Semaglutide as a GLP-1 Agonist: A Breakthrough in Obesity Treatment
Abstract
:1. Introduction
Literature Search
2. GLP-1 Receptor Agonists
3. Main Studies and Results of Semaglutide for Weight Loss
3.1. Semaglutide Unabated Sustainability in Treatment of Type 2 Diabetes (SUSTAIN)
Reference | Study Design | Population | Intervention | Results in Body Weight |
---|---|---|---|---|
[64] [SUSTAIN 1] | Placebo-controlled, double-blind trial | n = 242 | SMG Initial dose 0.25 mg, with a double dose every 4 weeks up to 0.5 to 1.0 mg/week (sc, 30 weeks) |
|
n = 129 | Placebo Weekly dose (sc, 30 weeks) | |||
[65] [SUSTAIN 2] | Double-blind, double-dummy, active-controlled trial | n = 818 | SMG Initial dose 0.25 mg, with a double dose every 4 weeks up to 0.5 to 1.0 mg/week (sc, 56 weeks) Sitagliptine 100 mg/day (oral, 56 weeks) |
|
n = 407 | ||||
[71] [SUSTAIN 3] | Open-label, parallel-group trial | n = 404 | SMG Initial dose 0.25 mg, with a doubling dose every 4 weeks up to 1.0 mg/week (sc, 56 weeks) |
|
n = 405 | Exenatide (Extended release) 2 mg/ week (sc, 56 weeks) | |||
[66] [SUSTAIN 4] | Open-label, parallel-group trial | n = 618 | SMG Initial dose 0.25 mg, with a double dose every 4 weeks up to 0.5 to 1.0 mg/week (sc, 30 weeks) |
|
n = 324 | Insulina glargina (IGlar) 10 IU/ day (sc, 30 weeks) | |||
[68] [SUSTAIN 5] | Placebo-controlled, double-blind trial | n = 263 | SMG Initial dose 0.25 mg, with a doubling dose every 4 weeks up to 0.5 to 1.0 mg/ week (sc) as an add-on to basal insulin (30 weeks) Placebo Dose equivalent (sc) as an add-on to basal insulin (30 weeks) |
|
n = 133 | ||||
[67] [SUSTAIN 6] | Placebo-controlled, double blind trial | n = 1648 | SMG Starting dose 0.25 mg with a doubling dose every 4 weeks up to 0.5 to 1.0 mg/week (ss, 104 weeks) Placebo Initial dose 0.25 mg, with a doubling dose every 4 weeks up to 0.5 to 1.0 mg/ week (sc, 104 weeks) |
|
n = 1649 | ||||
[73] [SUSTAIN 7] | Open-label, parallel-group trial | n = 601 | SMG Initial dose 0.25 mg, with a doubling dose every 4 weeks up to 0.5 to 1.0 mg/week (sc, 40 weeks) Dulaglutide 0.75 to 1.5 mg/week (sc, 40 weeks) |
|
n = 598 | ||||
[75] [SUSTAIN 8] | Double-blind, parallel-group trial | n = 367 | SMG Progressive dose up to 1.0 mg/week (sc, 52 weeks) |
|
n = 372 | Canagliflozin Progressive dose up to 300 mg/week (oral, 52 weeks) | |||
[76] [SUSTAIN 9] | Placebo-controlled, double-blind trial | n = 147 | SMG Initial dose 0.25 mg, with a double dose every 4 weeks up to 1.0 mg/ week (sc, 30 weeks) |
|
n = 147 | Placebo Initial placebo dose 0.25 mg, with a doubling dose every 4 weeks up to 1.0 mg/week (sc, 30 weeks) | |||
[72] [SUSTAIN 10] | Open-label, active-controlled, parallel-group trial | n = 287 | SMG Initial dose 0.25 mg, with a double dose every 4 weeks up to 1.0 mg/week (sc, 30 weeks) |
|
n = 282 | Liraglutide Progressive dose up to 1.2 mg/week achieved in 1 to 2 weeks (sc, 30 weeks) | |||
[77] [SUSTAIN 11] | Open-label, active-controlled, parallel-group trial | n = 806 | SMG 1.0 mg/week (sc, 52 weeks) in addition to metformin (1500–3000 mg) Aspartic insulin 3 times/day (sc) up to a total of 100 U/mL/week (52) weeks in addition to metformin (1500–3000 mg) |
|
n = 831 |
3.2. Peptide InnOvatioN for Early diabEtes tReatment (PIONEER)
Reference | Study Design | Population | Intervention | Results in Body Weight |
---|---|---|---|---|
[78] [PIONEER 1] | Placebo-controlled, double-blind trial | n = 525 | SMG Progressive dose from 3 mg (increases every 4 weeks) up to 3 mg, 7 mg, or 14 mg/day (oral), 26 weeks |
|
n = 178 | Placebo Daily dose (oral), 26 weeks | |||
[91] [PIONEER 2] | Open-label trial | n = 400 | SMG Progressive dose (increases from 3 mg, to 7 mg at 4 weeks, and 14 mg at 8 weeks) up to 14 mg daily (oral), 52 weeks |
|
n = 387 | Empagliflozin Starting dose of 10 mg/ day and increased to 25 mg/day at 8 weeks (oral), 52 weeks | |||
[82] [PIONEER 3] | Double-blind trial | n = 1396 | SMG Progressive dose from 3 mg (increases every 4 weeks) up to 3 mg, 7 mg, or 14 mg daily (oral), 78 weeks, in addition to metformin and in half of sulfonylurea cases |
|
n = 467 | Sitagliptin 100 mg daily (oral), 78 weeks, in addition to metformin and in half of sulfonylurea cases | |||
[84] [PIONEER 4] | Placebo-controlled, double-blind trial | n = 241 | SMG Progressive dose (increases from 3 mg, to 7 mg at 4 weeks, and 14 mg at 8 weeks) up to 14 mg daily (oral), 52 weeks, in addition to metformin (≥1500 mg) |
|
n = 248 | Liraglutide Progressive dose of 0.6 mg daily up to 1.2 mg daily after one week and 1.6 mg at two weeks (sc), 52 weeks, in addition to metformin (≥1500 mg) | |||
n = 125 | Placebo Equivalent doses of SMG (oral) and liraglutide (sc), 52 weeks, in addition to metformin (≥1500 mg) | |||
[81] [PIONEER 5] | Placebo-controlled, double-blind trial | n = 133 | SMG Progressive dose (increases from 3 mg, to 7 mg at 4 weeks, and 14 mg at 8 weeks) up to 14 mg daily (oral), 26 weeks, in addition to metformin or sulfonylurea |
|
n = 141 | Placebo Equivalent doses (oral), 26 weeks, in addition to metformin or sulfonylurea | |||
[87] [PIONEER 6] | Placebo-controlled, double-blind trial | n = 1347 (DM2 and chronic cardiovascular or CKD) | SMG Progressive dose (increases from 3 mg, to 7 mg at 4 weeks, and 14 mg at 8 weeks) up to 14 mg daily (oral), 69 weeks |
|
n = 1435 (DM2 and chronic cardiovascular or CKD) | Placebo Equivalent doses (oral), 69 weeks | |||
[79] [PIONEER 7] | Open-label trial | n = 211 | SMG Progressive dose starting at 3 mg daily (oral) and progressing to 8 weeks based on HbA1c levels (up to 3 mg, 7 mg, or 14 mg), 52 weeks, in addition to prior medication to control glucose |
|
n = 228 | Sitagliptin 100 mg daily (oral), 52 weeks, in addition to metformin and in half of sulfonylurea cases, in addition to prior medication to control glucose | |||
[88] [PIONEER 7] | Open-label trial (cross-over) | n = 100 | SMG /Sitagliptin 52-week follow-up: 198 sitagliptin patients randomized to continue or switch to SMG (same protocol/dosage) |
|
n = 98 | ||||
[92] [PIONEER 8] | Placebo-controlled, double-blind trial | n = 546 | SMG Doses of 3 mg, 7 mg, and 14 mg (with progressive doses up to 7 mg at week 4 and 14 mg at week 8)/day (oral), 52 weeks, with or without added metformin |
|
n = 184 | Placebo Equivalent doses (oral), 52 weeks, with or without added metformin | |||
[86] [PIONEER 9] | Placebo-controlled, double blind trial: SMG and placebo; open-label trial: liraglutide | n = 146 | SMG Doses of 3 mg, 7 mg, and 14 mg (with progressive doses up to 7 mg at week 4 and 14 mg at week 8)/day (oral), 52 weeks |
|
n = 48 | Liraglutide Progressive dose of 0.3 mg/day up to 0.9 mg/day at two weeks (sc), 52 weeks | |||
n = 49 | Placebo SMG-equivalent doses (oral), 52 weeks | |||
[85] [PIONEER 10] | Open-label, active-controlled trial | n = 362 | SMG Doses of 3 mg, 7 mg, and 14 mg (with progressive doses up to 7 mg at week 4 and 14 mg at week 8)/day (oral), 52 weeks |
|
n = 61 | Dulaglutide 0.75 mg/week (sc), 52 weeks | |||
[83] [PIONEER 11] | Placebo-controlled, double-blind trial | n = 361 | SMG Doses of 3 mg, 7 mg, and 14 mg (with progressive doses up to 7 mg at week 4 and 14 mg at week 8)/day (oral), 26 weeks |
|
n = 121 | Placebo Equivalent doses (oral), 26 weeks | |||
[80] [PIONEER 12] | Double-blind, double-dummy- active-controlled, parallel-group trial | n = 1082 | SMG Doses of 3 mg, 7 mg, and 14 mg (with progressive doses up to 7 mg at week 4 and 14 mg at week 8)/day (oral), 26 weeks, and in some cases with continued metformin |
|
n = 359 | Sitagliptin 100 mg daily (oral), 26 weeks, and in some cases with continued metformin |
3.3. Semaglutide Treatment Effect in People with Obesity (STEP)
Reference | Study Design | Population | Intervention | Results in Body Weight |
---|---|---|---|---|
[95] [STEP 1] | Placebo-controlled, double-blind trial | n = 1059 * | SMG 2.4 mg/week, 68 weeks |
|
n = 499 * | Placebo Equivalent doses, 68 weeks | |||
[99] [STEP 1 extension] | Placebo-controlled, double-blind (cross-over) trial | n = 197 * n = 57 * | SMG and placebo Follow-up of the previous study for an additional 52 weeks with intervention washout |
|
[101] [STEP 2] | Placebo-controlled, double-blind trial | n = 781, and with DM2 | SMG Initial dose of SMG 0.25 mg, with a doubling dose every 4 weeks up to 1 mg or 2.4 mg/week, 68 weeks |
|
n = 383, and with DM2 | Placebo Equivalent doses, 68 weeks | |||
[118] [STEP 3] | Placebo-controlled, double-blind trial | n = 407 * | SMG Initial dose of SMG 0.25 mg, with a doubling dose every 4 weeks up to 2.4 mg/week, 68 weeks, combined with intensive behavioral therapy (30 sessions) |
|
n = 204 * | Placebo Equivalent doses, 68 weeks, combined with intensive behavioral therapy (30 sessions) | |||
[93] [STEP 4] | Placebo-controlled, double-blind (cross-over) trial | n = 407, at least one comorbidity * | SMG All patients received an initial dose of 0.25 mg SMG, increasing every 4 weeks to 2.4 mg/week over 20 weeks. At 20 weeks, they were randomized (2:1) to continue SMG or receive placebo, with follow-up for another 48 weeks |
|
n = 204, at least one comorbidity * | Placebo Equivalent doses, from week 20 to 68 | |||
