Phenotyping the Use of Cangrelor in Percutaneous Coronary Interventions
Abstract
:1. Introduction
2. Pharmacology of Cangrelor
2.1. The Role of P2Y12 Receptor and Its Inhibitors in Thrombosis
2.2. Cangrelor
3. Clinical Evidence with the Use of Cangrelor
3.1. Landmark Randomized Studies
Trial Name | Number of Participants | Setting | STEMI Presentation (%) | Cangrelor Infusion Characteristics | Post-PCI Treatment | Primary Endpoint | Stent Thrombosis | Bleeding Events |
---|---|---|---|---|---|---|---|---|
CHAMPION-PLATFORM [21] | 5362 | PCI for ACS or CCS | Excluded | 30 mcg/kg bolus and 4 mcg/kg/min infusion for ≥2 h or until the end of the procedure | Clopidogrel 600 mg in both groups | No difference in the composite of mortality, IDR, or Mi at 48 h (7.0 vs. 8.0%; p = 0.17) | Significantly reduced thrombotic events in the cangrelor arm at 48 h (0.2 vs. 0.6%; p = 0.02) | No significant difference in blood transfusions Significant increase in major bleedings (5.5 vs. 3.5%; p < 0.001) |
CHAMPION-PCI [23] | 8877 | PCI for ACS or CCS | 11% | 30 mcg/kg bolus and 4 mcg/kg/min infusion | Clopidogrel 600 mg in both groups | No difference in the composite of mortality, IDR, or Mi at 48 h (7.5 vs. 7.1%; p = 0.59) | No significant differences between arms (0.2 vs. 0.3%; p = 0.34) | Major bleeding according to the ACUITY criteria: higher with cangrelor, approaching statistical significance (3.6% vs. 2.9%; p = 0.06) No difference in major bleeding according to the TIMI criteria or according to GUSTO criteria. |
CHAMPION-PHOENIX [25] | 11,145 | PCI for ACS or CCS | 17.6% | 30 mcg/kg bolus and 4 mcg/kg/min infusion | Clopidogrel 600 mg in the cangrelor group, placebo in the control arm | Significant reduction in the composite of mortality, IDR, or MI at 48 h (4.7 vs. 5.9%; p = 0.01) | Significant reduction of stent thrombotic events at 48 h (0.8 vs. 1.4%; p = 0.01) | No significant difference in major bleeding events (both 0.1%) Trend toward increase in minor bleedings with cangrelor (0.2 vs. 0.1%; p = 0.08) |
Pooled CHAMPION trials analysis [30] | 24,910 | PCI for ACS or CCS | 11.3% | 30 mcg/kg bolus and 4 mcg/kg/min infusion | As per trial | Significant reduction of the composite death, MI IDR, or stent thrombosis at 48 h (3.8 vs. 4.7%; p = 0.0007) | Significant reduction in stent thrombosis events between groups (0.5 vs. 0.8%; p = 0.0008) | No difference in GUSTO moderate bleedings (0.6 vs. 0.4%), but increase in GUSTO mild bleedings (16.8 vs. 13.0%; p < 0.0001) |
3.2. Real-World Use of Cangrelor
3.3. Cangrelor-Oral P2Y12i Co-Administration and Transition
4. Cangrelor and Microcirculation/MVO
4.1. P2Y12 Blockade and Microcirculation
4.2. The Role of Cangrelor
Study Name | Study Type | Number of Participants | Intervention | Infarct Size Outcomes | MVO Outcomes | Microcirculation Outcomes |
---|---|---|---|---|---|---|
a. Preclinical/Animal Studies | ||||||
Yang et al. [78] | Preclinical | 1 rabbit | Cangrelor infusion before an I/R injury | Reduction of the infarction area from 38% in an ischemic zone control to 19% in a dose-dependent manner | NR | NR |
Yang et al. [79] | Preclinical | 31 monkeys | Cangrelor infusion before an I/R injury | Regression analysis showed that infarct size in hearts treated with cangrelor (r = 0.93) is significantly different from the regression for control hearts (p < 0.001) | NR | NR |
b. Clinical Studies | ||||||
Ubaid et al. [81] | Clinical | 100 patients with STEMI | Cangrelor infusion or oral ticagrelor | No difference in infarct size (% of left ventricular mass) between groups (13.7 vs. 10.9%; p = 0.61) | NR | IMR was similar in both groups (30 vs. 28; (cangrelor 30; p = 0.52). No difference in the proportion of patients with IMR > 40 (40 vs. 24%; p = 0.11) No difference in CFR (1.3 vs. 1.4; p = 0.30) |
Bulluck et al. [82] | Clinical | 164 patients with STEMI undergoing CMR | Cangrelor infusion during primary PCI | No significant difference in acute MI size (% of left ventricular mass) (16.3 vs. 14.9%; p = 0.40) | No difference in the incidence of MVO between arms (47 vs. 48%; p = 0.99) No difference in the extent based on % of left ventricular (1.18 vs. 1.63%;) p = 0.46) | NR |
5. Role in Cardiogenic Shock, Cardiac Arrest and Cardiac Surgery
5.1. Cardiogenic Shock/Cardiac Arrest
5.2. Cardiac Surgery
