NSAIDs and Cell Proliferation in Colorectal Cancer
Abstract
:1. Introduction
2. Wnt and Colon Cancer
3. NSAIDs Inhibit Colon Cancer Cell Proliferation in vitro
Cell Line | NSAID | Dose uM | Effect Proliferation | Time-Point | Ref. |
---|---|---|---|---|---|
COX-expressing | |||||
HT-29 | Aspirin | 400 | down1 | 96 h | [26] |
HT-29 | Indomethacin | 100 | down1 | 72 h | [26] |
HT-29 | Naproxen | 200 | down1 | 48 h | [26] |
HT-29 | Piroxicam | 300 | down1 | 48 h | [26] |
HT-29 | sulindac sulfide | 185 | down1 | 24 h | [29] |
HT29 | sulindac sulfide | 120 | down1 | 24 h | [30] |
HT29 | sulindac sulfone | 150 | down1 | 72 h | [27] |
HT29 | NS398 | 120 | down1 | 72 h | [27] |
HT29 | 5-ASA | 36000 | down2 | 48 h | [28] |
HCA-7 | celecoxib | 50 | down2 | 12 h | [31] |
RKO | NS398 | 120 | down1 | 72 h | [27] |
RKO | sulindac sulfone | 150 | down1 | 72 h | [27] |
HT115 | 5-ASA | 5000 | down3 | 24 h | [36] |
SW620 | sulindac | 1600 | down2 | 24–72 h | [32] |
SW620 | indomethacin | 400 | down2 | 96 h | [33] |
Non-COX-expressing | |||||
HCT116 | indomethacin | 600 | down1 | 24–72 h | [35] |
HCT116 | nimesulide | 100 | down1 | 24–72 h | [35] |
HCT116 | celecoxib | 12.5 | down4 | 72 h | [34] |
HT-15 | celecoxib | 50 | down2 | 12 h | [31] |
HT-15 | sulindac sulfide | 200 | down1 | 24 h | [29] |
HT-15 | piroxicam | 900 | down1 | 72 h | [29] |
DLD-1 | 5-ASA | 5000 | down3 | 24 h | [36] |
4. Anti-Proliferative Dose Range of NSAIDs in vitro
5. NSAIDs Inhibit Colon Cancer Cell Proliferation in vivo
NSAID | Dose ppm | Duration | Proliferation | Inhibition Effect | Model | Rodent | Ref. |
---|---|---|---|---|---|---|---|
Small Intestine | |||||||
celecoxib | 1,500 ppm | 6 wks | NA | tumor number | APC | C57BL | [44] |
piroxicam | 50–200 ppm | 6 wks | NA | tumor number | APC | C57BL | [43] |
sulindac sulfide | 20 mg/kg | 11 wks | NA | tumorigenesis | APC | C57BL | [37] |
Colon | |||||||
indomethacin | 10 ppm | 1–30 wks | NA | tumorigenesis | NMNU | Fisher rats | [41] |
aspirin | 200–400 ppm | 52 wks | NA | tumorigenesis | AOM | F344 rats | [42] |
nimesulide | 0.04% w/w | 14 wks | down | NA | AOM | CD-1 mice | [46] |
celecoxib | 300 ppm | 46 wks | down | NA | AOM | F344 rats | [45] |
celecoxib | 1,500 ppm | 6 wks | NA | tumor number | APC | C57BL | [44] |
sulindac | 5 mg/kg | 18 wks | up | NA | DMH | BALB/C | [40] |
sulindac | 5 mg/kg | 24 wks | NA | tumorigenesis | DMH | BALB/C | [39] |
sulindac | 160 ppm | 10 wks | NA | no change | APC | C57BL | [38] |
sulindac sulfide | 20 mg/kg | 11wks | NA | no change | APC | C57BL | [37] |
6. Anti-Proliferative Dose Range of NSAIDs in vivo
NSAID | Dose | Duration | Proliferation | Model | Ref. |
---|---|---|---|---|---|
Small Intestine | |||||
celecoxib | 1,250 mg/kg chow | 45 days | No change | C57BL | [31] |
indomethacin | 10 mg/kg body weight | 6 h | variable | CD-1 | [55] |
indomethacin | 10 mg/kg body weight | 24 h | variable | CD-1 | [56] |
nimesulide | 10 mg/kg body weight | 6 h | down | CD-1 | [55] |
nimesulide | 10 mg/kg body weight | 24 h | variable | CD-1 | [56] |
Colon | |||||
celecoxib | 1,250 mg/kg chow | 45 days | No change | C57BL | [31] |
nimesulide | 400 mg/kg | 5 days | down | C57BL | [35] |
7. NSAIDs and Other Cancers
8. Conclusions
- At an appropriate concentration in vitro, most NSAIDs inhibit proliferation in colon cancer cell lines.