[96] [STEP 5] | Placebo-controlled, double-blind (cross-over) trial | n = 148, at least one comorbidity * | SMG Initial dose of SMG 0.25 mg, with a doubling dose every 4 weeks up to 2.4 mg/week, 104 weeks |
|
n = 134, at least one comorbidity * | Placebo Equivalent doses, 104 weeks | |||
[97] [STEP 6] | Placebo-controlled, double-blind trial | n = 291, at least one comorbidity * | SMG Starting dose of SMG 0.25 mg, with a doubling dose every 4 weeks up to 1.7 mg or 2.4 mg/week, 68 weeks |
|
n = 100, at least one comorbidity * | Placebo Equivalent doses, 68 weeks | |||
[102] [STEP 7] | Placebo-controlled, double-blind trial | n = 291, at least one comorbidity * (with or without DM2 †) | SMG Initial dose of SMG 0.25 mg, with a doubling dose every 4 weeks up to 2.4 mg/week, 44 weeks |
|
n = 100, at least one comorbidity * (with or without DM2 †) | Placebo Equivalent doses, 44 weeks | |||
[94] [STEP 8] | Placebo-controlled, double-blind trial | n = 126, at least one comorbidity * | SMG Initial dose of SMG 0.25 mg, with a double dose every 4 weeks up to 2.4 mg/week, 68 weeks |
|
n = 127, at least one comorbidity * | Liraglutide Initial daily dose of 0.6 mg, with progressive dose up to 3.0 mg achieved in four weeks, 68 weeks | |||
n = 125, at least one comorbidity * | Placebo Equivalent doses, 68 weeks | |||
[106] [STEP 9] | Placebo-controlled, double-blind trial | n = 271, and with osteoarthritis of the knee | SMG Initial dose of SMG 0.25 mg, with a double dose every 4 weeks up to 2.4 mg/week, 68 weeks |
|
n = 136, and with osteoarthritis of the knee | Placebo Equivalent doses, 68 weeks | |||
[53] [STEP 10] | Placebo-controlled, double-blind trial | n = 129, and with prediabetes | SMG Initial dose of SMG 0.25 mg, with a doubling dose every 4 weeks up to 2.4 mg/week, 52 weeks |
|
n = 66, and with prediabetes | Placebo Equivalent doses, 52 weeks | |||
[107] [STEP TEENS] | Placebo-controlled, double-blind trial | n = 119 adolescents with obesity ‡ | SMG Initial dose of SMG 0.25 mg, with a double dose every 4 weeks up to 2.4 mg/week, 68 weeks |
|
n = 60 adolescents with obesity ‡ | Placebo Equivalent doses, 68 weeks |
3.4. Switching to Semaglutide (SWITCH-SEMA)
3.5. Benefits of Semaglutide on the Cardiovascular System
3.6. Other Relevant Studies of Semaglutide
3.7. Clinical Relevance
3.8. Limitations of the Review and Literature
4. Future Directions
- (1)
- Considering that obesity is a chronic, progressive and relapsing disease [182], it is still necessary to determine the optimal duration of SMG therapy for weight control and to identify potential needs for medication adjustments based on individual characteristics. Future studies are needed to investigate the durability of weight loss retention and metabolic benefits, especially based on the less encouraging results of regaining lost weight [93,99], and it is not yet clear whether the trajectory of weight regain continues in subsequent years. Weight regain was faster and more significant in individuals who lost more weight and when lifestyle modification intervention was removed [99]. It is important to develop strategies to prevent or mitigate this phenomenon of weight regain, which may include a gradual reduction in the dose of SMG, participation in specific lifestyle programs after discontinuation of SMG, or the determination of criteria for new SMG treatment cycles in case of rapid weight regain [183].
- (2)
- SMG-induced gastrointestinal adverse effects, although common, are transient and mild to moderate in severity. The safety profile of SMG compared to other pharmacological therapies is important, as many other therapies have an adverse effect profile that contributes to its poor adherence [161,184]. This finding will be important given the discontinuation of SMG due to gastrointestinal adverse effects. In the context of continuing to take SMG, it is important to understand the risk of more serious long-term adverse effects, such as pancreatitis, intestinal obstruction, and gastroparesis [185], or even the effect of loss of lean mass [179].
- (3)
- It is also important to investigate the potential effects of SMG on hormonal contraception, pregnancy, or breastfeeding [186]. Animal studies exposed to GLP-1 receptor agonists during pregnancy have shown adverse outcomes such as decreased fetal growth and abnormalities, but human studies have not shown a significant risk of developing birth defects [187,188,189,190]. Although periconceptional exposure to GLP-1 receptor agonists has not shown an increased risk of malformations, data on complications such as fetal growth restriction or embryonic death are lacking [188].
- (4)
- Given the variability in weight loss with SMG, it will be important to find prognostic predictors that identify those who do not respond to SMG (loss of less than 5% of weight) and those who are super-responders (loss of more than 20% of weight) [183]. At this time, two factors have already been identified, being the coexistence of DM2 [95,101] and male gender [170,191], that appear to decrease the effect of SMG on weight loss (with contradictory results regarding diabetes [170]). In addition, age may be a factor in discontinuing SMG intervention, as it is higher in elderly individuals [70]. It will be essential that future studies are able to explore other potential predictors such as demographic characteristics (gender, ethnic origin, age), metabolic parameters (baseline BMI, HbA1c, fasting blood glucose, markers of insulin resistance, lipid profile), eating behaviors, and genotype [183]. The study of epigenetics for the identification of specific genotypes and phenotypes [192,193] could help determine algorithms and predictive models for personalized decision-making to optimize therapeutic benefit and minimize associated risks [193,194].
- (5)
- Bariatric surgery is a therapeutic option for individuals with obesity [195], reducing long-term all-cause mortality and the incidence of obesity-related diseases [196,197]. However, weight regain after bariatric surgery is common [198]. Retrospective studies prove the efficacy and safety of SMG in maintaining weight loss after bariatric surgery, with an average body weight reduction of 9.8–10.3% after 6 months [199,200,201]. Future studies should investigate whether SMG could play an important role as a pre-bariatric surgery intervention or even when combined with endoscopic bariatric therapies such as intragastric balloons or endoscopic sleeve gastrectomy [202]. At the moment, efforts are being made to investigate the role of SMG after bariatric surgery through the BARI-STEP study (NCT05073835), which aims to determine the role of SMG in individuals who have experienced insufficient weight loss or excessive weight gain after bariatric surgery.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
DM2 | Type 2 Diabetes |
DPP-4 | Dipeptidyl peptidase-4 |
DPP-4i | Dipeptidyl peptidase-4 inhibitor |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
GLP-1 | Glucagon like peptide-1 |
HbA1c | Glycated haemoglobin |
NAFLD | Non-alcoholic fatty liver disease |
SGLT2 | Sodium Glucose Cotransporter 2 |
SMG | Semaglutide |
WHO | World Health Organization |
References
- Burki, T. European Commission classifies obesity as a chronic disease. Lancet Diabetes Endocrinol. 2021, 9, 418. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 4 November 2024).
- Baldelli, S.; Aiello, G.; Mansilla Di Martino, E.; Campaci, D.; Muthanna, F.M.S.; Lombardo, M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024, 16, 2436. [Google Scholar] [CrossRef]
- Pedrosa, M.R.; Franco, D.R.; Gieremek, H.W.; Vidal, C.M.; Bronzeri, F.; de Cassia Rocha, A.; de Carvalho Cara, L.G.; Fogo, S.L.; Eliaschewitz, F.G. GLP-1 Agonist to Treat Obesity and Prevent Cardiovascular Disease: What Have We Achieved so Far? Curr. Atheroscler. Rep. 2022, 24, 867–884. [Google Scholar] [CrossRef]
- Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Emberson, J.; Halsey, J.; Qizilbash, N.; Collins, R.; Peto, R. Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009, 373, 1083–1096. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Obesity Atlas. 2022. Available online: https://s3-eu-west-1.amazonaws.com/wof-files/World_Obesity_Atlas_2022.pdf (accessed on 4 November 2024).
- Bluher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Lim, H.J.; Xue, H.; Wang, Y. Global Trends in Obesity. In Handbook of Eating and Drinking: Interdisciplinary Perspectives; Meiselman, H.L., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1217–1235. [Google Scholar]
- Stierman, B.; Afful, J.; Carroll, M.D.; Chen, T.C.; Davy, O.; Fink, S.; Fryar, C.D.; Gu, Q.; Hales, C.M.; Hughes, J.P.; et al. National Health and Nutrition Examination Survey 2017-March 2020 Prepandemic Data Files-Development of Files and Prevalence Estimates for Selected Health Outcomes. Nat. Health Stat Rep. 2021, 158, 1–20. [Google Scholar] [CrossRef]
- OECD. The Heavy Burden of Obesety: The Economics of Prevention. Available online: https://www.oecd.org/en/publications/the-heavy-burden-of-obesity_67450d67-en.html (accessed on 18 July 2024).
