Antioxidant Activity of New Sulphur- and Selenium-Containing Analogues of Potassium Phenosan against H2O2-Induced Cytotoxicity in Tumour Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Chemistry
2.1.1. Synthesis of 2-(3,5-Dimethyl-4-hydroxybenzylthio)propanoic Acid (2a)
2.1.2. Synthesis of Potassium 3-[4-Hydroxy-3,5-dimethylbenzylthio]propanoate (2b)
2.2. Equipment
2.3. Cell Culture
2.4. In Vitro Cytotoxicity and Cytostaticity Assays
2.5. The Antioxidant Activity Assay
2.5.1. Ferric-Ion-Based TAC Assays
2.5.2. The DPPH˙ Radical-Scavenging Assay
2.5.3. The ABTS˙+ Radical-Scavenging Assay
2.5.4. Hydrogen Peroxide (H2O2)-Induced Oxidative Stress and Evaluation of Cell Survival
2.6. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of Compounds
3.2. In Vitro Cytotoxic and Cytostatic Activities
3.3. An Antioxidant Activity Assay
3.3.1. A Ferric-Ion-Based Total Antioxidant Capacity (TAC) Assay
3.3.2. The DPPH˙ and ABTS˙+ Radical-Scavenging Assay
3.3.3. Antioxidant Activity against H2O2-Induced Cytotoxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Tleyjeh, I.M.; Cerhan, J.R.; Sood, A.K.; Limburg, P.J.; Erwin, P.J.; Montori, V.M. Efficacy of Antioxidant Supplementation in Reducing Primary Cancer Incidence and Mortality: Systematic Review and Meta-analysis. Mayo Clin. Proc. 2008, 83, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Moradi-Joo, M.; Heidari, S.; Seyed-Nezhad, M.; Akbari, M.E.; Moosavi, A.; Davoodi, S.H. Antioxidant supplements and breast cancer: A systematic review and meta-analysis. Int. J. Cancer Manag. 2018, 11, e10082. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Q.; Lu, X.; Li, W. Post-Diagnosis use of Antioxidant Vitamin Supplements and Breast Cancer Prognosis: A Systematic Review and Meta-Analysis. Clin. Breast Cancer 2021, 21, 477–485. [Google Scholar] [CrossRef]
- Volkan, I.; Mohamed, X.; Larsson, E.; Jonas, A.; Lindahl, P.; Martin, O.B. Antioxidants Accelerate Lung Cancer Progression in Mice. Sci. Transl. Med. 2014, 6, 221. [Google Scholar] [CrossRef]
- Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015, 527, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Van Loenhout, J.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C. Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects. Antioxidants 2020, 9, 1188. [Google Scholar] [CrossRef]
- Singh, K.; Bhori, M.; Kasu, Y.A.; Bhat, G.; Marar, T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity—Exploring the armoury of obscurity. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2018, 26, 177–190. [Google Scholar] [CrossRef]
- Yun, J.; Mullarky, E.; Lu, C.; Bosch, K.N.; Kavalier, A.; Rivera, K.; Roper, J.; Chio, I.I.C.; Giannopoulou, E.G.; Rago, C.; et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015, 350, 1391–1396. [Google Scholar] [CrossRef] [Green Version]
- Lankin, V.Z.; Tikhaze, A.K.; Konovalova, G.G.; Kozachenko, A.I. Concentration-dependent inversion of antioxidant and prooxidant effects of β-carotene in tissuesin vivo. Bull. Exp. Biol. Med. 1999, 128, 930–932. [Google Scholar] [CrossRef]
- Seo, M.-Y.; Lee, S.-M. Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J. Hepatol. 2002, 36, 72–77. [Google Scholar] [CrossRef]