- When administered in vitro to colon cancer cell lines in culture, the limited evidence available indicates that clinically realistic doses of NSAIDs do not inhibit cell proliferation. There is evidence demonstrating that clinical doses of NSAIDs inhibit proliferation and reduce tumour growth in xenografted tumours derived from colon cancer cell lines.
- Acute effects on proliferation seen in vitro with NSAIDs treatment cannot be tested/reproduced following treatment in vivo because the concentrations used in vitro are toxic and lethal to cells, tissue and organs in vivo.
- Many NSAIDs will prevent carcinogenesis and slow tumour growth in animal models but the limited data relating to the ability of NSAIDs to inhibit tumour proliferation is mixed.
- The concentrations of NSAIDs required to inhibit colorectal cancer cell proliferation in vitro are much higher than the doses required to inhibit cell proliferation in colonic tumours in vivo.
- In studies with colon cancer cell lines, it has proven difficult to reproduce the adaptive effects on proliferation seen in vivo following NSAIDs administration, due largely to methodological and technical limitations imposed by a cell culture approach.
- A distinction between acute effects (within the first 96 hours) and adaptive effects (long term treatment) that are observed when treatment is given over weeks and months may be necessary in order to allow more useful and appropriate comparisons between data sets.
- Better comparative data is required from in vitro and in vivo studies using low doses of NSAIDs over short and long durations of treatment, and from studies of NSAID effects in normal colonic tissue.
References
- Jemal, A.; Murray, T.; Ward, E.; Samuels, A.; Tiwari, R.C.; Ghafoor, A.; Feuer, E.J.; Thun, M.J. Cancer statistics, 2005. CA Cancer J. Clin. 2005, 55, 10–30. [Google Scholar]
- Raz, A. Is inhibition of cyclooxygenase required for the anti-tumorigenic effects of nonsteroidal, anti-inflammatory drugs (NSAIDs)? In vitro versus in vivo results and the relevance for the prevention and treatment of cancer. Biochem. Pharmacol. 2002, 63, 343–347. [Google Scholar] [PubMed]
- Kopp, E.; Ghosh, S. Inhibition of NF-κB by sodium salicylate and aspirin. Science 1994, 265, 956–959. [Google Scholar]
- Yin, M.J.; Yamamoto, Y.; Gaynor, R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature 1998, 396, 77–80. [Google Scholar]
- Stark, L.A.; Din, F.V.; Zwacka, R.M.; Dunlop, M.G. Aspirin-induced activation of the NF-kappaB signaling pathway: A novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J. 2001, 15, 1273–1275. [Google Scholar]
- Loveridge, C.J.; MacDonald, A.D.; Thoms, H.C.; Dunlop, M.G.; Stark, L.A. The proapoptotic effects of sulindac, sulindac sulfone and indomethacin are mediated by nucleolar translocation of the RelA(p65) subunit of NF-κB. Oncogene 2008, 27, 2648–2655. [Google Scholar]
- Pan, M.R.; Chang, H.C.; Hung, W.C. Non-steroidal anti-inflammatory drugs suppress the ERK signaling pathway via block of Ras/c-Raf interaction and activation of MAP kinase phosphatases. Cell Signal. 2008, 20, 1134–1141. [Google Scholar]