- Kleinman, N.; Abouzaid, S.; Andersen, L.; Wang, Z.; Powers, A. Cohort analysis assessing medical and nonmedical cost associated with obesity in the workplace. J. Occup. Environ. Med. 2014, 56, 161–170. [Google Scholar] [CrossRef]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef]
- Gadde, K.M.; Martin, C.K.; Berthoud, H.R.; Heymsfield, S.B. Obesity: Pathophysiology and Management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar] [CrossRef]
- Cornier, M.A. A review of current guidelines for the treatment of obesity. Am. J. Manag. Care 2022, 28, S288–S296. [Google Scholar] [CrossRef] [PubMed]
- Semlitsch, T.; Stigler, F.L.; Jeitler, K.; Horvath, K.; Siebenhofer, A. Management of overweight and obesity in primary care—A systematic overview of international evidence-based guidelines. Obes. Rev. 2019, 20, 1218–1230. [Google Scholar] [CrossRef]
- Paixao, C.; Dias, C.M.; Jorge, R.; Carraca, E.V.; Yannakoulia, M.; de Zwaan, M.; Soini, S.; Hill, J.O.; Teixeira, P.J.; Santos, I. Successful weight loss maintenance: A systematic review of weight control registries. Obes. Rev. 2020, 21, e13003. [Google Scholar] [CrossRef]
- Tchang, B.G.; Aras, M.; Kumar, R.B.; Aronne, L.J. Pharmacologic Treatment of Overweight and Obesity in Adults. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc. Copyright © 2000–2024; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014, 129, S102–S138. [Google Scholar] [CrossRef]
- NIH. The Practical Guide Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. Available online: https://www.nhlbi.nih.gov/files/docs/guidelines/prctgd_c.pdf (accessed on 12 July 2024).
- Apovian, C.M.; Aronne, L.J.; Bessesen, D.H.; McDonnell, M.E.; Murad, M.H.; Pagotto, U.; Ryan, D.H.; Still, C.D. Pharmacological management of obesity: An endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2015, 100, 342–362. [Google Scholar] [CrossRef]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R. American Association Of Clinical Endocrinologists And American College Pf Endocrinology Comprehensive Clinical Practice Guidelines For Medical Care of Patients with Obesity. Endocr. Pract. 2016, 22 (Suppl. 3), 1–203. [Google Scholar] [CrossRef] [PubMed]
- Grunvald, E.; Shah, R.; Hernaez, R.; Chandar, A.K.; Pickett-Blakely, O.; Teigen, L.M.; Harindhanavudhi, T.; Sultan, S.; Singh, S.; Davitkov, P. AGA Clinical Practice Guideline on Pharmacological Interventions for Adults With Obesity. Gastroenterology 2022, 163, 1198–1225. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Brierley, D.I. GLP-1 and the Neurobiology of Eating Control: Recent Advances. Endocrinology 2025, 166, bqae167. [Google Scholar] [CrossRef]
- Bond, A. Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. Baylor Univ. Med. Cent. Proc. 2006, 19, 281–284. [Google Scholar] [CrossRef]
- Murphy, C.E. Review of the safety and efficacy of exenatide once weekly for the treatment of type 2 diabetes mellitus. Ann. Pharmacother. 2012, 46, 812–821. [Google Scholar] [CrossRef]
- Nikfar, S.; Abdollahi, M.; Salari, P. The efficacy and tolerability of exenatide in comparison to placebo: A systematic review and meta-analysis of randomized clinical trials. J. Pharm. Pharm. Sci. 2012, 15, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Bonora, B.M.; Avogaro, A.; Fadini, G.P. Effects of exenatide long-acting release on cardiovascular events and mortality in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 2019, 56, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y.; McCormack, P.L. Exenatide Extended-Release: An Updated Review of Its Use in Type 2 Diabetes Mellitus. Drugs 2015, 75, 1141–1152. [Google Scholar] [CrossRef]
- Su, N.; Li, Y.; Xu, T.; Li, L.; Kwong, J.S.; Du, H.; Ren, K.; Li, Q.; Li, J.; Sun, X.; et al. Exenatide in obese or overweight patients without diabetes: A systematic review and meta-analyses of randomized controlled trials. Int. J. Cardiol. 2016, 219, 293–300. [Google Scholar] [CrossRef]
- Genovese, S.; Mannucci, E.; Ceriello, A. A Review of the Long-Term Efficacy, Tolerability, and Safety of Exenatide Once Weekly for Type 2 Diabetes. Adv. Ther. 2017, 34, 1791–1814. [Google Scholar] [CrossRef]
- Henry, R.R.; Klein, E.J.; Han, J.; Iqbal, N. Efficacy and Tolerability of Exenatide Once Weekly Over 6 Years in Patients with Type 2 Diabetes: An Uncontrolled Open-Label Extension of the DURATION-1 Study. Diabetes Technol. Ther. 2016, 18, 677–686. [Google Scholar] [CrossRef]
- Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; Zinman, B. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009, 32, 193–203. [Google Scholar] [CrossRef]
- Alsanea, S.; Alkofide, H.; Almadi, B.; Almohammed, O.; Alwhaibi, A.; Alrabiah, Z.; Kalagi, N. Liraglutide’s Effect on Weight Management in Subjects With Pre-diabetes: A Systematic Review & Meta-Analysis. Endocr. Pract. 2024, 30, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Shamim, M.A.; Patil, A.N.; Amin, U.; Roy, T.; Tiwari, K.; Husain, N.; Kumar, J.; Chenchula, S.; Rao, P.; Ganesh, V.; et al. Glucagon-like peptide-1 receptor agonists in adolescents with overweight or obesity with or without type 2 diabetes multimorbidity—A systematic review and network meta-analysis. Diabetes Obes. Metab. 2024, 26, 4302–4317. [Google Scholar] [CrossRef]
- Sun, F.; Wu, S.; Guo, S.; Yu, K.; Yang, Z.; Li, L.; Zhang, Y.; Ji, L.; Zhan, S. Effect of GLP-1 receptor agonists on waist circumference among type 2 diabetes patients: A systematic review and network meta-analysis. Endocrine 2015, 48, 794–803. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Ni, Y.; Yi, C.; Fang, Y.; Ning, Q.; Shen, B.; Zhang, K.; Liu, Y.; Yang, L.; et al. Global Prevalence of Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2024, 178, 800–813. [Google Scholar] [CrossRef] [PubMed]
- Gurung, T.; Shyangdan, D.S.; O’Hare, J.P.; Waugh, N. A novel, long-acting glucagon-like peptide receptor-agonist: Dulaglutide. Diabetes Metab. Syndr. Obes. 2015, 8, 363–386. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B.; et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem. 2015, 58, 7370–7380. [Google Scholar] [CrossRef]
- Tall Bull, S.; Nuffer, W.; Trujillo, J.M. Tirzepatide: A novel, first-in-class, dual GIP/GLP-1 receptor agonist. J. Diabetes Complicat. 2022, 36, 108332. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, Y.; Guan, R.; Yan, S.; Liu, H.; Wang, Z.; Li, J.; Wang, T.; Cai, W.; Ma, G. Evaluation and comparison of efficacy and safety of tirzepatide and semaglutide in patients with type 2 diabetes mellitus: A Bayesian network meta-analysis. Pharmacol. Res. 2024, 199, 107031. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, Y.; Hao, Q.; Vandvik, P.O.; Guyatt, G.; Li, J.; Chen, Z.; Xu, S.; Shen, Y.; Ge, L.; et al. Pharmacotherapy for adults with overweight and obesity: A systematic review and network meta-analysis of randomised controlled trials. Lancet 2024, 403, e21–e31. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, A.; Li, D.; Wu, Y.; Wang, C.Z.; Wan, J.Y.; Yuan, C.S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef]
- Qiu, M.; Ding, L.L.; Wei, X.B.; Liu, S.Y.; Zhou, H.R. Comparative Efficacy of Glucagon-like Peptide 1 Receptor Agonists and Sodium Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular Events in Type 2 Diabetes: A Network Meta-analysis. J. Cardiovasc. Pharmacol. 2021, 77, 34–37. [Google Scholar] [CrossRef] [PubMed]
- García de Lucas, M.D.; Caballero, I.; Fernández-García, J.C.; Domínguez-Rodríguez, M.; Moreno-Moreno, P.; Jiménez-Millán, A.; Botana-López, M.; Avilés, B.; Merino-Torres, J.F.; Soto, A.; et al. Influence of chronic kidney disease and its severity on the efficacy of semaglutide in type 2 diabetes patients: A multicenter real-world study. Front. Endocrinol. 2023, 14, 1240279. [Google Scholar] [CrossRef]
- Katsuyama, H.; Hakoshima, M.; Kaji, E.; Mino, M.; Kakazu, E.; Iida, S.; Adachi, H.; Kanto, T.; Yanai, H. Effects of Once-Weekly Semaglutide on Cardiovascular Risk Factors and Metabolic Dysfunction-Associated Steatotic Liver Disease in Japanese Patients with Type 2 Diabetes: A Retrospective Longitudinal Study Based on Real-World Data. Biomedicines 2024, 12, 1001. [Google Scholar] [CrossRef]
- Soto-Catalán, M.; Opazo-Ríos, L.; Quiceno, H.; Lázaro, I.; Moreno, J.A.; Gómez-Guerrero, C.; Egido, J.; Mas-Fontao, S. Semaglutide Improves Liver Steatosis and De Novo Lipogenesis Markers in Obese and Type-2-Diabetic Mice with Metabolic-Dysfunction-Associated Steatotic Liver Disease. Int. J. Mol. Sci. 2024, 25, 2961. [Google Scholar] [CrossRef] [PubMed]