6. Clinical Practice Perspective
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davì, G.; Patrono, C. Platelet Activation and Atherothrombosis. N. Engl. J. Med. 2007, 357, 2482–2494. [Google Scholar] [CrossRef]
- Angiolillo, D.A.; Galli, M.; Collet, J.-P.; Kastrati, A.; O’Donoghue, M.O. Antiplatelet Therapy after Percutaneous Coronary Intervention. EuroIntervention 2022, 17, e1371–e1396. [Google Scholar] [CrossRef]
- Gragnano, F.; Mehran, R.; Branca, M.; Franzone, A.; Baber, U.; Jang, Y.; Kimura, T.; Hahn, J.-Y.; Zhao, Q.; Windecker, S.; et al. P2Y12 Inhibitor Monotherapy or Dual Antiplatelet Therapy After Complex Percutaneous Coronary Interventions. J. Am. Coll. Cardiol. 2023, 81, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.; Dangas, G.; Chiarito, M.; Pivato, C.A.; Spirito, A.; Cao, D.; Giustino, G.; Beerkens, F.; Camaj, A.; Vogel, B.; et al. Efficacy and Safety of P2Y12 Inhibitor Monotherapy after Complex PCI: A Collaborative Systematic Review and Meta-Analysis. Eur. Heart J. Cardiovasc. Pharmacother. 2023, 9, 240–250. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- De Luca, L.; Steg, P.G.; Bhatt, D.L.; Capodanno, D.; Angiolillo, D.J. Cangrelor: Clinical Data, Contemporary Use, and Future Perspectives. J. Am. Heart Assoc. 2021, 10, e022125. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization. J. Am. Coll. Cardiol. 2022, 79, e21–e129. [Google Scholar] [CrossRef]
- Ferri, N.; Corsini, A.; Bellosta, S. Pharmacology of the New P2Y12 Receptor Inhibitors: Insights on Pharmacokinetic and Pharmacodynamic Properties. Drugs 2013, 73, 1681–1709. [Google Scholar] [CrossRef]
- Secco, G.G.; Parisi, R.; Mirabella, F.; Fattori, R.; Genoni, G.; Agostoni, P.; De Luca, G.; Marino, P.N.; Lupi, A.; Rognoni, A. P2Y12 Inhibitors: Pharmacologic Mechanism and Clinical Relevance. Cardiovasc. Hematol. Agents Med. Chem. 2013, 11, 101–105. [Google Scholar] [CrossRef]
- Remijn, J.A.; Wu, Y.-P.; Jeninga, E.H.; IJsseldijk, M.J.W.; van Willigen, G.; de Groot, P.G.; Sixma, J.J.; Nurden, A.T.; Nurden, P. Role of ADP Receptor P2Y 12 in Platelet Adhesion and Thrombus Formation in Flowing Blood. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 686–691. [Google Scholar] [CrossRef]
- Sharis, P.J.; Cannon, C.P.; Loscalzo, J. The Antiplatelet Effects of Ticlopidine and Clopidogrel. Ann. Intern. Med. 1998, 129, 394–405. [Google Scholar] [CrossRef]
- Damman, P.; Woudstra, P.; Kuijt, W.J.; de Winter, R.J.; James, S.K. P2Y12 Platelet Inhibition in Clinical Practice. J. Thromb. Thrombolysis 2012, 33, 143–153. [Google Scholar] [CrossRef]
- Akers, W.S.; Oh, J.J.; Oestreich, J.H.; Ferraris, S.; Wethington, M.; Steinhubl, S.R. Pharmacokinetics and Pharmacodynamics of a Bolus and Infusion of Cangrelor: A Direct, Parenteral P2Y12 Receptor Antagonist. J. Clin. Pharmacol. 2010, 50, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Franchi, F.; Rollini, F.; Muñiz-Lozano, A.; Rae Cho, J.; Angiolillo, D.J. Cangrelor: A Review on Pharmacology and Clinical Trial Development. Expert. Rev. Cardiovasc. Ther. 2013, 11, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Mir, F.; Huang, J.-S.; Khasawneh, F.T.; Lam, S.C.-T.; Le Breton, G.C. The P2Y12 Antagonists, 2-Methylthioadenosine 5’-Monophosphate Triethylammonium Salt and Cangrelor (ARC69931MX), Can Inhibit Human Platelet Aggregation through a Gi-Independent Increase in CAMP Levels. J. Biol. Chem. 2009, 284, 16108–16117. [Google Scholar] [CrossRef] [PubMed]
- Xiang, B.; Zhang, G.; Ren, H.; Sunkara, M.; Morris, A.J.; Gartner, T.K.; Smyth, S.S.; Li, Z. The P2Y12 Antagonists, 2MeSAMP and Cangrelor, Inhibit Platelet Activation through P2Y12/Gi-Dependent Mechanism. PLoS ONE 2012, 7, e51037. [Google Scholar] [CrossRef]
- Meadows, T.A.; Bhatt, D.L. Clinical Aspects of Platelet Inhibitors and Thrombus Formation. Circ. Res. 2007, 100, 1261–1275. [Google Scholar] [CrossRef]
- Lau, E.S.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Bonaca, M.P.; Husted, S.; James, S.K.; Wallentin, L.; Clemmensen, P.; Roe, M.T.; et al. Potent P2Y 12 Inhibitors in Men Versus Women. J. Am. Coll. Cardiol. 2017, 69, 1549–1559. [Google Scholar] [CrossRef]
- Storey, R.F.; Oldroyd, K.G.; Wilcox, R.G. Open Multicentre Study of the P2T Receptor Antagonist AR-C69931MX Assessing Safety, Tolerability and Activity in Patients with Acute Coronary Syndromes. Thromb. Haemost. 2001, 85, 401–407. [Google Scholar]