- Gu, Q.; Wang, J.D.; Xia, H.H.; Lin, M.C.; He, H.; Zou, B.; Tu, S.P.; Yang, Y.; Liu, X.G.; Lam, S.K.; Wong, W.M.; Chan, A.O.; Yuen, M.F.; Kung, H.F.; Wong, B.C. Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apoptosis in gastric cancer. Carcinogenesis 2005, 26, 541–546. [Google Scholar]
- Jana, N.R. NSAIDs and apoptosis. Cell. Mol. Life Sci. 2008, 65, 1295–1301. [Google Scholar]
- Vaish, V.; Tanwar, L.; Sanyal, S.N. The role of NF-κB and PPARgamma in experimentally induced colorectal cancer and chemoprevention by cyclooxygenase-2 inhibitors. Tumour Biol. 2010. [Epub ahead of print]. [Google Scholar]
- Huang, Y.C.; Chuang, L.Y.; Hung, W.C. Mechanisms underlying nonsteroidal anti-inflammatory drug-induced p27(Kip1) expression. Mol. Pharmacol. 2002, 62, 1515–1521. [Google Scholar]
- Bock, J.M.; Menon, S.G.; Goswami, P.C.; Sinclair, L.L.; Bedford, N.S.; Domann, F.E.; Trask, D.K. Relative non-steroidal anti-inflammatory drug (NSAID) antiproliferative activity is mediated through p21-induced G1 arrest and E2F inhibition. Mol. Carcinog. 2007, 46, 857–864. [Google Scholar]
- Luciani, M.G.; Campregher, C.; Gasche, C. Aspirin blocks proliferation in colon cells by inducing a G1 arrest and apoptosis through activation of the checkpoint kinase ATM. Carcinogenesis 2007, 28, 2207–2217. [Google Scholar]
- Chen, X.J.; Xiao, W.; Qu, X.; Zhou, S.Y. NS-398 enhances the efficacy of gemcitabine against lung adenocarcinoma through up-regulation of p21WAF1 and p27KIP1 protein. Neoplasma 2008, 55, 200–204. [Google Scholar]
- Botting, R.M. Inhibitors of cyclooxygenases: mechanisms, selectivity and uses. J. Physiol. Pharmacol. 2006, 57 Suppl. 5, 113–124. [Google Scholar]
- Jones, D.A.; Carlton, D.P.; McIntyre, T.M.; Zimmerman, G.A.; Prescott, S.M. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J. Biol. Chem. 1993, 268, 9049–9054. [Google Scholar]
- Rigas, B.; Goldman, I.S.; Levine, L. Altered eicosanoid levels in human colon cancer. J. Lab. Clin. Med. 1993, 122, 518–523. [Google Scholar]
- Eberhart, C.E.; Coffey, R.J.; Radhika, A.; Giardiello, F.M.; Ferrenbach, S.; DuBois, R.N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994, 107, 1183–1188. [Google Scholar]
- Sheng, H.; Shao, J.; Kirkland, S.C.; Isakson, P.; Coffey, R.J.; Morrow, J.; Beauchamp, R.D.; DuBois, R.N. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J. Clin. Invest. 1997, 99, 2254–2259. [Google Scholar]
- Fujita, T.; Matsui, M.; Takaku, K.; Uetake, H.; Ichikawa, W.; Taketo, M.M.; Sugihara, K. Size- and invasion-dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas. Cancer Res. 1998, 58, 4823–4826. [Google Scholar]
- Kikuchi, A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci. 2003, 94, 225–229. [Google Scholar]
- Pinto, D.; Clevers, H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp. Cell Res. 2005, 306, 357–363. [Google Scholar]
- Yanagawa, S.; van Leeuwen, F.; Wodarz, A.; Klingensmith, J.; Nusse, R. The dishevelled protein is modified by wingless signaling in Drosophila. Gene.Develop. 1995, 9, 1087–1097. [Google Scholar] [CrossRef]
- Yost, C.; Torres, M.; Miller, J.R.; Huang, E.; Kimelman, D.; Moon, R.T. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Gene.Develop. 1996, 10, 1443–1454. [Google Scholar] [CrossRef]