- Kushner, R.F.; Calanna, S.; Davies, M.; Dicker, D.; Garvey, W.T.; Goldman, B.; Lingvay, I.; Thomsen, M.; Wadden, T.A.; Wharton, S.; et al. Semaglutide 2.4 mg for the Treatment of Obesity: Key Elements of the STEP Trials 1 to 5. Obesity 2020, 28, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- O'Neil, P.M.; Rubino, D.M. Exploring the wider benefits of semaglutide treatment in obesity: Insight from the STEP program. Postgrad. Med. 2022, 134, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Petrie, M.C.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Hovingh, G.K.; Kitzman, D.W.; Møller, D.V.; Treppendahl, M.B.; Verma, S.; et al. Semaglutide in Patients with Obesity-Related Heart Failure and Type 2 Diabetes. N. Engl. J. Med. 2024, 390, 1394–1407. [Google Scholar] [CrossRef]
- Schou, M.; Petrie, M.C.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Kitzman, D.W.; Shah, S.J.; Verma, S.; Patel, S.; Chinnakondepalli, K.M.; et al. Semaglutide and NYHA Functional Class in Obesity-Related Heart Failure With Preserved Ejection Fraction: The STEP-HFpEF Program. J. Am. Coll. Cardiol. 2024, 84, 247–257. [Google Scholar] [CrossRef]
- McGowan, B.M.; Bruun, J.M.; Capehorn, M.; Pedersen, S.D.; Pietiläinen, K.H.; Muniraju, H.A.K.; Quiroga, M.; Varbo, A.; Lau, D.C.W. Efficacy and safety of once-weekly semaglutide 2·4 mg versus placebo in people with obesity and prediabetes (STEP 10): A randomised, double-blind, placebo-controlled, multicentre phase 3 trial. Lancet Diabetes Endocrinol. 2024, 12, 631–642. [Google Scholar] [CrossRef]
- Perreault, L.; Davies, M.; Frias, J.P.; Laursen, P.N.; Lingvay, I.; Machineni, S.; Varbo, A.; Wilding, J.P.H.; Wallenstein, S.O.R.; le Roux, C.W. Changes in Glucose Metabolism and Glycemic Status With Once-Weekly Subcutaneous Semaglutide 2.4 mg Among Participants With Prediabetes in the STEP Program. Diabetes Care 2022, 45, 2396–2405. [Google Scholar] [CrossRef]
- Dong, Y.; Carty, J.; Goldstein, N.; He, Z.; Hwang, E.; Chau, D.; Wallace, B.; Kabahizi, A.; Lieu, L.; Peng, Y.; et al. Time and metabolic state-dependent effects of GLP-1R agonists on NPY/AgRP and POMC neuronal activity in vivo. Mol. Metab. 2021, 54, 101352. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Tsioufis, K.; Katsi, V. Spotlight on the Mechanism of Action of Semaglutide. Curr. Issues Mol. Biol. 2024, 46, 14514–14541. [Google Scholar] [CrossRef]
- van Bloemendaal, L.; Ten Kulve, J.S.; la Fleur, S.E.; Ijzerman, R.G.; Diamant, M. Effects of glucagon-like peptide 1 on appetite and body weight: Focus on the CNS. J. Endocrinol. 2014, 221, T1–T16. [Google Scholar] [CrossRef]
- Donath, M.Y.; Burcelin, R. GLP-1 effects on islets: Hormonal, neuronal, or paracrine? Diabetes Care 2013, 36 (Suppl. 2), S145–S148. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Petrie, J.R.; Sesti, G.; Mannucci, E.; Courrèges, J.P.; Lindegaard, M.L.; Jensen, C.B.; Atkin, S.L. A Phase 2, Randomized, Dose-Finding Study of the Novel Once-Weekly Human GLP-1 Analog, Semaglutide, Compared With Placebo and Open-Label Liraglutide in Patients With Type 2 Diabetes. Diabetes Care 2016, 39, 231–241. [Google Scholar] [CrossRef]
- Davies, M.; Pieber, T.R.; Hartoft-Nielsen, M.L.; Hansen, O.K.H.; Jabbour, S.; Rosenstock, J. Effect of Oral Semaglutide Compared With Placebo and Subcutaneous Semaglutide on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA 2017, 318, 1460–1470. [Google Scholar] [CrossRef]
- Aroda, V.R.; Ahmann, A.; Cariou, B.; Chow, F.; Davies, M.J.; Jódar, E.; Mehta, R.; Woo, V.; Lingvay, I. Comparative efficacy, safety, and cardiovascular outcomes with once-weekly subcutaneous semaglutide in the treatment of type 2 diabetes: Insights from the SUSTAIN 1-7 trials. Diabetes Metab. 2019, 45, 409–418. [Google Scholar] [CrossRef]
- DeSouza, C.; Cariou, B.; Garg, S.; Lausvig, N.; Navarria, A.; Fonseca, V. Efficacy and Safety of Semaglutide for Type 2 Diabetes by Race and Ethnicity: A Post Hoc Analysis of the SUSTAIN Trials. J. Clin. Endocrinol. Metab. 2020, 105, dgz072. [Google Scholar] [CrossRef] [PubMed]
- Jendle, J.; Birkenfeld, A.L.; Polonsky, W.H.; Silver, R.; Uusinarkaus, K.; Hansen, T.; Håkan-Bloch, J.; Tadayon, S.; Davies, M.J. Improved treatment satisfaction in patients with type 2 diabetes treated with once-weekly semaglutide in the SUSTAIN trials. Diabetes Obes. Metab. 2019, 21, 2315–2326. [Google Scholar] [CrossRef] [PubMed]
- Sorli, C.; Harashima, S.I.; Tsoukas, G.M.; Unger, J.; Karsbøl, J.D.; Hansen, T.; Bain, S.C. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): A double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017, 5, 251–260. [Google Scholar] [CrossRef]
- Ahrén, B.; Masmiquel, L.; Kumar, H.; Sargin, M.; Karsbøl, J.D.; Jacobsen, S.H.; Chow, F. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): A 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol. 2017, 5, 341–354. [Google Scholar] [CrossRef]
- Aroda, V.R.; Bain, S.C.; Cariou, B.; Piletič, M.; Rose, L.; Axelsen, M.; Rowe, E.; DeVries, J.H. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): A randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017, 5, 355–366. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Rodbard, H.W.; Lingvay, I.; Reed, J.; de la Rosa, R.; Rose, L.; Sugimoto, D.; Araki, E.; Chu, P.L.; Wijayasinghe, N.; Norwood, P. Semaglutide Added to Basal Insulin in Type 2 Diabetes (SUSTAIN 5): A Randomized, Controlled Trial. J. Clin. Endocrinol. Metab. 2018, 103, 2291–2301. [Google Scholar] [CrossRef]
- Ahrén, B.; Atkin, S.L.; Charpentier, G.; Warren, M.L.; Wilding, J.P.H.; Birch, S.; Holst, A.G.; Leiter, L.A. Semaglutide induces weight loss in subjects with type 2 diabetes regardless of baseline BMI or gastrointestinal adverse events in the SUSTAIN 1 to 5 trials. Diabetes Obes. Metab. 2018, 20, 2210–2219. [Google Scholar] [CrossRef] [PubMed]
- Warren, M.; Chaykin, L.; Trachtenbarg, D.; Nayak, G.; Wijayasinghe, N.; Cariou, B. Semaglutide as a therapeutic option for elderly patients with type 2 diabetes: Pooled analysis of the SUSTAIN 1-5 trials. Diabetes Obes. Metab. 2018, 20, 2291–2297. [Google Scholar] [CrossRef] [PubMed]
- Ahmann, A.J.; Capehorn, M.; Charpentier, G.; Dotta, F.; Henkel, E.; Lingvay, I.; Holst, A.G.; Annett, M.P.; Aroda, V.R. Efficacy and Safety of Once-Weekly Semaglutide Versus Exenatide ER in Subjects With Type 2 Diabetes (SUSTAIN 3): A 56-Week, Open-Label, Randomized Clinical Trial. Diabetes Care 2018, 41, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Capehorn, M.S.; Catarig, A.M.; Furberg, J.K.; Janez, A.; Price, H.C.; Tadayon, S.; Vergès, B.; Marre, M. Efficacy and safety of once-weekly semaglutide 1.0 mg vs once-daily liraglutide 1.2 mg as add-on to 1–3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. 2020, 46, 100–109. [Google Scholar] [CrossRef]
- Pratley, R.E.; Aroda, V.R.; Lingvay, I.; Lüdemann, J.; Andreassen, C.; Navarria, A.; Viljoen, A. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): A randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018, 6, 275–286. [Google Scholar] [CrossRef]
- Overgaard, R.V.; Lindberg, S.; Thielke, D. Impact on HbA1c and body weight of switching from other GLP-1 receptor agonists to semaglutide: A model-based approach. Diabetes Obes. Metab. 2019, 21, 43–51. [Google Scholar] [CrossRef]
- Lingvay, I.; Catarig, A.M.; Frias, J.P.; Kumar, H.; Lausvig, N.L.; le Roux, C.W.; Thielke, D.; Viljoen, A.; McCrimmon, R.J. Efficacy and safety of once-weekly semaglutide versus daily canagliflozin as add-on to metformin in patients with type 2 diabetes (SUSTAIN 8): A double-blind, phase 3b, randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 834–844. [Google Scholar] [CrossRef]
- Zinman, B.; Bhosekar, V.; Busch, R.; Holst, I.; Ludvik, B.; Thielke, D.; Thrasher, J.; Woo, V.; Philis-Tsimikas, A. Semaglutide once weekly as add-on to SGLT-2 inhibitor therapy in type 2 diabetes (SUSTAIN 9): A randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 356–367. [Google Scholar] [CrossRef]