- Greenbaum, A.B.; Grines, C.L.; Bittl, J.A.; Becker, R.C.; Kereiakes, D.J.; Gilchrist, I.C.; Clegg, J.; Stankowski, J.E.; Grogan, D.R.; Harrington, R.A.; et al. Initial Experience with an Intravenous P2Y12 Platelet Receptor Antagonist in Patients Undergoing Percutaneous Coronary Intervention: Results from a 2-Part, Phase II, Multicenter, Randomized, Placebo- and Active-Controlled Trial. Am. Heart J. 2006, 151, 689.e1–689.e10. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Lincoff, A.M.; Gibson, C.M.; Stone, G.W.; McNulty, S.; Montalescot, G.; Kleiman, N.S.; Goodman, S.G.; White, H.D.; Mahaffey, K.W.; et al. Intravenous Platelet Blockade with Cangrelor during PCI. N. Engl. J. Med. 2009, 361, 2330–2341. [Google Scholar] [CrossRef]
- Leonardi, S.; Truffa, A.A.M.; Neely, M.L.; Tricoci, P.; White, H.D.; Gibson, C.M.; Wilson, M.; Stone, G.W.; Harrington, R.A.; Bhatt, D.L.; et al. A Novel Approach to Systematically Implement the Universal Definition of Myocardial Infarction: Insights from the CHAMPION PLATFORM Trial. Heart 2013, 99, 1282–1287. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.A.; Stone, G.W.; McNulty, S.; White, H.D.; Lincoff, A.M.; Gibson, C.M.; Pollack, C.V.; Montalescot, G.; Mahaffey, K.W.; Kleiman, N.S.; et al. Platelet Inhibition with Cangrelor in Patients Undergoing PCI. N. Engl. J. Med. 2009, 361, 2318–2329. [Google Scholar] [CrossRef] [PubMed]
- White, H.D.; Chew, D.P.; Dauerman, H.L.; Mahaffey, K.W.; Gibson, C.M.; Stone, G.W.; Gruberg, L.; Harrington, R.A.; Bhatt, D.L. Reduced Immediate Ischemic Events with Cangrelor in PCI: A Pooled Analysis of the CHAMPION Trials Using the Universal Definition of Myocardial Infarction. Am. Heart J. 2012, 163, 182–190.e4. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Stone, G.W.; Mahaffey, K.W.; Gibson, C.M.; Steg, P.G.; Hamm, C.W.; Price, M.J.; Leonardi, S.; Gallup, D.; Bramucci, E.; et al. Effect of Platelet Inhibition with Cangrelor during PCI on Ischemic Events. N. Engl. J. Med. 2013, 368, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Abtan, J.; Steg, P.G.; Stone, G.W.; Mahaffey, K.W.; Gibson, C.M.; Hamm, C.W.; Price, M.J.; Abnousi, F.; Prats, J.; Deliargyris, E.N.; et al. Efficacy and Safety of Cangrelor in Preventing Periprocedural Complications in Patients With Stable Angina and Acute Coronary Syndromes Undergoing Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2016, 9, 1905–1913. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Bhatt, D.L.; Stone, G.W.; Steg, P.G.; Gibson, C.M.; Hamm, C.W.; Price, M.J.; Prats, J.; Liu, T.; Deliargyris, E.N.; et al. Efficacy and Safety of Cangrelor in Women Versus Men During Percutaneous Coronary Intervention. Circulation 2016, 133, 248–255. [Google Scholar] [CrossRef]
- White, H.D.; Bhatt, D.L.; Gibson, C.M.; Hamm, C.W.; Mahaffey, K.W.; Price, M.J.; Steg, P.G.; Stone, G.W.; Cortese, B.; Wilensky, M.; et al. Outcomes With Cangrelor Versus Clopidogrel on a Background of Bivalirudin. JACC Cardiovasc. Interv. 2015, 8, 424–433. [Google Scholar] [CrossRef]
- Généreux, P.; Stone, G.W.; Harrington, R.A.; Gibson, C.M.; Steg, P.G.; Brener, S.J.; Angiolillo, D.J.; Price, M.J.; Prats, J.; LaSalle, L.; et al. Impact of Intraprocedural Stent Thrombosis During Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2014, 63, 619–629. [Google Scholar] [CrossRef]
- Steg, P.G.; Bhatt, D.L.; Hamm, C.W.; Stone, G.W.; Gibson, C.M.; Mahaffey, K.W.; Leonardi, S.; Liu, T.; Skerjanec, S.; Day, J.R.; et al. Effect of Cangrelor on Periprocedural Outcomes in Percutaneous Coronary Interventions: A Pooled Analysis of Patient-Level Data. Lancet 2013, 382, 1981–1992. [Google Scholar] [CrossRef]
- Grimfjärd, P.; Lagerqvist, B.; Erlinge, D.; Varenhorst, C.; James, S. Clinical Use of Cangrelor: Nationwide Experience from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR). Eur. Heart J. Cardiovasc. Pharmacother. 2019, 5, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Thim, T.; Jakobsen, L.; Jensen, R.V.; Støttrup, N.; Eftekhari, A.; Grove, E.L.; Larsen, S.B.; Sørensen, J.T.; Carstensen, S.; Amiri, S.; et al. Real-World Experience with Cangrelor as Adjuvant to Percutaneous Coronary Intervention: A Single-Centre Observational Study. Cardiol. Res. Pract. 2023, 2023, 3197512. [Google Scholar] [CrossRef] [PubMed]