- Fagotto, F.; Gluck, U.; Gumbiner, B.M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr. Biol. 1998, 8, 181–190. [Google Scholar]
- Kishida, S.; Yamamoto, H.; Hino, S.; Ikeda, S.; Kishida, M.; Kikuchi, A. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol. Cell. Biol. 1999, 19, 4414–4422. [Google Scholar]
- Yamamoto, H.; Kishida, S.; Kishida, M.; Ikeda, S.; Takada, S.; Kikuchi, A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3β regulates its stability. J. Biol. Chem. 1999, 274, 10681–10684. [Google Scholar] [PubMed]
- Coghlan, M.P.; Culbert, A.A.; Cross, D.A.; Corcoran, S.L.; Yates, J.W.; Pearce, N.J.; Rausch, O.L.; Murphy, G.J.; Carter, P.S.; Roxbee Cox, L.; Mills, D.; Brown, M.J.; Haigh, D.; Ward, R.W.; Smith, D.G.; Murray, K.J.; Reith, A.D.; Holder, J.C. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 2000, 7, 793–803. [Google Scholar]
- He, T.C.; Sparks, A.B.; Rago, C.; Hermeking, H.; Zawel, L.; da Costa, L.T.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Identification of c-MYC as a target of the APC pathway. Science 1998, 281, 1509–1512. [Google Scholar]
- Shtutman, M.; Zhurinsky, J.; Simcha, I.; Albanese, C.; D'Amico, M.; Pestell, R.; Ben-Ze'ev, A. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Nat. Acad. Sci. USA 1999, 96, 5522–5527. [Google Scholar]
- Tetsu, O.; McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999, 398, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Araki, Y.; Okamura, S.; Hussain, S.P.; Nagashima, M.; He, P.; Shiseki, M.; Miura, K.; Harris, C.C. Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res. 2003, 63, 728–734. [Google Scholar]
- Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nature Med. 2004, 10, 789–799. [Google Scholar]
- Oshima, M.; Oshima, H.; Kitagawa, K.; Kobayashi, M.; Itakura, C.; Taketo, M. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Nat. Acad. Sci. USA 1995, 92, 4482–4486. [Google Scholar]
- Levy, D.B.; Smith, K.J.; Beazer-Barclay, Y.; Hamilton, S.R.; Vogelstein, B.; Kinzler, K.W. Inactivation of both APC alleles in human and mouse tumors. Cancer Res. 1994, 54, 5953–5958. [Google Scholar]
- Takeda, H.; Sonoshita, M.; Oshima, H.; Sugihara, K.; Chulada, P.C.; Langenbach, R.; Oshima, M.; Taketo, M.M. Cooperation of cyclooxygenase 1 and cyclooxygenase 2 in intestinal polyposis. Cancer Res. 2003, 63, 4872–4877. [Google Scholar]
- Swamy, M.V.; Patlolla, J.M.; Steele, V.E.; Kopelovich, L.; Reddy, B.S.; Rao, C.V. Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APCMin mice. Cancer Res. 2006, 66, 7370–7377. [Google Scholar]
- Shiff, S.J.; Koutsos, M.I.; Qiao, L.; Rigas, B. Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells: Effects on cell cycle and apoptosis. Exp. Cell Res. 1996, 222, 179–188. [Google Scholar]
- Shureiqi, I.; Chen, D.; Lotan, R.; Yang, P.; Newman, R.A.; Fischer, S.M.; Lippman, S.M. 15-Lipoxygenase-1 mediates nonsteroidal anti-inflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Res. 2000, 60, 6846–6850. [Google Scholar]
- Kim, Y.H.; Kim, M.H.; Kim, B.J.; Kim, J.J.; Chang, D.K.; Son, H.J.; Rhee, P.L.; Rhee, J.C. Inhibition of cell proliferation and invasion in a human colon cancer cell line by 5-aminosalicylic acid. Dig. Liver Dis. 2009, 41, 328–337. [Google Scholar]