- Kellerer, M.; Kaltoft, M.S.; Lawson, J.; Nielsen, L.L.; Strojek, K.; Tabak, Ö.; Jacob, S. Effect of once-weekly semaglutide versus thrice-daily insulin aspart, both as add-on to metformin and optimized insulin glargine treatment in participants with type 2 diabetes (SUSTAIN 11): A randomized, open-label, multinational, phase 3b trial. Diabetes Obes. Metab. 2022, 24, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- Aroda, V.R.; Rosenstock, J.; Terauchi, Y.; Altuntas, Y.; Lalic, N.M.; Morales Villegas, E.C.; Jeppesen, O.K.; Christiansen, E.; Hertz, C.L.; Haluzík, M. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison With Placebo in Patients With Type 2 Diabetes. Diabetes Care 2019, 42, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Pieber, T.R.; Bode, B.; Mertens, A.; Cho, Y.M.; Christiansen, E.; Hertz, C.L.; Wallenstein, S.O.R.; Buse, J.B. Efficacy and safety of oral semaglutide with flexible dose adjustment versus sitagliptin in type 2 diabetes (PIONEER 7): A multicentre, open-label, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019, 7, 528–539. [Google Scholar] [CrossRef]
- Ji, L.; Agesen, R.M.; Bain, S.C.; Fu, F.; Gabery, S.; Geng, J.; Li, Y.; Lu, Y.; Luo, B.; Pang, W.; et al. Efficacy and safety of oral semaglutide vs sitagliptin in a predominantly Chinese population with type 2 diabetes uncontrolled with metformin: PIONEER 12, a double-blind, Phase IIIa, randomised trial. Diabetologia 2024, 67, 1800–1816. [Google Scholar] [CrossRef]
- Mosenzon, O.; Blicher, T.M.; Rosenlund, S.; Eriksson, J.W.; Heller, S.; Hels, O.H.; Pratley, R.; Sathyapalan, T.; Desouza, C. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): A placebo-controlled, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019, 7, 515–527. [Google Scholar] [CrossRef]
- Rosenstock, J.; Allison, D.; Birkenfeld, A.L.; Blicher, T.M.; Deenadayalan, S.; Jacobsen, J.B.; Serusclat, P.; Violante, R.; Watada, H.; Davies, M. Effect of Additional Oral Semaglutide vs Sitagliptin on Glycated Hemoglobin in Adults With Type 2 Diabetes Uncontrolled With Metformin Alone or With Sulfonylurea: The PIONEER 3 Randomized Clinical Trial. JAMA 2019, 321, 1466–1480. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bain, S.C.; Bian, F.; Chen, R.; Gabery, S.; Huang, S.; Jensen, T.B.; Luo, B.; Yuan, G.; Ning, G. Efficacy and safety of oral semaglutide monotherapy vs placebo in a predominantly Chinese population with type 2 diabetes (PIONEER 11): A double-blind, Phase IIIa, randomised trial. Diabetologia 2024, 67, 1783–1799. [Google Scholar] [CrossRef]
- Pratley, R.; Amod, A.; Hoff, S.T.; Kadowaki, T.; Lingvay, I.; Nauck, M.; Pedersen, K.B.; Saugstrup, T.; Meier, J.J. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): A randomised, double-blind, phase 3a trial. Lancet 2019, 394, 39–50. [Google Scholar] [CrossRef]
- Yabe, D.; Nakamura, J.; Kaneto, H.; Deenadayalan, S.; Navarria, A.; Gislum, M.; Inagaki, N. Safety and efficacy of oral semaglutide versus dulaglutide in Japanese patients with type 2 diabetes (PIONEER 10): An open-label, randomised, active-controlled, phase 3a trial. Lancet Diabetes Endocrinol. 2020, 8, 392–406. [Google Scholar] [CrossRef]
- Yamada, Y.; Katagiri, H.; Hamamoto, Y.; Deenadayalan, S.; Navarria, A.; Nishijima, K.; Seino, Y. Dose-response, efficacy, and safety of oral semaglutide monotherapy in Japanese patients with type 2 diabetes (PIONEER 9): A 52-week, phase 2/3a, randomised, controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 377–391. [Google Scholar] [CrossRef]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Buse, J.B.; Bode, B.W.; Mertens, A.; Cho, Y.M.; Christiansen, E.; Hertz, C.L.; Nielsen, M.A.; Pieber, T.R. Long-term efficacy and safety of oral semaglutide and the effect of switching from sitagliptin to oral semaglutide in patients with type 2 diabetes: A 52-week, randomized, open-label extension of the PIONEER 7 trial. BMJ Open Diabetes Res. Care 2020, 8, e001649. [Google Scholar] [CrossRef] [PubMed]
- Aroda, V.R.; Aberle, J.; Bardtrum, L.; Christiansen, E.; Knop, F.K.; Gabery, S.; Pedersen, S.D.; Buse, J.B. Efficacy and safety of once-daily oral semaglutide 25 mg and 50 mg compared with 14 mg in adults with type 2 diabetes (PIONEER PLUS): A multicentre, randomised, phase 3b trial. Lancet 2023, 402, 693–704. [Google Scholar] [CrossRef]
- Rudofsky, G.; Amadid, H.; Braae, U.C.; Catrina, S.B.; Kick, A.; Mandavya, K.; Roslind, K.; Saravanan, P.; van Houtum, W.; Jain, A.B. Oral Semaglutide Use in Type 2 Diabetes: A Pooled Analysis of Clinical and Patient-Reported Outcomes from Seven PIONEER REAL Prospective Real-World Studies. Diabetes Ther. 2025, 16, 73–87. [Google Scholar] [CrossRef]
- Rodbard, H.W.; Rosenstock, J.; Canani, L.H.; Deerochanawong, C.; Gumprecht, J.; Lindberg, S.; Lingvay, I.; Søndergaard, A.L.; Treppendahl, M.B.; Montanya, E. Oral Semaglutide Versus Empagliflozin in Patients With Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial. Diabetes Care 2019, 42, 2272–2281. [Google Scholar] [CrossRef]
- Zinman, B.; Aroda, V.R.; Buse, J.B.; Cariou, B.; Harris, S.B.; Hoff, S.T.; Pedersen, K.B.; Tarp-Johansen, M.J.; Araki, E. Efficacy, Safety, and Tolerability of Oral Semaglutide Versus Placebo Added to Insulin With or Without Metformin in Patients With Type 2 Diabetes: The PIONEER 8 Trial. Diabetes Care 2019, 42, 2262–2271. [Google Scholar] [CrossRef]
- Rubino, D.; Abrahamsson, N.; Davies, M.; Hesse, D.; Greenway, F.L.; Jensen, C.; Lingvay, I.; Mosenzon, O.; Rosenstock, J.; Rubio, M.A.; et al. Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults With Overweight or Obesity: The STEP 4 Randomized Clinical Trial. JAMA 2021, 325, 1414–1425. [Google Scholar] [CrossRef] [PubMed]
- Rubino, D.M.; Greenway, F.L.; Khalid, U.; O’Neil, P.M.; Rosenstock, J.; Sørrig, R.; Wadden, T.A.; Wizert, A.; Garvey, W.T. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults With Overweight or Obesity Without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA 2022, 327, 138–150. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Garvey, W.T.; Batterham, R.L.; Bhatta, M.; Buscemi, S.; Christensen, L.N.; Frias, J.P.; Jódar, E.; Kandler, K.; Rigas, G.; Wadden, T.A.; et al. Two-year effects of semaglutide in adults with overweight or obesity: The STEP 5 trial. Nat. Med. 2022, 28, 2083–2091. [Google Scholar] [CrossRef]
- Kadowaki, T.; Isendahl, J.; Khalid, U.; Lee, S.Y.; Nishida, T.; Ogawa, W.; Tobe, K.; Yamauchi, T.; Lim, S. Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an east Asian population (STEP 6): A randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diabetes Endocrinol. 2022, 10, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Yang, J.; Deng, C.; Ruan, Q.; Duan, K. Efficacy and safety of semaglutide 2.4 mg for weight loss in overweight or obese adults without diabetes: An updated systematic review and meta-analysis including the 2-year STEP 5 trial. Diabetes Obes. Metab. 2024, 26, 911–923. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Davies, M.; Van Gaal, L.F.; Kandler, K.; Konakli, K.; Lingvay, I.; McGowan, B.M.; Oral, T.K.; Rosenstock, J.; et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: The STEP 1 trial extension. Diabetes Obes. Metab. 2022, 24, 1553–1564. [Google Scholar] [CrossRef]
- Wharton, S.; Batterham, R.L.; Bhatta, M.; Buscemi, S.; Christensen, L.N.; Frias, J.P.; Jódar, E.; Kandler, K.; Rigas, G.; Wadden, T.A.; et al. Two-year effect of semaglutide 2.4 mg on control of eating in adults with overweight/obesity: STEP 5. Obesity 2023, 31, 703–715. [Google Scholar] [CrossRef]
- Davies, M.; Færch, L.; Jeppesen, O.K.; Pakseresht, A.; Pedersen, S.D.; Perreault, L.; Rosenstock, J.; Shimomura, I.; Viljoen, A.; Wadden, T.A.; et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): A randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021, 397, 971–984. [Google Scholar] [CrossRef]
- Mu, Y.; Bao, X.; Eliaschewitz, F.G.; Hansen, M.R.; Kim, B.T.; Koroleva, A.; Ma, R.C.W.; Yang, T.; Zu, N.; Liu, M. Efficacy and safety of once weekly semaglutide 2·4 mg for weight management in a predominantly east Asian population with overweight or obesity (STEP 7): A double-blind, multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2024, 12, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Wharton, S.; Calanna, S.; Davies, M.; Dicker, D.; Goldman, B.; Lingvay, I.; Mosenzon, O.; Rubino, D.M.; Thomsen, M.; Wadden, T.A.; et al. Gastrointestinal tolerability of once-weekly semaglutide 2.4 mg in adults with overweight or obesity, and the relationship between gastrointestinal adverse events and weight loss. Diabetes Obes. Metab. 2022, 24, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Bjorner, J.B.; Larsen, S.; Lübker, C.; Holst-Hansen, T. The improved health utility of once-weekly subcutaneous semaglutide 2.4 mg compared with placebo in the STEP 1-4 obesity trials. Diabetes Obes. Metab. 2023, 25, 2142–2150. [Google Scholar] [CrossRef]