- Giordano, M.E.; Caricato, R.; Lionetto, M.G. Concentration dependence of the antioxidant and prooxidant activity of trolox in hela cells: Involvement in the induction of apoptotic volume decrease. Antioxidants 2020, 9, 1058. [Google Scholar] [CrossRef]
- Farzaliev, V.M.; Fernando, W.S.E.; Scott, G. Mechanisms of antioxidant action: Auto-synergistic behaviour of sulphur-containing phenols. Eur. Polym. J. 1978, 14, 785–788. [Google Scholar] [CrossRef]
- Meier, H.; Kuenzi, H.; Knobloch, G.; Rist, G.; Szelagiewicz, M. Reactions of sulfur containing phenolic antioxidants for elastomers. Phosphorus Sulfur Silicon Relat. Elem. 1999, 153–154, 275–300. [Google Scholar] [CrossRef]
- Kemeleva, E.A.; Vasyunina, E.A.; Sinitsina, O.I.; Khomchenko, A.S.; Gross, M.A.; Kandalintseva, N.V.; Prosenko, A.E.; Nevinskii, G.A. New promising antioxidants based on 2,6-dimethylphenol. Russ. J. Bioorg. Chem. 2008, 34, 499–509. [Google Scholar] [CrossRef]
- Amorati, R.; Pedulli, G.F.; Valgimigli, L.; Johansson, H.; Engman, L. Organochalcogen substituents in phenolic antioxidants. Org. Lett. 2010, 12, 2326–2329. [Google Scholar] [CrossRef]
- Viglianisi, C.; Menichetti, S. Chain Breaking Antioxidant Activity of Heavy (S, Se, Te) Chalcogens Substituted Polyphenols. Antioxidants 2019, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, M.L.; Panzella, L.; Amorati, R.; Cariola, A.; Valgimigli, L.; Napolitano, A. Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds. Biomolecules 2022, 12, 90. [Google Scholar] [CrossRef]
- Weng, X.; Ren, L.; Weng, L.; Huang, J.; Zhu, S.; Zhou, X.; Weng, L. Synthesis and biological studies of inducible DNA cross-linking agents. Angew. Chem. Int. Ed. 2007, 46, 8020–8023. [Google Scholar] [CrossRef]
- Du, Y.; Weng, X.; Huang, J.; Zhang, D.; Ma, H.; Chen, D.; Zhou, X.; Constant, J.-F. Oligonucleotide-selenide conjugate: Synthesis and its inducible sequence-specific alkylation of DNA. Bioorg. Med. Chem. 2010, 18, 4149–4153. [Google Scholar] [CrossRef]
- Singh, V.P.; Poon, J.F.; Engman, L. Catalytic antioxidants: Regenerable tellurium analogues of vitamin e. Org. Lett. 2013, 15, 6274–6277. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L.; Dinér, P.; Bakhtiari, K.; Saeedi, M.; Engman, L. Multi-faceted reactivity of alkyltellurophenols towards peroxyl radicals: Catalytic antioxidant versus thiol-depletion effect. Chem. A Eur. J. 2013, 19, 7510–7522. [Google Scholar] [CrossRef]
- Poon, J.F.; Singh, V.P.; Yan, J.; Engman, L. Regenerable antioxidants—Introduction of chalcogen substituents into tocopherols. Chem. A Eur. J. 2015, 21, 2447–2457. [Google Scholar] [CrossRef]
- Grisar, J.M.; Petty, M.A.; Bolkenius, F.N.; Dow, J.; Wagner, J.; Wagner, E.R.; Haegele, K.D.; De Jong, W. A cardioselective, hydrophilic N,N,N-trimethylethanaminium.alpha.-tocopherol analog that reduces myocardial infarct size. J. Med. Chem. 1991, 34, 257–260. [Google Scholar] [CrossRef]
- Petty, M.A.; Grisar, J.M.; De Jong, W. Protective effects of an α-tocopherol analogue against myocardial reperfusion injury in rats. Eur. J. Pharmacol. 1992, 210, 85–90. [Google Scholar] [CrossRef]
- Coulter, C.V.; Kelso, G.F.; Lin, T.-K.; Smith, R.A.J.; Murphy, M.P. Mitochondrially targeted antioxidants and thiol reagents. Free Radic. Biol. Med. 2000, 28, 1547–1554. [Google Scholar] [CrossRef]