- Silverio, A.; Bellino, M.; Scudiero, F.; Attisano, T.; Baldi, C.; Catalano, A.; Centore, M.; Cesaro, A.; Di Maio, M.; Esposito, L.; et al. Intravenous Antiplatelet Therapy in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. J. Thromb. Thrombolysis 2024, 57, 757–766. [Google Scholar] [CrossRef]
- Steinhubl, S.R.; Oh, J.J.; Oestreich, J.H.; Ferraris, S.; Charnigo, R.; Akers, W.S. Transitioning Patients from Cangrelor to Clopidogrel: Pharmacodynamic Evidence of a Competitive Effect. Thromb. Res. 2008, 121, 527–534. [Google Scholar] [CrossRef]
- DOVLATOVA, N.L.; JAKUBOWSKI, J.A.; SUGIDACHI, A.; HEPTINSTALL, S. The Reversible P2Y12 Antagonist Cangrelor Influences the Ability of the Active Metabolites of Clopidogrel and Prasugrel to Produce Irreversible Inhibition of Platelet Function. J. Thromb. Haemost. 2008, 6, 1153–1159. [Google Scholar] [CrossRef]
- Dobesh, P.P.; Oestreich, J.H. Ticagrelor: Pharmacokinetics, Pharmacodynamics, Clinical Efficacy, and Safety. Pharmacother. J. Human. Pharmacol. Drug Ther. 2014, 34, 1077–1090. [Google Scholar] [CrossRef]
- Franchi, F.; Rollini, F.; Rivas, A.; Wali, M.; Briceno, M.; Agarwal, M.; Shaikh, Z.; Nawaz, A.; Silva, G.; Been, L.; et al. Platelet Inhibition With Cangrelor and Crushed Ticagrelor in Patients With ST-Segment–Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Circulation 2019, 139, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Franchi, F.; Ortega-Paz, L.; Rollini, F.; Galli, M.; Been, L.; Ghanem, G.; Shalhoub, A.; Ossi, T.; Rivas, A.; Zhou, X.; et al. Cangrelor in Patients With Coronary Artery Disease Pretreated With Ticagrelor. JACC Cardiovasc. Interv. 2023, 16, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Rymer, J.; Alhanti, B.; Kemp, S.; Bhatt, D.L.; Kochar, A.; Angiolillo, D.J.; Diaz, M.; Garratt, K.N.; Wimmer, N.J.; Waksman, R.; et al. Risk of Bleeding Among Cangrelor-Treated Patients Administered Upstream P2Y12 Inhibitor Therapy: The CAMEO Registry. J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 101202. [Google Scholar] [CrossRef]
- De Luca, L.; Calabrò, P.; Capranzano, P.; Di Mario, C.; Chirillo, F.; Rolfo, C.; Menozzi, A.; Menichelli, M.; Bolognese, L.; Musumeci, G. Safety of Cangrelor and Transition to Oral P2Y12 Inhibitors in Patients Undergoing Percutaneous Coronary Intervention: The ARCANGELO Study. Eur. Heart J. Open 2023, 3, oead076. [Google Scholar] [CrossRef]
- Franchi, F.; Rollini, F.; Ortega-Paz, L.; Been, L.; Giordano, S.; Galli, M.; Ghanem, G.; Garabedian, H.; Al Saleh, T.; Uzunoglu, E.; et al. Switching From Cangrelor to Prasugrel in Patients Undergoing Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2023, 16, 2528–2539. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, K.; Pyrpyris, N.; Sakalidis, A.; Dri, E.; Iliakis, P.; Tsioufis, P.; Tatakis, F.; Beneki, E.; Fragkoulis, C.; Aznaouridis, K.; et al. ANOCA Updated: From Pathophysiology to Modern Clinical Practice. Cardiovasc. Revascularization Med. 2024, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pyrpyris, N.; Dimitriadis, K.; Iliakis, P.; Theofilis, P.; Beneki, E.; Terentes-Printzios, D.; Sakalidis, A.; Antonopoulos, A.; Aznaouridis, K.; Tsioufis, K. Hypothermia for Cardioprotection in Acute Coronary Syndrome Patients: From Bench to Bedside. J. Clin. Med. 2024, 13, 5390. [Google Scholar] [CrossRef]
- Moris, D.; Spartalis, M.; Spartalis, E.; Karachaliou, G.-S.; Karaolanis, G.I.; Tsourouflis, G.; Tsilimigras, D.I.; Tzatzaki, E.; Theocharis, S. The Role of Reactive Oxygen Species in the Pathophysiology of Cardiovascular Diseases and the Clinical Significance of Myocardial Redox. Ann. Transl. Med. 2017, 5, 326. [Google Scholar] [CrossRef]
- Luo, X.; Cai, H.; Ni, J.; Bhindi, R.; Lowe, H.C.; Chesterman, C.N.; Khachigian, L.M. C-Jun DNAzymes Inhibit Myocardial Inflammation, ROS Generation, Infarct Size, and Improve Cardiac Function After Ischemia-Reperfusion Injury. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhao, D.; Yan, R.; Sun, Y. Cardiac Oxidative Stress and Remodeling Following Infarction: Role of NADPH Oxidase. Cardiovasc. Pathol. 2009, 18, 156–166. [Google Scholar] [CrossRef]