- Lim, Y.Z.; Wong, J.; Hussain, S.M.; Estee, M.M.; Zolio, L.; Page, M.J.; Harrison, C.L.; Wluka, A.E.; Wang, Y.; Cicuttini, F.M. Recommendations for weight management in osteoarthritis: A systematic review of clinical practice guidelines. Osteoarthr. Cart. Cartil. Open 2022, 4, 100298. [Google Scholar] [CrossRef]
- Bliddal, H.; Bays, H.; Czernichow, S.; Uddén Hemmingsson, J.; Hjelmesæth, J.; Hoffmann Morville, T.; Koroleva, A.; Skov Neergaard, J.; Vélez Sánchez, P.; Wharton, S.; et al. Once-Weekly Semaglutide in Persons with Obesity and Knee Osteoarthritis. N. Engl. J. Med. 2024, 391, 1573–1583. [Google Scholar] [CrossRef]
- Kelly, A.S.; Arslanian, S.; Hesse, D.; Iversen, A.T.; Körner, A.; Schmidt, S.; Sørrig, R.; Weghuber, D.; Jastreboff, A.M. Reducing BMI below the obesity threshold in adolescents treated with once-weekly subcutaneous semaglutide 2.4 mg. Obesity 2023, 31, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Staiano, A.E. Trends in Obesity Prevalence Among Children and Adolescents Aged 2 to 19 Years in the US From 2011 to 2020. JAMA Pediatr. 2022, 176, 1037–1039. [Google Scholar] [CrossRef]
- Freedman, D.S.; Lawman, H.G.; Galuska, D.A.; Goodman, A.B.; Berenson, G.S. Tracking and Variability in Childhood Levels of BMI: The Bogalusa Heart Study. Obesity 2018, 26, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Geserick, M.; Vogel, M.; Gausche, R.; Lipek, T.; Spielau, U.; Keller, E.; Pfäffle, R.; Kiess, W.; Körner, A. Acceleration of BMI in Early Childhood and Risk of Sustained Obesity. N. Engl. J. Med. 2018, 379, 1303–1312. [Google Scholar] [CrossRef]
- Simmonds, M.; Burch, J.; Llewellyn, A.; Griffiths, C.; Yang, H.; Owen, C.; Duffy, S.; Woolacott, N. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: A systematic review and meta-analysis. Health Technol. Assess. 2015, 19, 1–336. [Google Scholar] [CrossRef] [PubMed]
- Di Figlia-Peck, S.; Feinstein, R.; Fisher, M. Treatment of children and adolescents who are overweight or obese. Curr. Probl. Pediatr. Adolesc. Health Care 2020, 50, 100871. [Google Scholar] [CrossRef]
- Grossman, D.C.; Bibbins-Domingo, K.; Curry, S.J.; Barry, M.J.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W., Jr.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; et al. Screening for Obesity in Children and Adolescents: US Preventive Services Task Force Recommendation Statement. JAMA 2017, 317, 2417–2426. [Google Scholar] [CrossRef]
- Kelly, A.S.; Barlow, S.E.; Rao, G.; Inge, T.H.; Hayman, L.L.; Steinberger, J.; Urbina, E.M.; Ewing, L.J.; Daniels, S.R. Severe obesity in children and adolescents: Identification, associated health risks, and treatment approaches: A scientific statement from the American Heart Association. Circulation 2013, 128, 1689–1712. [Google Scholar] [CrossRef]
- Styne, D.M.; Arslanian, S.A.; Connor, E.L.; Farooqi, I.S.; Murad, M.H.; Silverstein, J.H.; Yanovski, J.A. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 709–757. [Google Scholar] [CrossRef]
- Al-Khudairy, L.; Loveman, E.; Colquitt, J.L.; Mead, E.; Johnson, R.E.; Fraser, H.; Olajide, J.; Murphy, M.; Velho, R.M.; O'Malley, C.; et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents aged 12 to 17 years. Cochrane Database Syst. Rev. 2017, 6, Cd012691. [Google Scholar] [CrossRef]
- Reinehr, T.; Widhalm, K.; l'Allemand, D.; Wiegand, S.; Wabitsch, M.; Holl, R.W. Two-year follow-up in 21,784 overweight children and adolescents with lifestyle intervention. Obesity 2009, 17, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Wadden, T.A.; Bailey, T.S.; Billings, L.K.; Davies, M.; Frias, J.P.; Koroleva, A.; Lingvay, I.; O'Neil, P.M.; Rubino, D.M.; Skovgaard, D.; et al. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA 2021, 325, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Nomoto, H.; Yokoyama, H.; Takano, Y.; Nagai, S.; Tsuzuki, A.; Cho, K.Y.; Miya, A.; Kameda, H.; Takeuchi, J.; et al. Improvement of glycaemic control and treatment satisfaction by switching from liraglutide or dulaglutide to subcutaneous semaglutide in patients with type 2 diabetes: A multicentre, prospective, randomized, open-label, parallel-group comparison study (SWITCH-SEMA 1 study). Diabetes Obes. Metab. 2023, 25, 1503–1511. [Google Scholar] [CrossRef]
- Nomoto, H.; Takahashi, Y.; Takano, Y.; Yokoyama, H.; Tsuchida, K.; Nagai, S.; Miya, A.; Kameda, H.; Cho, K.Y.; Nakamura, A.; et al. Effect of Switching to Once-Weekly Semaglutide on Non-Alcoholic Fatty Liver Disease: The SWITCH-SEMA 1 Subanalysis. Pharmaceutics 2023, 15, 2163. [Google Scholar] [CrossRef]
- Furusawa, S.; Nomoto, H.; Yokoyama, H.; Suzuki, Y.; Tsuzuki, A.; Takahashi, K.; Miya, A.; Kameda, H.; Cho, K.Y.; Takeuchi, J.; et al. Glycaemic control efficacy of switching from dipeptidyl peptidase-4 inhibitors to oral semaglutide in subjects with type 2 diabetes: A multicentre, prospective, randomized, open-label, parallel-group comparison study (SWITCH-SEMA 2 study). Diabetes Obes. Metab. 2024, 26, 961–970. [Google Scholar] [CrossRef]
- Nomoto, H.; Furusawa, S.; Yokoyama, H.; Suzuki, Y.; Izumihara, R.; Oe, Y.; Takahashi, K.; Miya, A.; Kameda, H.; Cho, K.Y.; et al. Improvement of β-Cell Function After Switching From DPP-4 Inhibitors to Oral Semaglutide: SWITCH-SEMA2 Post Hoc Analysis. J. Clin. Endocrinol. Metab. 2024, 110, e583–e591. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006, 113, 898–918. [Google Scholar] [CrossRef]
- Ryan, D.H.; Lingvay, I.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Kahn, S.E.; Kushner, R.F.; Marso, S.; Plutzky, J.; Brown-Frandsen, K.; et al. Semaglutide Effects on Cardiovascular Outcomes in People With Overweight or Obesity (SELECT) rationale and design. Am. Heart J. 2020, 229, 61–69. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Rørth, R.; Jhund, P.S.; Docherty, K.F.; Sattar, N.; Preiss, D.; Køber, L.; Petrie, M.C.; McMurray, J.J.V. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019, 7, 776–785. [Google Scholar] [CrossRef]
- Ryan, D.H.; Lingvay, I.; Deanfield, J.; Kahn, S.E.; Barros, E.; Burguera, B.; Colhoun, H.M.; Cercato, C.; Dicker, D.; Horn, D.B.; et al. Long-term weight loss effects of semaglutide in obesity without diabetes in the SELECT trial. Nat. Med. 2024, 30, 2049–2057. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Lingvay, I.; Deanfield, J.; Kahn, S.E.; Weeke, P.E.; Toplak, H.; Scirica, B.M.; Rydén, L.; Rathor, N.; Plutzky, J.; Morales, C.; et al. Semaglutide and Cardiovascular Outcomes by Baseline HbA1c and Change in HbA1c in People With Overweight or Obesity but Without Diabetes in SELECT. Diabetes Care 2024, 47, 1360–1369. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Christensen, L.; Davies, M.; Hovingh, K.G.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Design and Baseline Characteristics of STEP-HFpEF Program Evaluating Semaglutide in Patients With Obesity HFpEF Phenotype. JACC Heart Fail. 2023, 11, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Shah, S.J.; Petrie, M.C.; Borlaug, B.A.; Abildstrøm, S.Z.; Davies, M.J.; Hovingh, G.K.; Kitzman, D.W.; Møller, D.V.; Verma, S.; et al. Semaglutide versus placebo in people with obesity-related heart failure with preserved ejection fraction: A pooled analysis of the STEP-HFpEF and STEP-HFpEF DM randomised trials. Lancet 2024, 403, 1635–1648. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Deanfield, J.; Pratley, R.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Emerson, S.S.; Kahn, S.E.; Kitzman, D.W.; Lingvay, I.; et al. Semaglutide versus placebo in patients with heart failure and mildly reduced or preserved ejection fraction: A pooled analysis of the SELECT, FLOW, STEP-HFpEF, and STEP-HFpEF DM randomised trials. Lancet 2024, 404, 949–961. [Google Scholar] [CrossRef]
- Verma, S.; Butler, J.; Borlaug, B.A.; Davies, M.J.; Kitzman, D.W.; Petrie, M.C.; Shah, S.J.; Jensen, T.J.; Rasmussen, S.; Rönnbäck, C.; et al. Atrial Fibrillation and Semaglutide Effects in Obesity-Related Heart Failure With Preserved Ejection Fraction: STEP-HFpEF Program. J. Am. Coll. Cardiol. 2024, 84, 1603–1614. [Google Scholar] [CrossRef]