- Smith, R.A.J.; Porteous, C.M.; Gane, A.M.; Murphy, M.P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl. Acad. Sci. USA 2003, 100, 5407–5412. [Google Scholar] [CrossRef] [Green Version]
- Zenkov, N.K.; Menshchikova, E.B.; Kandalintseva, N.V.; Oleynik, A.S.; Prosenko, A.E.; Gusachenko, O.N.; Shklyaeva, O.A.; Vavilin, V.A.; Lyakhovich, V.V. Antioxidant and antiinflammatory activity of new water-soluble sulfur-containing phenolic compounds. Biochemistry 2007, 72, 644–651. [Google Scholar] [CrossRef]
- Zenkov, N.; Menshchikova, E.B.; Kandalintseva, N.V.; Prosenko, A.E. Structural and Functional Characteristics for the Antiinflammatory Effect of New Water-Soluble Sulfur-Containing Phenol Antioxidants. Bull. Exp. Biol. Med. 2009, 147, 592–595. [Google Scholar] [CrossRef]
- Kandalintseva, N. V Poliyfunctional hydrophilic antioxidants—From molecular design to particular application. Acta Biomed. Sci. 2017, 1, 150–154. [Google Scholar]
- Bernini, R.; Crisante, F.; Barontini, M.; Tofani, D.; Balducci, V.; Gambacorta, A. Synthesis and Structure/Antioxidant Activity Relationship of Novel Catecholic Antioxidant Structural Analogues to Hydroxytyrosol and Its Lipophilic Esters. J. Agric. Food Chem. 2012, 60, 7408–7416. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, X.; Olajide, T.M.; Xu, J.; Weng, X. Two Novel Lipophilic Antioxidants Derivatized from Curcumin. Antioxidants 2022, 11, 796. [Google Scholar] [CrossRef] [PubMed]
- Armarego, W.L.F. Purification of Biochemicals. In Purification of Laboratory Chemicals; Elsevier: Amsterdam, The Netherlands, 2017; pp. 877–1064. [Google Scholar] [CrossRef]
- Kholshin, S.V.; Yagunov, S.E.; Kandalintseva, N.V.; Prosenko, A.E. Synthesis of new selenium-containing analogs of phenozan acid. Russ. Chem. Bull. 2019, 68, 2374–2376. [Google Scholar] [CrossRef]
- Lee, Y.; Shacter, E. Bcl-2 Does Not Protect Burkitt’s Lymphoma Cells From Oxidant-Induced Cell Death. Blood 1997, 89, 4480–4492. [Google Scholar] [CrossRef]
- Berker, K.I.; Güçlü, K.; Tor, İ.; Apak, R. Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta 2007, 72, 1157–1165. [Google Scholar] [CrossRef]
- Tabrizi, L.; Dao, D.Q.; Vu, T.A. Experimental and theoretical evaluation on the antioxidant activity of a copper(ii) complex based on lidocaine and ibuprofen amide-phenanthroline agents. RSC Adv. 2019, 9, 3320–3335. [Google Scholar] [CrossRef] [Green Version]
- Ransy, C.; Vaz, C.; Lombès, A.; Bouillaud, F. Use of H2O2 to Cause Oxidative Stress, the Catalase Issue. Int. J. Mol. Sci. 2020, 21, 9149. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Bespalov, V.; Alexandrov, V.; Korman, D.; Baranenko, D. Phenozan, a Synthetic Phenolic Antioxidant, Inhibits the Development of Spontaneous Tumors in Rats and Mice. Drug Res. 2016, 66, 489–494. [Google Scholar] [CrossRef]
- Kandalintseva, N.V.; Trubnikova, Y.N.; Prosenko, A.E. New Approaches to the Development of Biologically Active Water-Soluble Antioxidants. Chem. Sustain. Dev. 2011, 19, 545–555. [Google Scholar]