- Bulluck, H.; Foin, N.; Tan, J.W.; Low, A.F.; Sezer, M.; Hausenloy, D.J. Invasive Assessment of the Coronary Microcirculation in Reperfused ST-Segment–Elevation Myocardial Infarction Patients. Circ. Cardiovasc. Interv. 2017, 10, e004373. [Google Scholar] [CrossRef]
- Kelshiker, M.A.; Seligman, H.; Howard, J.P.; Rahman, H.; Foley, M.; Nowbar, A.N.; Rajkumar, C.A.; Shun-Shin, M.J.; Ahmad, Y.; Sen, S.; et al. Coronary Flow Reserve and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Eur. Heart J. 2022, 43, 1582–1593. [Google Scholar] [CrossRef]
- Aldujeli, A.; Tsai, T.; Haq, A.; Tatarunas, V.; Knokneris, A.; Briedis, K.; Unikas, R.; Onuma, Y.; Brilakis, E.S.; Serruys, P.W. Impact of Coronary Microvascular Dysfunction on Functional Left Ventricular Remodeling and Diastolic Dysfunction. J. Am. Heart Assoc. 2024, 13, e033596. [Google Scholar] [CrossRef]
- Carrick, D.; Haig, C.; Ahmed, N.; Carberry, J.; Yue May, V.T.; McEntegart, M.; Petrie, M.C.; Eteiba, H.; Lindsay, M.; Hood, S.; et al. Comparative Prognostic Utility of Indexes of Microvascular Function Alone or in Combination in Patients With an Acute ST-Segment–Elevation Myocardial Infarction. Circulation 2016, 134, 1833–1847. [Google Scholar] [CrossRef]
- Fearon, W.F.; Shah, M.; Ng, M.; Brinton, T.; Wilson, A.; Tremmel, J.A.; Schnittger, I.; Lee, D.P.; Vagelos, R.H.; Fitzgerald, P.J.; et al. Predictive Value of the Index of Microcirculatory Resistance in Patients With ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2008, 51, 560–565. [Google Scholar] [CrossRef]
- Murai, T.; Yonetsu, T.; Kanaji, Y.; Usui, E.; Hoshino, M.; Hada, M.; Hamaya, R.; Kanno, Y.; Lee, T.; Kakuta, T. Prognostic Value of the Index of Microcirculatory Resistance after Percutaneous Coronary Intervention in Patients with Non-ST-segment Elevation Acute Coronary Syndrome. Catheter. Cardiovasc. Interv. 2018, 92, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Canu, M.; Khouri, C.; Marliere, S.; Vautrin, E.; Piliero, N.; Ormezzano, O.; Bertrand, B.; Bouvaist, H.; Riou, L.; Djaileb, L.; et al. Prognostic Significance of Severe Coronary Microvascular Dysfunction Post-PCI in Patients with STEMI: A Systematic Review and Meta-Analysis. PLoS ONE 2022, 17, e0268330. [Google Scholar] [CrossRef] [PubMed]
- De Maria, G.L.; Alkhalil, M.; Wolfrum, M.; Fahrni, G.; Borlotti, A.; Gaughran, L.; Dawkins, S.; Langrish, J.P.; Lucking, A.J.; Choudhury, R.P.; et al. Index of Microcirculatory Resistance as a Tool to Characterize Microvascular Obstruction and to Predict Infarct Size Regression in Patients With STEMI Undergoing Primary PCI. JACC Cardiovasc. Imaging 2019, 12, 837–848. [Google Scholar] [CrossRef]
- El Farissi, M.; Zimmermann, F.M.; De Maria, G.L.; van Royen, N.; van Leeuwen, M.A.H.; Carrick, D.; Carberry, J.; Wijnbergen, I.F.; Konijnenberg, L.S.F.; Hoole, S.P.; et al. The Index of Microcirculatory Resistance After Primary PCI. JACC Cardiovasc. Interv. 2023, 16, 2383–2392. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, B.; Pijls, N.H.J.; Gallinoro, E.; Candreva, A.; Fournier, S.; Keulards, D.C.J.; Sonck, J.; van’t Veer, M.; Barbato, E.; Bartunek, J.; et al. Microvascular Resistance Reserve for Assessment of Coronary Microvascular Function. J. Am. Coll. Cardiol. 2021, 78, 1541–1549. [Google Scholar] [CrossRef]
- Tsai, T.-Y.; Aldujeli, A.; Haq, A.; Knokneris, A.; Briedis, K.; Hughes, D.; Unikas, R.; Renkens, M.; Revaiah, P.C.; Tobe, A.; et al. The Impact of Microvascular Resistance Reserve on the Outcome of Patients With STEMI. JACC Cardiovasc. Interv. 2024, 17, 1214–1227. [Google Scholar] [CrossRef]
- Liu, D.-L.; Bao, W.-W.; Zeng, X.-M.; Liu, X.-T.; Zhang, Z. The Effect of Ticagrelor on Myocardial Microcirculation, Cardiac Function, and Adverse Cardiovascular Events in STEMI Patients after PCI. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 9781–9787. [Google Scholar] [CrossRef]
- Mangiacapra, F.; Colaiori, I.; Di Gioia, G.; Pellicano, M.; Heyse, A.; Paolucci, L.; Peace, A.; Bartunek, J.; de Bruyne, B.; Barbato, E. Effects of Ticagrelor and Prasugrel on Coronary Microcirculation in Elective Percutaneous Coronary Intervention. Heart 2024, 110, 115–121. [Google Scholar] [CrossRef]
- Park, S.-D.; Lee, M.-J.; Baek, Y.-S.; Kwon, S.-W.; Shin, S.-H.; Woo, S.-I.; Kim, D.-H.; Kwan, J.; Park, K.-S. Randomised Trial to Compare a Protective Effect of Clopidogrel Versus TIcagrelor on Coronary Microvascular Injury in ST-Segment Elevation Myocardial Infarction (CV-TIME Trial). EuroIntervention 2016, 12, e964–e971. [Google Scholar] [CrossRef]