- Hanif, R.; Pittas, A.; Feng, Y.; Koutsos, M.I.; Qiao, L.; Staiano-Coico, L.; Shiff, S.I.; Rigas, B. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem. Pharmacol. 1996, 52, 237–245. [Google Scholar]
- Piazza, G.A.; Rahm, A.K.; Finn, T.S.; Fryer, B.H.; Li, H.; Stoumen, A.L.; Pamukcu, R.; Ahnen, D.J. Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction. Cancer Res. 1997, 57, 2452–2459. [Google Scholar]
- Williams, C.S.; Watson, A.J.; Sheng, H.; Helou, R.; Shao, J.; DuBois, R.N. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: Lack of correlation between in vitro and in vivo models. Cancer Res. 2000, 60, 6045–6051. [Google Scholar]
- Han, A.; Song, Z.; Tong, C.; Hu, D.; Bi, X.; Augenlicht, L.H.; Yang, W. Sulindac suppresses β-catenin expression in human cancer cells. Eur. J. Pharmacol. 2008, 583, 26–31. [Google Scholar]
- Guo, Q.; Wu, M.; Lian, P.; Liao, M.; Xiao, Z.; Wang, X.; Shen, S. Synergistic effect of indomethacin and NGX6 on proliferation and invasion by human colorectal cancer cells through modulation of the Wnt/β-catenin signaling pathway. Mol. Cell. Biochem. 2009, 330, 71–81. [Google Scholar]
- Shureiqi, I.; Jiang, W.; Zuo, X.; Wu, Y.; Stimmel, J.B.; Leesnitzer, L.M.; Morris, J.S.; Fan, H.Z.; Fischer, S.M.; Lippman, S.M. The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-δ to induce apoptosis in colorectal cancer cells. Proc. Nat. Acad. Sci. USA 2003, 100, 9968–9973. [Google Scholar]
- Hollingshead, H.E.; Borland, M.G.; Billin, A.N.; Willson, T.M.; Gonzalez, F.J.; Peters, J.M. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) and inhibition of cyclooxygenase 2 (COX2) attenuate colon carcinogenesis through independent signaling mechanisms. Carcinogenesis 2008, 29, 169–176. [Google Scholar]
- Stolfi, C.; Fina, D.; Caruso, R.; Caprioli, F.; Sarra, M.; Fantini, M.C.; Rizzo, A.; Pallone, F.; Monteleone, G. Cyclooxygenase-2-dependent and -independent inhibition of proliferation of colon cancer cells by 5-aminosalicylic acid. Biochem. Pharmacol. 2008, 75, 668–676. [Google Scholar]
- Mahmoud, N.N.; Boolbol, S.K.; Dannenberg, A.J.; Mestre, J.R.; Bilinski, R.T.; Martucci, C.; Newmark, H.L.; Chadburn, A.; Bertagnolli, M.M. The sulfide metabolite of sulindac prevents tumors and restores enterocyte apoptosis in a murine model of familial adenomatous polyposis. Carcinogenesis 1998, 19, 87–91. [Google Scholar]
- Rao, C.V.; Rivenson, A.; Simi, B.; Zang, E.; Kelloff, G.; Steele, V.; Reddy, B.S. Chemoprevention of colon carcinogenesis by sulindac, a nonsteroidal anti-inflammatory agent. Cancer Res. 1995, 55, 1464–1472. [Google Scholar]
- Moorghen, M.; Ince, P.; Finney, K.J.; Sunter, J.P.; Appleton, D.R.; Watson, A.J. A protective effect of sulindac against chemically-induced primary colonic tumours in mice. J. Pathol. 1988, 156, 341–347. [Google Scholar]
- Moorghen, M.; Orde, M.; Finney, K.J.; Appleton, D.R.; Watson, A.J. Sulindac enhances cell proliferation in DMH-treated mouse colonic mucosa. Cell Prolif. 1998, 31, 59–70. [Google Scholar]
- Narisawa, T.; Satoh, M.; Sano, M.; Takahashi, T. Inhibition of initiation and promotion by N-methylnitrosourea-induced colon carcinogenesis in rats by non-steroid anti-inflammatory agent indomethacin. Carcinogenesis 1983, 4, 1225–1227. [Google Scholar]