- Palmina, N.P.; Chasovskaya, T.E.; Belov, V.V.; Maltseva, E.L. Dose dependences of lipid microviscosity of biological membranes induced by synthetic antioxidant potassium phenosan salt. Dokl. Biochem. Biophys. 2012, 443, 100–104. [Google Scholar] [CrossRef]
- Kozlov, S.S.; Chasovskaya, T.E.; Semenova, M.G.; Palmina, N.P. Effects of low concentrations of synthetic antioxidant phenosan potassium salt on the thermoinduced structural transitions in the protein component of plasma membranes. Dokl. Biochem. Biophys. 2014, 459, 190–193. [Google Scholar] [CrossRef]
- Manz, D.H.; Blanchette, N.L.; Paul, B.T.; Torti, F.M.; Torti, S.V. Iron and cancer: Recent insights. Ann. N. Y. Acad. Sci. 2016, 1368, 149–161. [Google Scholar] [CrossRef]
- Cockfield, J.A.; Schafer, Z.T. Antioxidant Defenses: A Context-Specific Vulnerability of Cancer Cells. Cancers 2019, 11, 1208. [Google Scholar] [CrossRef] [Green Version]
- Pinnix, Z.K.; Miller, L.D.; Wang, W.; D’Agostino, R., Jr.; Kute, T.; Willingham, M.C.; Hatcher, H.; Tesfay, L.; Sui, G.; Di, X.; et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med. 2010, 2, 43–56. [Google Scholar] [CrossRef]
Compound 1 | LC50 2, μM | ||
---|---|---|---|
HepG2 Cells | Hep-2 Cells | MCF-7 Cells | |
PP | 3899 ± 39 | >5000 | 7342 ± 74 |
1a | 338 ± 20 | 235 ± 18 | 375 ± 30 |
1b | 326 ± 4 | 190 ± 6 | 459 ± 28 |
2a | 5729 ± 58 | 13,885 ± 139 | >10,000 |
2b | 6347 ± 64 | >10,000 | >10,000 |
Compound 1 | IC50 2, μM | ||
---|---|---|---|
HepG2 Cells | Hep-2 Cells | MCF-7 Cells | |
PP | 964 ± 19 | 1911 ± 38 | 2628 ± 52 |
1a | 413 ± 12 | 224 ± 5 | >500 |
1b | 237 ± 2 | 144 ± 11 | 265 ± 10 |
2a | 2672 ± 106 | 3478 ± 35 | 8445 ± 85 |
2b | 3617 ± 72 | 3734 ± 37 | 5895 ± 59 |
Compound 1 | µmol Fe(II)/mg Compound 2 |
---|---|
PP | 3.9 ± 0.1 |
1b | 3.0 ± 0.1 |
2b | 7.2 ± 0.2 |
Ascorbic acid | 12.2 ± 0.3 |
Compound 1 | Radical Scavenging Activities(IC50 2, μM) | |
DPPH˙ | ABTS˙+ | |
PP | >20 | 6.5 ± 0.2 |
1b | >20 | 3.2 ± 0.1 |
2b | 22.9 ± 0.6 | 5.5 ± 0.1 |
Ascorbic acid | 13.6 ± 0.4 | 11.5 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klyushova, L.S.; Kandalintseva, N.V.; Grishanova, A.Y. Antioxidant Activity of New Sulphur- and Selenium-Containing Analogues of Potassium Phenosan against H2O2-Induced Cytotoxicity in Tumour Cells. Curr. Issues Mol. Biol. 2022, 44, 3131-3145. https://doi.org/10.3390/cimb44070216
Klyushova LS, Kandalintseva NV, Grishanova AY. Antioxidant Activity of New Sulphur- and Selenium-Containing Analogues of Potassium Phenosan against H2O2-Induced Cytotoxicity in Tumour Cells. Current Issues in Molecular Biology. 2022; 44(7):3131-3145. https://doi.org/10.3390/cimb44070216
Chicago/Turabian StyleKlyushova, Lyubov S., Natalya V. Kandalintseva, and Alevtina Y. Grishanova. 2022. "Antioxidant Activity of New Sulphur- and Selenium-Containing Analogues of Potassium Phenosan against H2O2-Induced Cytotoxicity in Tumour Cells" Current Issues in Molecular Biology 44, no. 7: 3131-3145. https://doi.org/10.3390/cimb44070216
APA StyleKlyushova, L. S., Kandalintseva, N. V., & Grishanova, A. Y. (2022). Antioxidant Activity of New Sulphur- and Selenium-Containing Analogues of Potassium Phenosan against H2O2-Induced Cytotoxicity in Tumour Cells. Current Issues in Molecular Biology, 44(7), 3131-3145. https://doi.org/10.3390/cimb44070216