- Park, K.; Cho, Y.-R.; Park, J.-S.; Park, T.-H.; Kim, M.-H.; Kim, Y.-D. Comparison of the Effects of Ticagrelor and Clopidogrel on Microvascular Dysfunction in Patients With Acute Coronary Syndrome Using Invasive Physiologic Indices. Circ. Cardiovasc. Interv. 2019, 12, e008105. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Li, X.; Fu, K.; Chen, W.; Chen, W. The Effect of Ticagrelor on Coronary Microvascular Function after PCI in Patients with ACS Compared to Clopidogrel: A Systematic Review and Meta-Analysis. PLoS ONE 2023, 18, e0289243. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ye, Z.; Guo, Z.; Xie, E.; Wang, M.; Zhao, X.; Liu, M.; Li, P.; Yu, C.; Gao, Y.; et al. Ticagrelor vs. Clopidogrel for Coronary Microvascular Dysfunction in Patients with STEMI: A Meta-Analysis of Randomized Controlled Trials. Front. Cardiovasc. Med. 2023, 10, 1102717. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, M.A.H.; van der Hoeven, N.W.; Janssens, G.N.; Everaars, H.; Nap, A.; Lemkes, J.S.; de Waard, G.A.; van de Ven, P.M.; van Rossum, A.C.; ten Cate, T.J.F.; et al. Evaluation of Microvascular Injury in Revascularized Patients With ST-Segment–Elevation Myocardial Infarction Treated With Ticagrelor Versus Prasugrel. Circulation 2019, 139, 636–646. [Google Scholar] [CrossRef]
- Bonello, L.; Laine, M.; Kipson, N.; Mancini, J.; Helal, O.; Fromonot, J.; Gariboldi, V.; Condo, J.; Thuny, F.; Frere, C.; et al. Ticagrelor Increases Adenosine Plasma Concentration in Patients With an Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2014, 63, 872–877. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Theofilis, P.; Koutsopoulos, G.; Pyrpyris, N.; Beneki, E.; Tatakis, F.; Tsioufis, P.; Chrysohoou, C.; Fragkoulis, C.; Tsioufis, K. The Role of Coronary Microcirculation in Heart Failure with Preserved Ejection Fraction: An Unceasing Odyssey. Heart Fail. Rev. 2024, 30, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Ganbaatar, B.; Fukuda, D.; Salim, H.M.; Nishimoto, S.; Tanaka, K.; Higashikuni, Y.; Hirata, Y.; Yagi, S.; Soeki, T.; Sata, M. Ticagrelor, a P2Y12 Antagonist, Attenuates Vascular Dysfunction and Inhibits Atherogenesis in Apolipoprotein-E-Deficient Mice. Atherosclerosis 2018, 275, 124–132. [Google Scholar] [CrossRef]
- Sexton, T.R.; Zhang, G.; Macaulay, T.E.; Callahan, L.A.; Charnigo, R.; Vsevolozhskaya, O.A.; Li, Z.; Smyth, S. Ticagrelor Reduces Thromboinflammatory Markers in Patients With Pneumonia. JACC Basic. Transl. Sci. 2018, 3, 435–449. [Google Scholar] [CrossRef]
- Hagiwara, S.; Iwasaka, H.; Hasegawa, A.; Oyama, M.; Imatomi, R.; Uchida, T.; Noguchi, T. Adenosine Diphosphate Receptor Antagonist Clopidogrel Sulfate Attenuates LPS-Induced Systemic Inflammation in a Rat Model. Shock 2011, 35, 289–292. [Google Scholar] [CrossRef]
- Mansour, A.; Bachelot-Loza, C.; Nesseler, N.; Gaussem, P.; Gouin-Thibault, I. P2Y12 Inhibition beyond Thrombosis: Effects on Inflammation. Int. J. Mol. Sci. 2020, 21, 1391. [Google Scholar] [CrossRef]
- Wang, X.; Han, X.; Li, M.; Han, Y.; Zhang, Y.; Zhao, S.; Li, Y. Ticagrelor Protects against AngII-Induced Endothelial Dysfunction by Alleviating Endoplasmic Reticulum Stress. Microvasc. Res. 2018, 119, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Olgar, Y.; Tuncay, E.; Billur, D.; Durak, A.; Ozdemir, S.; Turan, B. Ticagrelor Reverses the Mitochondrial Dysfunction through Preventing Accumulated Autophagosomes-Dependent Apoptosis and ER Stress in Insulin-Resistant H9c2 Myocytes. Mol. Cell Biochem. 2020, 469, 97–107. [Google Scholar] [CrossRef]
- Jeong, H.S.; Hong, S.J.; Cho, S.-A.; Kim, J.-H.; Cho, J.Y.; Lee, S.H.; Joo, H.J.; Park, J.H.; Yu, C.W.; Lim, D.-S. Comparison of Ticagrelor Versus Prasugrel for Inflammation, Vascular Function, and Circulating Endothelial Progenitor Cells in Diabetic Patients With Non–ST-Segment Elevation Acute Coronary Syndrome Requiring Coronary Stenting. JACC Cardiovasc. Interv. 2017, 10, 1646–1658. [Google Scholar] [CrossRef]