- Verma, S.; Petrie, M.C.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Kitzman, D.W.; Shah, S.J.; Rönnbäck, C.; Abildstrøm, S.Z.; Liisberg, K.; et al. Inflammation in Obesity-Related HFpEF: The STEP-HFpEF Program. J. Am. Coll. Cardiol. 2024, 84, 1646–1662. [Google Scholar] [CrossRef]
- Petrie, M.C.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Kitzman, D.W.; Shah, S.J.; Verma, S.; Jensen, T.J.; Einfeldt, M.N.; Liisberg, K.; et al. Semaglutide and NT-proBNP in Obesity-Related HFpEF: Insights From the STEP-HFpEF Program. J. Am. Coll. Cardiol. 2024, 84, 27–40. [Google Scholar] [CrossRef]
- Verma, S.; Butler, J.; Borlaug, B.A.; Davies, M.; Kitzman, D.W.; Shah, S.J.; Petrie, M.C.; Barros, E.; Rönnbäck, C.; Vestergaard, L.S.; et al. Efficacy of Semaglutide by Sex in Obesity-Related Heart Failure With Preserved Ejection Fraction: STEP-HFpEF Trials. J. Am. Coll. Cardiol. 2024, 84, 773–785. [Google Scholar] [CrossRef]
- Shah, S.J.; Sharma, K.; Borlaug, B.A.; Butler, J.; Davies, M.; Kitzman, D.W.; Petrie, M.C.; Verma, S.; Patel, S.; Chinnakondepalli, K.M.; et al. Semaglutide and diuretic use in obesity-related heart failure with preserved ejection fraction: A pooled analysis of the STEP-HFpEF and STEP-HFpEF-DM trials. Eur. Heart J. 2024, 45, 3254–3269. [Google Scholar] [CrossRef] [PubMed]
- Rossing, P.; Baeres, F.M.M.; Bakris, G.; Bosch-Traberg, H.; Gislum, M.; Gough, S.C.L.; Idorn, T.; Lawson, J.; Mahaffey, K.W.; Mann, J.F.E.; et al. The rationale, design and baseline data of FLOW, a kidney outcomes trial with once-weekly semaglutide in people with type 2 diabetes and chronic kidney disease. Nephrol. Dial. Transplant. 2023, 38, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Pratley, R.E.; Tuttle, K.R.; Rossing, P.; Rasmussen, S.; Perkovic, V.; Nielsen, O.W.; Mann, J.F.E.; MacIsaac, R.J.; Kosiborod, M.N.; Kamenov, Z.; et al. Effects of Semaglutide on Heart Failure Outcomes in Diabetes and Chronic Kidney Disease in the FLOW Trial. J. Am. Coll. Cardiol. 2024, 84, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Mahaffey, K.W.; Tuttle, K.R.; Arici, M.; Baeres, F.M.M.; Bakris, G.; Charytan, D.M.; Cherney, D.Z.I.; Chernin, G.; Correa-Rotter, R.; Gumprecht, J.; et al. Cardiovascular outcomes with semaglutide by severity of chronic kidney disease in type 2 diabetes: The FLOW trial. Eur. Heart J. 2024, ehae613. [Google Scholar] [CrossRef]
- Mann, J.F.E.; Rossing, P.; Bakris, G.; Belmar, N.; Bosch-Traberg, H.; Busch, R.; Charytan, D.M.; Hadjadj, S.; Gillard, P.; Górriz, J.L.; et al. Effects of semaglutide with and without concomitant SGLT2 inhibitor use in participants with type 2 diabetes and chronic kidney disease in the FLOW trial. Nat. Med. 2024, 30, 2849–2856. [Google Scholar] [CrossRef]
- Gragnano, F.; De Sio, V.; Calabrò, P. FLOW trial stopped early due to evidence of renal protection with semaglutide. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 7–9. [Google Scholar] [CrossRef]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.S.; Harrison, S.A. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef]
- Alkhouri, N.; Herring, R.; Kabler, H.; Kayali, Z.; Hassanein, T.; Kohli, A.; Huss, R.S.; Zhu, Y.; Billin, A.N.; Damgaard, L.H.; et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: A randomised, open-label phase II trial. J. Hepatol. 2022, 77, 607–618. [Google Scholar] [CrossRef]
- Loomba, R.; Abdelmalek, M.F.; Armstrong, M.J.; Jara, M.; Kjær, M.S.; Krarup, N.; Lawitz, E.; Ratziu, V.; Sanyal, A.J.; Schattenberg, J.M.; et al. Semaglutide 2·4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: A randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 2023, 8, 511–522. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Armstrong, M.J.; Funuyet-Salas, J.; Mangla, K.K.; Ladelund, S.; Sejling, A.S.; Shrestha, I.; Sanyal, A.J. Improved health-related quality of life with semaglutide in people with non-alcoholic steatohepatitis: A randomised trial. Aliment. Pharmacol. Ther. 2023, 58, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Andersen, G.; Hockings, P.; Johansson, L.; Morsing, A.; Sundby Palle, M.; Vogl, T.; Loomba, R.; Plum-Mörschel, L. Randomised clinical trial: Semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non-alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 2021, 54, 1150–1161. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Lawitz, E.; Shankar, R.R.; Chaudhri, E.; Liu, J.; Lam, R.L.H.; Kaufman, K.D.; Engel, S.S. A phase IIa active-comparator-controlled study to evaluate the efficacy and safety of efinopegdutide in patients with non-alcoholic fatty liver disease. J. Hepatol. 2023, 79, 888–897. [Google Scholar] [CrossRef]
- Knop, F.K.; Aroda, V.R.; do Vale, R.D.; Holst-Hansen, T.; Laursen, P.N.; Rosenstock, J.; Rubino, D.M.; Garvey, W.T. Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 402, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, N.C.; Davies, M.J.; Lingvay, I.; Knop, F.K. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes. Metab. 2023, 25, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Shetty, R.; Basheer, F.T.; Poojari, P.G.; Thunga, G.; Chandran, V.P.; Acharya, L.D. Adverse drug reactions of GLP-1 agonists: A systematic review of case reports. Diabetes Metab. Syndr. 2022, 16, 102427. [Google Scholar] [CrossRef]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef]
- Moiz, A.; Filion, K.B.; Toutounchi, H.; Tsoukas, M.A.; Yu, O.H.Y.; Peters, T.M.; Eisenberg, M.J. Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes: A Systematic Review of Randomized Controlled Trials. Ann. Intern. Med. 2025, 178, 199–217. [Google Scholar] [CrossRef]
- Kommu, S.; Berg, R.L. Efficacy and safety of once-weekly subcutaneous semaglutide on weight loss in patients with overweight or obesity without diabetes mellitus—A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2024, 25, e13792. [Google Scholar] [CrossRef]
- Smith, I.; Hardy, E.; Mitchell, S.; Batson, S. Semaglutide 2.4 Mg for the Management of Overweight and Obesity: Systematic Literature Review and Meta-Analysis. Diabetes Metab. Syndr. Obes. 2022, 15, 3961–3987. [Google Scholar] [CrossRef]
- Yang, L.; Duan, X.; Hua, P.; Wu, S.; Liu, X. Effectiveness and safety of semaglutide in overweight/obese adults with or without type 2 diabetes: A systematic review and meta-analysis. J. Res. Med. Sci. 2024, 29, 60. [Google Scholar] [CrossRef] [PubMed]
- Friedrichsen, M.; Breitschaft, A.; Tadayon, S.; Wizert, A.; Skovgaard, D. The effect of semaglutide 2.4 mg once weekly on energy intake, appetite, control of eating, and gastric emptying in adults with obesity. Diabetes Obes. Metab. 2021, 23, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Gabe, M.B.N.; Breitschaft, A.; Knop, F.K.; Hansen, M.R.; Kirkeby, K.; Rathor, N.; Adrian, C.L. Effect of oral semaglutide on energy intake, appetite, control of eating and gastric emptying in adults living with obesity: A randomized controlled trial. Diabetes Obes. Metab. 2024, 26, 4480–4489. [Google Scholar] [CrossRef]
- Alanazi, M.; Alshahrani, J.A.; Sulayman Aljaberi, A.; Alqahtani, B.A.A.; Muammer, M. Effect of Semaglutide in Individuals With Obesity or Overweight Without Diabetes. Cureus 2024, 16, e67889. [Google Scholar] [CrossRef] [PubMed]
- Cacciottolo, T.M.; Evans, K. Research in brief: Effective pharmacotherapy for the management of obesity. Clin. Med. 2021, 21, e517–e518. [Google Scholar] [CrossRef]
- Kim, N.; Wang, J.; Burudpakdee, C.; Song, Y.; Ramasamy, A.; Xie, Y.; Sun, R.; Kumar, N.; Wu, E.Q.; Sullivan, S.D. Cost-effectiveness analysis of semaglutide 2.4 mg for the treatment of adult patients with overweight and obesity in the United States. J. Manag. Care Spec. Pharm. 2022, 28, 740–752. [Google Scholar] [CrossRef]
- Risebrough, N.A.; Baker, T.M.; Zhang, L.; Ali, S.N.; Radin, M.; Dang-Tan, T. Lifetime Cost-effectiveness of Oral Semaglutide Versus Dulaglutide and Liraglutide in Patients With Type 2 Diabetes Inadequately Controlled With Oral Antidiabetics. Clin. Ther. 2021, 43, 1812–1826.e1817. [Google Scholar] [CrossRef]
- Amin, K.; Telesford, I.; Singh, R.; Cox, C. How Do Prices of Drugs for Weight Loss in the U.S. Compare to Peer Nations’ Prices? Available online: https://www.healthsystemtracker.org/brief/prices-of-drugs-for-weight-loss-in-the-us-and-peer-nations/ (accessed on 14 November 2024).
