. Status of Proinflammatory and Anti-Inflammatory Cytokines in Different Brain Regions of a Rat Model of Japanese Encephalitis. Inflamm. Res. 2012, 61, 381–389. [Google Scholar] [CrossRef]
- Guo, L.; Ren, L.; Zhang, C. Relationship between Depression and Inflammatory Factors and Brain-Derived Neurotrophic Factor in Patients with Perimenopause Syndrome. Exp. Ther. Med. 2018, 15, 4436–4440. [Google Scholar] [CrossRef]
- Rossetti, A.C.; Paladini, M.S.; Trepci, A.; Mallien, A.; Riva, M.A.; Gass, P.; Molteni, R. Differential Neuroinflammatory Response in Male and Female Mice: A Role for BDNF. Front. Mol. Neurosci. 2019, 12, 166. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, G.; Wang, H.; Wang, X. Brain-Derived Neurotrophic Factor (BDNF) Infusion Restored Astrocytic Plasticity in the Hippocampus of a Rat Model of Depression. Neurosci. Lett. 2011, 503, 15–19. [Google Scholar] [CrossRef]
- Guan, Z.; Fang, J. Peripheral Immune Activation by Lipopolysaccharide Decreases Neurotrophins in the Cortex and Hippocampus in Rats. Brain Behav. Immun. 2006, 20, 64–71. [Google Scholar] [CrossRef]
- Lu, X.; Liu, H.; Cai, Z.; Hu, Z.; Ye, M.; Gu, Y.; Wang, Y.; Wang, D.; Lu, Q.; Shen, Z.; et al. ERK1/2-Dependent BDNF Synthesis and Signaling Is Required for the Antidepressant Effect of Microglia Stimulation. Brain Behav. Immun. 2022, 106, 147–160. [Google Scholar] [CrossRef]
- Castrén, E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol. Psychiatry 2021, 90, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Zarneshan, S.N.; Fakhri, S.; Khan, H. Targeting Akt/CREB/BDNF Signaling Pathway by Ginsenosides in Neurodegenerative Diseases: A Mechanistic Approach. Pharmacol. Res. 2022, 177, 106099. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, P.; Ahmadi, S. Alpha-Pinene Moderates Memory Impairment Induced by Kainic Acid via Improving the BDNF/TrkB/CREB Signaling Pathway in Rat Hippocampus. Front. Mol. Neurosci. 2023, 16. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, J.; Lin, S.; Xu, Z.; Xu, H.; Zhao, J.; Feng, P.; Tao, Y.; Chen, S.; Wang, P. Saffron Essential Oil Ameliorates CUMS-Induced Depression-like Behavior in Mice via the MAPK-CREB1-BDNF Signaling Pathway. J. Ethnopharmacol. 2023, 300, 115719. [Google Scholar] [CrossRef]
Group | Body Weight (g) (Mean ± SD) | OFT Total Distance (mm) (Mean ± SD) | FST Immobility Times (s) (Mean ± SD) | TST Immobility Times (s) (Mean ± SD) |
---|---|---|---|---|
Control | −0.07 ± 0.35 | 22,346.78 ± 2768.41 | 60.43 ± 12.42 | 60.43 ± 13.12 |
LPS-induced | −3.19 ± 0.58 ### | 19,529.75 ± 3980.68 | 145.71 ± 11.58 ### | 135.00 ± 16.90 ### |
Paroxetine | −2.31 ± 0.59 * | 22,703.19 ± 4097.91 | 75.57 ± 16.76 *** | 79.75 ± 21.02 *** |
SAEO Inhalation (4 μL) | −2.10 ± 0.29 *** | 24,206.88 ± 4779.17 | 103.86 ± 14.16 *** | 102.75 ± 13.47 * |
SAEO Inhalation (8 μL) | −2.04 ± 0.30 *** | 25,448.07 ± 5116.07 | 68.33 ± 11.98 *** | 71.00 ± 17.47 *** |
SAEO Injection | −2.02 ± 0.53 *** | 23,414.93 ± 7407.16 | 63.17 ± 11.42 *** | 65.57 ± 12.86 *** |
Group | FST Immobility Times (s) (Mean ± SD) | TST Immobility Times (s) (Mean ± SD) |
---|---|---|
Control | 59.60 ± 13.85 | 63.00 ± 11.81 |
LPS-induced | 155.36 ± 30.75 ### | 153.13 ± 14.46 ### |
Paroxetine | 62.97 ± 30.31 *** | 87.32 ± 14.55 *** |
SAEO Inhalation (4 μL) | 81.66 ± 27.66 *** | 98.61 ± 30.63 ** |