- Reddy, B.S.; Rao, C.V.; Rivenson, A.; Kelloff, G. Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in F344 rats. Carcinogenesis 1993, 14, 1493–1497. [Google Scholar]
- Jacoby, R.F.; Marshall, D.J.; Newton, M.A.; Novakovic, K.; Tutsch, K.; Cole, C.E.; Lubet, R.A.; Kelloff, G.J.; Verma, A.; Moser, A.R.; Dove, W.F. Chemoprevention of spontaneous intestinal adenomas in the Apc Min mouse model by the nonsteroidal anti-inflammatory drug piroxicam. Cancer Res. 1996, 56, 710–714. [Google Scholar]
- Jacoby, R.F.; Seibert, K.; Cole, C.E.; Kelloff, G.; Lubet, R.A. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res. 2000, 60, 5040–5044. [Google Scholar]
- Rao, C.V.; Steele, V.E.; Swamy, M.V.; Patlolla, J.M.; Guruswamy, S.; Kopelovich, L. Inhibition of azoxymethane-induced colorectal cancer by CP-31398, a TP53 modulator, alone or in combination with low doses of celecoxib in male F344 rats. Cancer Res. 2009, 69, 8175–8182. [Google Scholar] [PubMed]
- Kohno, H.; Suzuki, R.; Sugie, S.; Tanaka, T. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC cancer 2005, 5, 46. [Google Scholar]
- Giardiello, F.M.; Hamilton, S.R.; Krush, A.J.; Piantadosi, S.; Hylind, L.M.; Celano, P.; Booker, S.V.; Robinson, C.R.; Offerhaus, G.J. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 1993, 328, 1313–1316. [Google Scholar]
- Giardiello, F.M.; Yang, V.W.; Hylind, L.M.; Krush, A.J.; Petersen, G.M.; Trimbath, J.D.; Piantadosi, S.; Garrett, E.; Geiman, D.E.; Hubbard, W.; Offerhaus, G.J.; Hamilton, S.R. Primary chemoprevention of familial adenomatous polyposis with sulindac. N. Engl. J. Med. 2002, 346, 1054–1059. [Google Scholar]
- Thun, M.J.; Namboodiri, M.M.; Heath, C.W., Jr. Aspirin use and reduced risk of fatal colon cancer. N. Engl. J. Med. 1991, 325, 1593–1596. [Google Scholar]
- Giovannucci, E.; Rimm, E.B.; Stampfer, M.J.; Colditz, G.A.; Ascherio, A.; Willett, W.C. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann. Intern. Med. 1994, 121, 241–246. [Google Scholar]
- Lanas, A.; Ferrandez, A. NSAIDs and the colon. Curr. Opin. Gastroenterol. 2009, 25, 44–49. [Google Scholar]
- Sano, H.; Kawahito, Y.; Wilder, R.L.; Hashiramoto, A.; Mukai, S.; Asai, K.; Kimura, S.; Kato, H.; Kondo, M.; Hla, T. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 1995, 55, 3785–3789. [Google Scholar]
- Kargman, S.L.; O'Neill, G.P.; Vickers, P.J.; Evans, J.F.; Mancini, J.A.; Jothy, S. Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res. 1995, 55, 2556–2559. [Google Scholar]
- Piazza, G.A.; Keeton, A.B.; Tinsley, H.N.; Gary, B.D.; Whitt, J.D.; Mathew, B.; Thaiparambil, J.; Coward, L.; Gorman, G.; Li, Y.; Sani, B.; Hobrath, J.V.; Maxuitenko, Y.Y.; Reynolds, R.C. A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity. Cancer Prev. Res. 2009, 2, 572–580. [Google Scholar]
- McGarvey, M.A.; O'Kelly, F.; Ettarh, R.R. Nimesulide inhibits crypt epithelial cell proliferation at 6 hours in the small intestine in CD-1 mice. Dig. Dis. Sci. 2007, 52, 2087–2094. [Google Scholar]
- McGarvey, M.A.; Bass, G.; Ettarh, R.R. Nimesulide alters cell recruitment into mitosis in murine intestinal crypts without influencing the cell production rate. Dig. Dis. Sci. 2007, 52, 1471–1478. [Google Scholar]