- Atănăsoie, A.M.; Ancuceanu, R.V.; Krajnović, D.; Waszyk-Nowaczyk, M.; Skotnicki, M.; Tondowska, D.; Petrova, G.; Niculae, A.M.; Tăerel, A.E. Approved and Commercialized Antidiabetic Medicines (Excluding Insulin) in Seven European Countries-A Cross-Sectional Comparison. Pharmaceuticals 2024, 17, 793. [Google Scholar] [CrossRef]
- Bomberg, E.M.; Kyle, T.; Stanford, F.C. Considering Pediatric Obesity as a US Public Health Emergency. Pediatrics 2023, 152, e2023061501. [Google Scholar] [CrossRef]
- Ling, J.; Chen, S.; Zahry, N.R.; Kao, T.A. Economic burden of childhood overweight and obesity: A systematic review and meta-analysis. Obes. Rev. 2023, 24, e13535. [Google Scholar] [CrossRef]
- Parker, E.D.; Lin, J.; Mahoney, T.; Ume, N.; Yang, G.; Gabbay, R.A.; ElSayed, N.A.; Bannuru, R.R. Economic Costs of Diabetes in the U.S. in 2022. Diabetes Care 2024, 47, 26–43. [Google Scholar] [CrossRef] [PubMed]
- Vesikansa, A.; Mehtälä, J.; Mutanen, K.; Lundqvist, A.; Laatikainen, T.; Ylisaukko-Oja, T.; Saukkonen, T.; Pietiläinen, K.H. Obesity and metabolic state are associated with increased healthcare resource and medication use and costs: A Finnish population-based study. Eur. J. Health Econ. 2023, 24, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Squire, P.; Naude, J.; Zentner, A.; Bittman, J.; Khan, N. Factors associated with weight loss response to GLP-1 analogues for obesity treatment: A retrospective cohort analysis. BMJ Open 2025, 15, e089477. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Rind, D.; Devereaux, P.J.; Montori, V.M.; Freyschuss, B.; Vist, G.; et al. GRADE guidelines 6. Rating the quality of evidence--imprecision. J. Clin. Epidemiol. 2011, 64, 1283–1293. [Google Scholar] [CrossRef]
- Bero, L.A. Why the Cochrane risk of bias tool should include funding source as a standard item. Cochrane Database Syst. Rev. 2013, 2013, Ed000075. [Google Scholar] [CrossRef]
- Chopra, S.S. MSJAMA: Industry funding of clinical trials: Benefit or bias? JAMA 2003, 290, 113–114. [Google Scholar] [CrossRef]
- Lexchin, J. Sponsorship bias in clinical research. Int. J. Risk Saf. Med. 2012, 24, 233–242. [Google Scholar] [CrossRef]
- Sismondo, S. How pharmaceutical industry funding affects trial outcomes: Causal structures and responses. Soc. Sci. Med. 2008, 66, 1909–1914. [Google Scholar] [CrossRef]
- Azuri, J.; Hammerman, A.; Aboalhasan, E.; Sluckis, B.; Arbel, R. Tirzepatide versus semaglutide for weight loss in patients with type 2 diabetes mellitus: A value for money analysis. Diabetes Obes. Metab. 2023, 25, 961–964. [Google Scholar] [CrossRef] [PubMed]
- Conte, C.; Hall, K.D.; Klein, S. Is Weight Loss-Induced Muscle Mass Loss Clinically Relevant? JAMA 2024, 332, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Phillips, S.M.; Gonzalez, M.C.; Heymsfield, S.B. Muscle matters: The effects of medically induced weight loss on skeletal muscle. Lancet Diabetes Endocrinol. 2024, 12, 785–787. [Google Scholar] [CrossRef]
- Blüher, M.; Rosenstock, J.; Hoefler, J.; Manuel, R.; Hennige, A.M. Dose-response effects on HbA(1c) and bodyweight reduction of survodutide, a dual glucagon/GLP-1 receptor agonist, compared with placebo and open-label semaglutide in people with type 2 diabetes: A randomised clinical trial. Diabetologia 2024, 67, 470–482. [Google Scholar] [CrossRef]
- Bray, G.A.; Kim, K.K.; Wilding, J.P.H. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017, 18, 715–723. [Google Scholar] [CrossRef]
- Tzoulis, P.; Baldeweg, S.E. Semaglutide for weight loss: Unanswered questions. Front. Endocrinol. 2024, 15, 1382814. [Google Scholar] [CrossRef]
- Saxon, D.R.; Iwamoto, S.J.; Mettenbrink, C.J.; McCormick, E.; Arterburn, D.; Daley, M.F.; Oshiro, C.E.; Koebnick, C.; Horberg, M.; Young, D.R.; et al. Antiobesity Medication Use in 2.2 Million Adults Across Eight Large Health Care Organizations: 2009–2015. Obesity 2019, 27, 1975–1981. [Google Scholar] [CrossRef]
- Sodhi, M.; Rezaeianzadeh, R.; Kezouh, A.; Etminan, M. Risk of Gastrointestinal Adverse Events Associated With Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss. JAMA 2023, 330, 1795–1797. [Google Scholar] [CrossRef] [PubMed]
- Nuako, A.; Tu, L.; Reyes, K.J.C.; Chhabria, S.M.; Stanford, F.C. Pharmacologic Treatment of Obesity in Reproductive Aged Women. Curr. Obstet. Gynecol. Rep. 2023, 12, 138–146. [Google Scholar] [CrossRef]
- Dao, K.; Shechtman, S.; Weber-Schoendorfer, C.; Diav-Citrin, O.; Murad, R.H.; Berlin, M.; Hazan, A.; Richardson, J.L.; Eleftheriou, G.; Rousson, V.; et al. Use of GLP1 receptor agonists in early pregnancy and reproductive safety: A multicentre, observational, prospective cohort study based on the databases of six Teratology Information Services. BMJ Open 2024, 14, e083550. [Google Scholar] [CrossRef]
- Drummond, R.F.; Seif, K.E.; Reece, E.A. Glucagon-like peptide-1 receptor agonist use in pregnancy: A review. Am. J. Obstet. Gynecol. 2025, 232, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Flores, V.; Romero, R.; Miller, D.; Xu, Y.; Done, B.; Veerapaneni, C.; Leng, Y.; Arenas-Hernandez, M.; Khan, N.; Panaitescu, B.; et al. Inflammation-Induced Adverse Pregnancy and Neonatal Outcomes Can Be Improved by the Immunomodulatory Peptide Exendin-4. Front. Immunol. 2018, 9, 1291. [Google Scholar] [CrossRef]
- Muller, D.R.P.; Stenvers, D.J.; Malekzadeh, A.; Holleman, F.; Painter, R.C.; Siegelaar, S.E. Effects of GLP-1 agonists and SGLT2 inhibitors during pregnancy and lactation on offspring outcomes: A systematic review of the evidence. Front. Endocrinol. 2023, 14, 1215356. [Google Scholar] [CrossRef] [PubMed]
- Jensterle, M.; Rizzo, M.; Janež, A. Semaglutide in Obesity: Unmet Needs in Men. Diabetes Ther. 2023, 14, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Acosta, A.; Camilleri, M.; Abu Dayyeh, B.; Calderon, G.; Gonzalez, D.; McRae, A.; Rossini, W.; Singh, S.; Burton, D.; Clark, M.M. Selection of Antiobesity Medications Based on Phenotypes Enhances Weight Loss: A Pragmatic Trial in an Obesity Clinic. Obesity 2021, 29, 662–671. [Google Scholar] [CrossRef]
- Tahrani, A.A.; Panova-Noeva, M.; Schloot, N.C.; Hennige, A.M.; Soderberg, J.; Nadglowski, J.; Tarasenko, L.; Ahmad, N.N.; Sleypen, B.S.; Bravo, R.; et al. Stratification of obesity phenotypes to optimize future therapy (SOPHIA). Expert. Rev. Gastroenterol. Hepatol. 2023, 17, 1031–1039. [Google Scholar] [CrossRef]
- Bomberg, E.M.; Ryder, J.R.; Brundage, R.C.; Straka, R.J.; Fox, C.K.; Gross, A.C.; Oberle, M.M.; Bramante, C.T.; Sibley, S.D.; Kelly, A.S. Precision medicine in adult and pediatric obesity: A clinical perspective. Ther. Adv. Endocrinol. Metab. 2019, 10, 2042018819863022. [Google Scholar] [CrossRef]
- Altieri, M.S.; Irish, W.; Pories, W.J.; Shah, A.; DeMaria, E.J. Examining the Rates of Obesity and Bariatric Surgery in the United States. Obes. Surg. 2021, 31, 4754–4760. [Google Scholar] [CrossRef]
- Wiggins, T.; Guidozzi, N.; Welbourn, R.; Ahmed, A.R.; Markar, S.R. Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: A systematic review and meta-analysis. PLoS Med. 2020, 17, e1003206. [Google Scholar] [CrossRef]
- Wilson, R.B.; Lathigara, D.; Kaushal, D. Systematic Review and Meta-Analysis of the Impact of Bariatric Surgery on Future Cancer Risk. Int. J. Mol. Sci. 2023, 24, 6192. [Google Scholar] [CrossRef]
- King, W.C.; Hinerman, A.S.; Belle, S.H.; Wahed, A.S.; Courcoulas, A.P. Comparison of the Performance of Common Measures of Weight Regain After Bariatric Surgery for Association With Clinical Outcomes. JAMA 2018, 320, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.B.; Renström, F.; Aczél, S.; Folie, P.; Biraima-Steinemann, M.; Beuschlein, F.; Bilz, S. Efficacy of the Glucagon-Like Peptide-1 Receptor Agonists Liraglutide and Semaglutide for the Treatment of Weight Regain After Bariatric surgery: A Retrospective Observational Study. Obes. Surg. 2023, 33, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Lautenbach, A.; Wernecke, M.; Huber, T.B.; Stoll, F.; Wagner, J.; Meyhöfer, S.M.; Meyhöfer, S.; Aberle, J. The Potential of Semaglutide Once-Weekly in Patients Without Type 2 Diabetes with Weight Regain or Insufficient Weight Loss After Bariatric Surgery-a Retrospective Analysis. Obes. Surg. 2022, 32, 3280–3288. [Google Scholar] [CrossRef] [PubMed]
- Murvelashvili, N.; Xie, L.; Schellinger, J.N.; Mathew, M.S.; Marroquin, E.M.; Lingvay, I.; Messiah, S.E.; Almandoz, J.P. Effectiveness of semaglutide versus liraglutide for treating post-metabolic and bariatric surgery weight recurrence. Obesity 2023, 31, 1280–1289. [Google Scholar] [CrossRef]
- Imam, A.; Alim, H.; Binhussein, M.; Kabli, A.; Alhasnani, H.; Allehyani, A.; Aljohani, A.; Mohorjy, A.; Tawakul, A.; Samannodi, M.; et al. Weight Loss Effect of GLP-1 RAs With Endoscopic Bariatric Therapy and Bariatric Surgeries. J. Endocr. Soc. 2023, 7, bvad129. [Google Scholar] [CrossRef]
Reference | Population | Intervention | Results in Body Weight |
---|---|---|---|
[59] | n = 270 | SMG 0.1 to 0.8 mg/week or progressive dose up 1.2 to 1.6 mg/week (sc, 12 weeks) |
|
n = 46 | Placebo Weekly dose (sc, 12 weeks) | ||
n = 95 | Liraglutide Progressive dose up 1.2 to 1.8 mg/day (sc, 12 weeks) | ||
[60] | n = 69 | SMG 1.0 mg/week (sc) or |
|
n = 350 | 2.5 to 40 mg/week with or without progressive oral dosing (26 weeks) | ||
n = 71 | Placebo Weekly dose (oral, 26 weeks) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvador, R.; Moutinho, C.G.; Sousa, C.; Vinha, A.F.; Carvalho, M.; Matos, C. Semaglutide as a GLP-1 Agonist: A Breakthrough in Obesity Treatment. Pharmaceuticals 2025, 18, 399. https://doi.org/10.3390/ph18030399
Salvador R, Moutinho CG, Sousa C, Vinha AF, Carvalho M, Matos C. Semaglutide as a GLP-1 Agonist: A Breakthrough in Obesity Treatment. Pharmaceuticals. 2025; 18(3):399. https://doi.org/10.3390/ph18030399
Chicago/Turabian StyleSalvador, Rui, Carla Guimarães Moutinho, Carla Sousa, Ana Ferreira Vinha, Márcia Carvalho, and Carla Matos. 2025. "Semaglutide as a GLP-1 Agonist: A Breakthrough in Obesity Treatment" Pharmaceuticals 18, no. 3: 399. https://doi.org/10.3390/ph18030399
APA StyleSalvador, R., Moutinho, C. G., Sousa, C., Vinha, A. F., Carvalho, M., & Matos, C. (2025). Semaglutide as a GLP-1 Agonist: A Breakthrough in Obesity Treatment. Pharmaceuticals, 18(3), 399. https://doi.org/10.3390/ph18030399