- Schnorbus, B.; Daiber, A.; Jurk, K.; Warnke, S.; Koenig, J.; Lackner, K.J.; Münzel, T.; Gori, T. Effects of Clopidogrel vs. Prasugrel vs. Ticagrelor on Endothelial Function, Inflammatory Parameters, and Platelet Function in Patients with Acute Coronary Syndrome Undergoing Coronary Artery Stenting: A Randomized, Blinded, Parallel Study. Eur. Heart J. 2020, 41, 3144–3152. [Google Scholar] [CrossRef]
- Ariotti, S.; Ortega-Paz, L.; van Leeuwen, M.; Brugaletta, S.; Leonardi, S.; Akkerhuis, K.M.; Rimoldi, S.F.; Janssens, G.; Gianni, U.; van den Berge, J.C.; et al. Effects of Ticagrelor, Prasugrel, or Clopidogrel on Endothelial Function and Other Vascular Biomarkers. JACC Cardiovasc. Interv. 2018, 11, 1576–1586. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Choo, E.H.; Kim, C.J.; Choi, I.J.; Lee, K.Y.; Hwang, B.-H.; Lee, J.-M.; Chung, W.S.; Chang, K. Ticagrelor Does Not Improve Endothelial Dysfunction in Stable Survivors of Acute Coronary Syndrome. J. Cardiovasc. Pharmacol. Ther. 2019, 24, 442–449. [Google Scholar] [CrossRef]
- Guan, B.; Zhao, L.; Ma, D.; Fan, Y.; Zhang, H.; Wang, A.; Xu, H. The Effect of Ticagrelor on Endothelial Function Compared to Prasugrel, Clopidogrel, and Placebo: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 8, 820604. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-M.; Liu, Y.; Cui, L.; Yang, X.; Liu, Y.; Tandon, N.; Kambayashi, J.; Downey, J.M.; Cohen, M.V. Platelet P2Y 12 Blockers Confer Direct Postconditioning-Like Protection in Reperfused Rabbit Hearts. J. Cardiovasc. Pharmacol. Ther. 2013, 18, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-M.; Liu, Y.; Cui, L.; Yang, X.; Liu, Y.; Tandon, N.; Kambayashi, J.; Downey, J.M.; Cohen, M.V. Two Classes of Anti-Platelet Drugs Reduce Anatomical Infarct Size in Monkey Hearts. Cardiovasc. Drugs Ther. 2013, 27, 109–115. [Google Scholar] [CrossRef]
- Cohen, M.V.; Yang, X.-M.; White, J.; Yellon, D.M.; Bell, R.M.; Downey, J.M. Cangrelor-Mediated Cardioprotection Requires Platelets and Sphingosine Phosphorylation. Cardiovasc. Drugs Ther. 2016, 30, 229–232. [Google Scholar] [CrossRef]
- Ubaid, S.; Ford, T.J.; Berry, C.; Murray, H.M.; Wrigley, B.; Khan, N.; Thomas, M.R.; Armesilla, A.L.; Townend, J.N.; Khogali, S.S.; et al. Cangrelor versus Ticagrelor in Patients Treated with Primary Percutaneous Coronary Intervention: Impact on Platelet Activity, Myocardial Microvascular Function and Infarct Size: A Randomized Controlled Trial. Thromb. Haemost. 2019, 119, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Bulluck, H.; Chong, J.H.; Bryant, J.; Annathurai, A.; Chai, P.; Chan, M.; Chawla, A.; Chin, C.Y.; Chung, Y.-C.; Gao, F.; et al. Effect of Cangrelor on Infarct Size in ST-Segment–Elevation Myocardial Infarction Treated by Primary Percutaneous Coronary Intervention: A Randomized Controlled Trial (The PITRI Trial). Circulation 2024, 150, 91–101. [Google Scholar] [CrossRef]
- Droppa, M.; Vaduganathan, M.; Venkateswaran, R.V.; Singh, A.; Szumita, P.M.; Roberts, R.J.; Qamar, A.; Hack, L.; Rath, D.; Gawaz, M.; et al. Cangrelor in Cardiogenic Shock and after Cardiopulmonary Resuscitation: A Global, Multicenter, Matched Pair Analysis with Oral P2Y12 Inhibition from the IABP-SHOCK II Trial. Resuscitation 2019, 137, 205–212. [Google Scholar] [CrossRef] [PubMed]
- RYMER, J.; PICHAN, C.; PAGE, C.; ALHANTI, B.; BHATT, D.L.; KOCHAR, A.; ANGIOLILLO, D.J.; DIAZ, M.; WIMMER, N.J.; WAKSMAN, R.; et al. The Use of Cangrelor in Cardiogenic Shock: Insights from the CAMEO Registry. J. Card. Fail. 2024, 30, 1233–1240. [Google Scholar] [CrossRef]
- Katz, A.; Lewis, T.C.; Arnouk, S.; Altshuler, D.; Papadopoulos, J.; Toy, B.; Smith, D.E.; Merchan, C. Clinical Use of Cangrelor After Percutaneous Coronary Intervention in Patients Requiring Mechanical Circulatory Support. Ann. Pharmacother. 2021, 55, 1215–1222. [Google Scholar] [CrossRef]
- Kordis, P.; Bozic Mijovski, M.; Berden, J.; Steblovnik, K.; Blinc, A.; Noc, M. Cangrelor for Comatose Survivors of Out-of-Hospital Cardiac Arrest Undergoing Percutaneous Coronary Intervention: The CANGRELOR-OHCA Study. EuroIntervention 2023, 18, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Zeymer, U.; Lober, C.; Richter, S.; Olivier, C.B.; Huber, K.; Haring, B.; Schwimmbeck, P.; Andrassy, M.; Akin, I.; Cuneo, A.; et al. Cangrelor in Patients with Percutaneous Coronary Intervention for Acute Myocardial Infarction after Cardiac Arrest and/or with Cardiogenic Shock. Eur. Heart J. Acute Cardiovasc. Care 2023, 12, 462–463. [Google Scholar] [CrossRef]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; de Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef]