- Baron, J.A. Epidemiology of non-steroidal anti-inflammatory drugs and cancer. Prog. Exp. Tumor Res. 2003, 37, 1–24. [Google Scholar]
- Mahmud, S.M.; Tanguay, S.; Begin, L.R.; Franco, E.L.; Aprikian, A.G. Non-steroidal anti-inflammatory drug use and prostate cancer in a high-risk population. Eur. J. Cancer Prev. 2006, 15, 158–164. [Google Scholar]
- Murad, A.S.; Down, L.; Smith, G.D.; Donovan, J.L.; Lane, J.A.; Hamdy, F.C.; Neal, D.E.; Martin, R.M. Associations of aspirin, non-steroidal anti-inflammatory drug and paracetamol use with PSA-detected prostate cancer: Findings from a large, population-based, case-control study (the ProtecT study). Int. J. Cancer 2010. [Epub ahead of print]. [Google Scholar]
- Jacobs, E.J.; Rodriguez, C.; Mondul, A.M.; Connell, C.J.; Henley, S.J.; Calle, E.E.; Thun, M.J. A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. J. Natl. Cancer Inst. 2005, 97, 975–980. [Google Scholar]
- Platz, E.A.; Rohrmann, S.; Pearson, J.D.; Corrada, M.M.; Watson, D.J.; De Marzo, A.M.; Landis, P.K.; Metter, E.J.; Carter, H.B. Nonsteroidal anti-inflammatory drugs and risk of prostate cancer in the Baltimore Longitudinal Study of Aging. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 390–396. [Google Scholar]
- Brasky, T.M.; Bonner, M.R.; Moysich, K.B.; Ambrosone, C.B.; Nie, J.; Tao, M.H.; Edge, S.B.; Kallakury, B.V.; Marian, C.; Trevisan, M.; Shields, P.G.; Freudenheim, J.L. Non-steroidal anti-inflammatory drug (NSAID) use and breast cancer risk in the Western New York Exposures and Breast Cancer (WEB) Study. Cancer Causes Control 2010. [Epub ahead of print]. [Google Scholar]
- Cronin-Fenton, D.P.; Pedersen, L.; Lash, T.L.; Friis, S.; Baron, J.A.; Sorensen, H.T. Prescriptions for selective cyclooxygenase-2 inhibitors, non-selective non-steroidal anti-inflammatory drugs, and risk of breast cancer in a population-based case-control study. Breast Cancer Res. 2010, 12, R15. [Google Scholar] [CrossRef] [PubMed]
- Cuzick, J.; Otto, F.; Baron, J.A.; Brown, P.H.; Burn, J.; Greenwald, P.; Jankowski, J.; La Vecchia, C.; Meyskens, F.; Senn, H.J.; Thun, M. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: An international consensus statement. Lancet Oncol. 2009, 10, 501–507. [Google Scholar]
- Rayburn, E.R.; Ezell, S.J.; Zhang, R. Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol. 2009, 1, 29–43. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ettarh, R.; Cullen, A.; Calamai, A. NSAIDs and Cell Proliferation in Colorectal Cancer. Pharmaceuticals 2010, 3, 2007-2021. https://doi.org/10.3390/ph3072007
Ettarh R, Cullen A, Calamai A. NSAIDs and Cell Proliferation in Colorectal Cancer. Pharmaceuticals. 2010; 3(7):2007-2021. https://doi.org/10.3390/ph3072007
Chicago/Turabian StyleEttarh, Raj, Anthony Cullen, and Alvise Calamai. 2010. "NSAIDs and Cell Proliferation in Colorectal Cancer" Pharmaceuticals 3, no. 7: 2007-2021. https://doi.org/10.3390/ph3072007
APA StyleEttarh, R., Cullen, A., & Calamai, A. (2010). NSAIDs and Cell Proliferation in Colorectal Cancer. Pharmaceuticals, 3(7), 2007-2021. https://doi.org/10.3390/ph3072007