SAEO Inhalation (8 μL) | 79.67 ± 30.49 *** | 93.98 ± 25.05 *** |
SAEO Injection | 66.97 ± 20.40 *** | 91.40 ± 19.66 *** |
CAEO Inhalation (4 μL) | 126.90 ± 34.02 | 116.75 ± 30.81 |
CAEO Inhalation (8 μL) | 89.47 ± 41.83 ** | 101.21 ± 22.52 ** |
CAEO Injection | 116.69 ± 25.29 | 123.64 ± 34.94 |
Group | TNF-α (pg/mL) (Mean ± SD) | IL-1β (pg/mL) (Mean ± SD) | IL-6 (pg/mL) (Mean ± SD) | |||
---|---|---|---|---|---|---|
Serum | Cortex | Serum | Cortex | Serum | Cortex | |
Control | 249.51 ± 33.49 | 1.06 ± 0.03 | 62.78 ± 4.48 | 0.19 ± 0.02 | 54.39 ± 2.43 | 0.27 ± 0.01 |
LPS-induced | 406.55 ± 76.73 ### | 1.59 ± 0.13 ### | 101.92 ± 9.30 ### | 0.29 ± 0.01 ### | 81.55 ± 7.83 ### | 0.33 ± 0.01 ## |
Paroxetine | 326.96 ± 16.38 * | 1.23 ± 0.09 *** | 78.02 ± 6.65 *** | 0.23 ± 0.03 * | 61.89 ± 3.04 *** | 0.29 ± 0.01 |
SAEO Inhalation (4 μL) | 319.37 ± 48.89 * | 1.33 ± 0.06 ** | 79.63 ± 4.88 ** | 0.24 ± 0.01 | 67.65 ± 7.28 *** | 0.29 ± 0.02 * |
SAEO Inhalation (8 μL) | 273.42 ± 45.38 *** | 1.24 ± 0.02 *** | 74.66 ± 5.80 *** | 0.20 ± 0.02 ** | 59.26 ± 4.59 *** | 0.27 ± 0.01 ** |
SAEO Injection | 262.62 ± 16.06 *** | 1.04 ± 0.06 *** | 53.31 ± 5.89 *** | 0.21 ± 0.01 ** | 59.63 ± 6.24 *** | 0.25 ± 0.02 *** |
Group | p-NF-κB/ NF-κB Relative Protein Expression (%) | p-IκB-α/ IκB-α Relative Protein Expression (%) |
---|---|---|
Control | 0.95 ± 0.08 | 1.00 ± 0.00 |
LPS-induced | 2.09 ± 0.13 ## | 2.18 ± 0.06 ### |
Paroxetine | 1.19 ± 0.37 * | 1.39 ± 0.15 *** |
SAEO Inhalation (4 μL) | 1.50 ± 0.23 | 1.36 ± 0.17 *** |
SAEO Inhalation (8 μL) | 1.07 ± 0.35 ** | 1.08 ± 0.24 *** |
SAEO Injection | 1.07 ± 0.36 ** | 1.31 ± 0.31 *** |
Group | BDNF/GAPDH Relative Protein Expression (%) | p-TrkB/GAPDH Relative Protein Expression (%) | p-CREB/CREB Relative Protein Expression (%) |
---|---|---|---|
Control | 1.06 ± 0.07 | 1.02 ± 0.02 | 1.07 ± 0.04 |
LPS-induced | 0.61 ± 0.10 ### | 0.74 ± 0.11 ## | 0.54 ± 0.06 ### |
Paroxetine | 0.92 ± 0.14 * | 1.09 ± 0.10 *** | 0.88 ± 0.16 * |
SAEO Inhalation (4 μL) | 0.78 ± 0.12 | 1.01 ± 0.08 ** | 0.65 ± 0.18 |
SAEO Inhalation (8 μL) | 0.98 ± 0.18 ** | 1.11 ± 0.12 *** | 0.92 ± 0.08 * |
SAEO Injection | 0.95 ± 0.10 ** | 1.15 ± 0.14 *** | 1.01 ± 0.12 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, X.; Wang, C.; Sun, Y.; Gong, B.; Li, D.; Wu, Y.; Liu, Y.; Wei, J. Antidepressant Activity of Agarwood Essential Oil: A Mechanistic Study on Inflammatory and Neuroprotective Signaling Pathways. Pharmaceuticals 2025, 18, 255. https://doi.org/10.3390/ph18020255
Zhang S, Chen X, Wang C, Sun Y, Gong B, Li D, Wu Y, Liu Y, Wei J. Antidepressant Activity of Agarwood Essential Oil: A Mechanistic Study on Inflammatory and Neuroprotective Signaling Pathways. Pharmaceuticals. 2025; 18(2):255. https://doi.org/10.3390/ph18020255
Chicago/Turabian StyleZhang, Shunan, Xiqin Chen, Canhong Wang, Yuanyuan Sun, Bao Gong, Dan Li, Yulan Wu, Yangyang Liu, and Jianhe Wei. 2025. "Antidepressant Activity of Agarwood Essential Oil: A Mechanistic Study on Inflammatory and Neuroprotective Signaling Pathways" Pharmaceuticals 18, no. 2: 255. https://doi.org/10.3390/ph18020255
APA StyleZhang, S., Chen, X., Wang, C., Sun, Y., Gong, B., Li, D., Wu, Y., Liu, Y., & Wei, J. (2025). Antidepressant Activity of Agarwood Essential Oil: A Mechanistic Study on Inflammatory and Neuroprotective Signaling Pathways. Pharmaceuticals, 18(2), 255. https://doi.org/10.3390/ph18020255