- D’Andria Ursoleo, J.; Baldetti, L.; Pieri, M.; Nardelli, P.; Altizio, S.; Ajello, S.; Scandroglio, A.M. Anti-Platelet Therapy with Cangrelor in Cardiogenic Shock Patients: A Systematic Review and Single-Arm Meta-Analysis. Medicina 2024, 60, 2092. [Google Scholar] [CrossRef]
- Motovska, Z.; Hlinomaz, O.; Mrozek, J.; Kala, P.; Geisler, T.; Hromadka, M.; Akin, I.; Precek, J.; Kettner, J.; Cervinka, P.; et al. Cangrelor versus Crushed Ticagrelor in Patients with Acute Myocardial Infarction and Cardiogenic Shock: Rationale and Design of the Randomised, Double-Blind DAPT-SHOCK-AMI Trial. EuroIntervention 2024, 20, e1309–e1318. [Google Scholar] [CrossRef]
- Angiolillo, D.J.; Firstenberg, M.S.; Price, M.J.; Tummala, P.E.; Hutyra, M.; Welsby, I.J.; Voeltz, M.D.; Chandna, H.; Ramaiah, C.; Brtko, M.; et al. Bridging Antiplatelet Therapy With Cangrelor in Patients Undergoing Cardiac Surgery. JAMA 2012, 307, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Rossini, R.; Masiero, G.; Fruttero, C.; Passamonti, E.; Calvaruso, E.; Cecconi, M.; Carlucci, C.; Mojoli, M.; Guido, P.; Talanas, G.; et al. Antiplatelet Therapy with Cangrelor in Patients Undergoing Surgery after Coronary Stent Implantation: A Real-World Bridging Protocol Experience. TH Open 2020, 4, e437–e445. [Google Scholar] [CrossRef]
- Shrestha, B.; Katz, D.; Kelley, J.; Menzies, D.; Hong, M.K. Cangrelor in STEMI as a Bridge to CABG- a Mini-Case Series. Am. Heart J. Plus Cardiol. Res. Pract. 2022, 13, 100122. [Google Scholar] [CrossRef] [PubMed]
- Bruck, C.; Jafar, O.; Prats, J.; Bhatt, D.; Jafar, Z. A Novel Bridging Strategy for Patients Undergoing Emergent Non-Cardiac Surgery with a Recent Coronary Stent. Cardiol. Ther. 2018, 7, 209–213. [Google Scholar] [CrossRef]
- Fialho, I.; Augusto, J.B.; Fevereiro, S.; Santos, M.B.; Baptista, S.B.; Roque, D. Cangrelor as Antiplatelet Bridging Therapy in Non-Cardiac Surgery after Percutaneous Coronary Intervention–First-Time Use in Portugal. Rev. Port. Cardiol. 2022, 41, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Benenati, S.; Gragnano, F.; Scalamera, R.; Bertero, E.; Capolongo, A.; De Sio, V.; Musumeci, G.; Annibali, G.; Campagnuolo, S.; Galasso, G.; et al. 330 Intravenous cangrelor infusion in high bleeding risk patients undergoing percutaneous coronary intervention: Preliminary results of the icarus registry. Eur. Heart J. Suppl. 2022, 24, suac121.293. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Creechan, P.; Hill, A.; Rappaport, H.; Cellamare, M.; Sawant, V.; Zhang, C.; Abusnina, W.; Haberman, D.; Chitturi, K.; et al. TCT-174 High Bleeding Risk and Outcomes in Acute Coronary Syndrome After Percutaneous Coronary Intervention With Versus Without Cangrelor. J. Am. Coll. Cardiol. 2024, 84, B4–B5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrpyris, N.; Dimitriadis, K.; Kyriakoulis, K.G.; Soulaidopoulos, S.; Tsioufis, P.; Papanikolaou, A.; Baikoussis, N.G.; Antonopoulos, A.; Aznaouridis, K.; Tsioufis, K. Phenotyping the Use of Cangrelor in Percutaneous Coronary Interventions. Pharmaceuticals 2025, 18, 432. https://doi.org/10.3390/ph18030432
Pyrpyris N, Dimitriadis K, Kyriakoulis KG, Soulaidopoulos S, Tsioufis P, Papanikolaou A, Baikoussis NG, Antonopoulos A, Aznaouridis K, Tsioufis K. Phenotyping the Use of Cangrelor in Percutaneous Coronary Interventions. Pharmaceuticals. 2025; 18(3):432. https://doi.org/10.3390/ph18030432
Chicago/Turabian StylePyrpyris, Nikolaos, Kyriakos Dimitriadis, Konstantinos G. Kyriakoulis, Stergios Soulaidopoulos, Panagiotis Tsioufis, Aggelos Papanikolaou, Nikolaos G. Baikoussis, Alexios Antonopoulos, Konstantinos Aznaouridis, and Konstantinos Tsioufis. 2025. "Phenotyping the Use of Cangrelor in Percutaneous Coronary Interventions" Pharmaceuticals 18, no. 3: 432. https://doi.org/10.3390/ph18030432
APA StylePyrpyris, N., Dimitriadis, K., Kyriakoulis, K. G., Soulaidopoulos, S., Tsioufis, P., Papanikolaou, A., Baikoussis, N. G., Antonopoulos, A., Aznaouridis, K., & Tsioufis, K. (2025). Phenotyping the Use of Cangrelor in Percutaneous Coronary Interventions. Pharmaceuticals, 18(3), 432. https://doi.org/10.3390/ph18030432