Machine Learning Analysis of Alzheimer’s Disease Single-Cell RNA-Sequencing Data across Cortex and Hippocampus Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. scRNA-Seq Data Integration
2.2. Feature Selection Procedure
- We procured 14 datasets encompassing cells from the hippocampus region of the mouse brain and an additional 8 datasets focusing on cells from the mouse cortex region.
- These datasets were organized into three distinct case studies; firstly, an analysis comparing healthy control cells with AD cells derived from the mouse cortex; secondly, a similar evaluation focused on the mouse hippocampus; and thirdly, a case study differentiating AD cells from both the mouse hippocampus and cortex brain regions.
- For all three case studies, the datasets utilized were integrated through the use of Seurat’s CCA method (2000 HVGs were also kept in this step).
- Feature ranking took place for each of the case studies after integration, using both the Wilcoxon rank-sum test as well as XgBoost’s variable importance (VI) criterion in order to rank features from most to least important. Xgboost was utilized with each case’s label of interest (control vs. disease and cortex vs. hippocampus) in order to rank genes through the use of gain VI. The same applies for the Wilcoxon rank-sum test.
- These two lists obtained through the use of the algorithms mentioned above were subsequently combined into a single consensus list through the use of the Borda rank-based count voting scheme. From this consensus list, the top 100 genes were kept for the subsequent steps of our analysis.
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reitz, C.; Rogaeva, E.; Beecham, G.W. Late-onset vs nonmendelian early-onset Alzheimer disease: A distinction without a difference? Neurol. Genet. 2020, 6, e512. [Google Scholar] [CrossRef] [PubMed]
- Fillit, H.; Green, A. Aducanumab and the FDA—Where are we now? Nat. Rev. Neurol. 2021, 17, 129–130. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Engel, J.; Teichmann, S.A.; Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef] [PubMed]
- Kukurba, K.R.; Montgomery, S.B. RNA sequencing and analysis. Cold Spring Harb. Protoc. 2015, 11, pdb-top084970. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.A.; Gammie, S.C. Alzheimer’s disease large-scale gene expression portrait identifies exercise as the top theoretical treatment. Sci. Rep. 2022, 12, 17189. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.C.; Carter, E.K.; Dammer, E.B.; Duong, D.M.; Gerasimov, E.S.; Liu, Y.; Liu, J.; Betarbet, R.; Ping, L.; Yin, L.; et al. Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat. Neurosci. 2022, 25, 213–225. [Google Scholar] [CrossRef]
- Williams, J.B.; Cao, Q.; Yan, Z. Transcriptomic analysis of human brains with Alzheimer’s disease reveals the altered expression of synaptic genes linked to cognitive deficits. Brain Commun. 2021, 3, fcab123. [Google Scholar] [CrossRef]
- Park, C.; Ha, J.; Park, S. Prediction of Alzheimer’s disease based on deep neural network by integrating gene expression and DNA methylation dataset. Expert Syst. Appl. 2020, 140, 112873. [Google Scholar] [CrossRef]
- Lee, T.; Lee, H. Prediction of Alzheimer’s disease using blood gene expression data. Sci. Rep. 2020, 10, 3485. [Google Scholar] [CrossRef]
- Krokidis, M.G.; Vrahatis, A.G.; Lazaros, K.; Vlamos, P. Exploring Promising Biomarkers for Alzheimer’s Disease through the Computational Analysis of Peripheral Blood Single-Cell RNA Sequencing Data. Appl. Sci. 2023, 13, 5553. [Google Scholar] [CrossRef]
- Haghverdi, L.; Lun, A.T.; Morgan, M.D.; Marioni, J.C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 2018, 36, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fan, Z.; Zhao, W.; Zhou, X. Machine intelligence in single-cell data analysis: Advances and new challenges. Front. Genet. 2021, 12, 655536. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, C.; Qi, R.; Fu, H.; Ma, Q. scREAD: A single-cell RNA-Seq database for Alzheimer’s disease. iScience 2020, 23, 101769. [Google Scholar] [CrossRef] [PubMed]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell 2019, 177, 1888–1902. [Google Scholar] [CrossRef] [PubMed]
- Chatzilygeroudis, K.I.; Vrahatis, A.G.; Tasoulis, S.K.; Vrahatis, M.N. Feature Selection in single-cell RNA-seq data via a Genetic Algorithm. In Proceedings of the Learning and Intelligent Optimization: 15th International Conference, LION 15, Athens, Greece, 20–25 June 2021; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Lazaros, K.; Tasoulis, S.; Vrahatis, A.; Plagianakos, V. Feature selection for high dimensional data using supervised machine learning techniques. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3891–3894. [Google Scholar]
- Soneson, C.; Robinson, M.D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 2018, 15, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Van Erp, M.; Schomaker, L. Variants of the borda count method for combining ranked classifier hypotheses. In Proceedings of the 7th International Workshop on Frontiers in Handwriting Recognition, Amsterdam, The Netherlands, 11–13 September 2000; pp. 443–452. [Google Scholar]
- Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.; Evangelista, J.E.; Jenkins, S.L.; Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 2021, 1, e90. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016, update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinform. 2017, 18, 142. [Google Scholar] [CrossRef]
- Ayka, A.; Şehirli, A.Ö. The role of the SLC transporters protein in the neurodegenerative disorders. Clin. Psychopharmacol. Neurosci. 2020, 18, 174–187. [Google Scholar] [CrossRef]
- Brunton, L.L.; Parker, K.L.; Buxton, I.L.O. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Hellsten, S.V.; Hägglund, M.G.; Eriksson, M.M.; Fredriksson, R. The neuronal and astrocytic protein SLC 38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission. FEBS Open Bio 2017, 7, 730–746. [Google Scholar] [CrossRef] [PubMed]
- Micule, I.; Lace, B.; Wright, N.T.; Chrestian, N.; Strautmanis, J.; Diriks, M.; Stavusis, J.; Kidere, D.; Kleina, E.; Zdanovica, A.; et al. Case Report: Two Families with HPDL Related Neurodegeneration. Front. Genet. 2022, 13, 780764. [Google Scholar] [CrossRef] [PubMed]
- Tort, F.; Ferrer-Cortes, X.; Thió, M.; Navarro-Sastre, A.; Matalonga, L.; Quintana, E.; Bujan, N.; Arias, A.; García-Villoria, J.; Acquaviva, C.; et al. Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. Hum. Mol. Genet. 2014, 23, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Marmolejo-Garza, A.; Medeiros-Furquim, T.; Rao, R.; Eggen, B.J.; Boddeke, E.; Dolga, A.M. Transcriptomic and epigenomic landscapes of Alzheimer’s disease evidence mitochondrial-related pathways. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2022, 1869, 119326. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Sripada, L.; Lipatova, A.; Roy, M.; Prajapati, P.; Gohel, D.; Bhatelia, K.; Chumakov, P.M.; Singh, R. NLRX1 resides in mitochondrial RNA granules and regulates mitochondrial RNA processing and bioenergetic adaptation. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2018, 1865, 1260–1276. [Google Scholar] [CrossRef] [PubMed]
- Imbeault, E.; Mahvelati, T.M.; Braun, R.; Gris, P.; Gris, D. Nlrx1 regulates neuronal cell death. Mol. Brain 2014, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Kamachi, Y.; Kondoh, H. Sox proteins: Regulators of cell fate specification and differentiation. Development 2013, 140, 4129–4144. [Google Scholar] [CrossRef]
- Azim, E.; Jabaudon, D.; Fame, R.M.; Macklis, J.D. SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat. Neurosci. 2009, 12, 1238–1247. [Google Scholar] [CrossRef]
- Munguba, H.; Chattopadhyaya, B.; Nilsson, S.; Carriço, J.N.; Memic, F.; Oberst, P.; Batista-Brito, R.; Muñoz-Manchado, A.B.; Wegner, M.; Fishell, G.; et al. Postnatal Sox6 regulates synaptic function of cortical parvalbumin-expressing neurons. J. Neurosci. 2021, 41, 8876–8886. [Google Scholar] [CrossRef]
- Luppi, M.P.; Azcorra, M.; Caronia-Brown, G.; Poulin, J.F.; Gaertner, Z.; Gatica, S.; Moreno-Ramos, O.A.; Nouri, N.; Dubois, M.; Ma, Y.C.; et al. Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins. Cell Rep. 2021, 37, 109975. [Google Scholar] [CrossRef]
- Gonzalez, D.; Brandan, E. CTGF/CCN2 from skeletal muscle to nervous system: Impact on neurodegenerative diseases. Mol. Neurobiol. 2019, 56, 5911–5916. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.N.; Wu, M.F.; Liu, C.C.; Jung, W.H.; Chang, Y.C.; Lee, W.P.; Shiao, Y.J.; Wu, C.L.; Liou, H.H.; Lin, S.K.; et al. Differential protective effects of connective tissue growth factor against Aβ neurotoxicity on neurons and glia. Hum. Mol. Genet. 2017, 26, 3909–3921. [Google Scholar] [CrossRef] [PubMed]
- Carulli, D.; De Winter, F.; Verhaagen, J. Semaphorins in adult nervous system plasticity and disease. Front. Synaptic Neurosci. 2021, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Mauti, O.; Domanitskaya, E.; Andermatt, I.; Sadhu, R.; Stoeckli, E.T. Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system. Neural Dev. 2007, 2, 28. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Tatsukawa, T.; Sudo, G.; Delandre, C.; Pai, Y.J.; Miyamoto, H.; Raveau, M.; Shimohata, A.; Ohmori, I.; Hamano, S.I.; et al. CUX2 deficiency causes facilitation of excitatory synaptic transmission onto hippocampus and increased seizure susceptibility to kainate. Sci. Rep. 2022, 12, 6505. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, C.; Tiveron, M.C.; Bodmer, R.; Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex 2004, 14, 1408–1420. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, J.; Kim, Y.; Jang, S.W.; Sestan, N.; Shim, S. Cux2 expression regulated by Lhx2 in the upper layer neurons of the developing cortex. Biochem. Biophys. Res. Commun. 2020, 521, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, J.O.; Van Gastel, J.; Leysen, H.; Santos-Otte, P.; Premont, R.T.; Martin, B.; Maudsley, S. GRK5–a functional bridge between cardiovascular and neurodegenerative disorders. Front. Pharmacol. 2018, 9, 1484. [Google Scholar] [CrossRef]
- Suo, Z.; Cox, A.A.; Bartelli, N.; Rasul, I.; Festoff, B.W.; Premont, R.T.; Arendash, G.W. GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol. Aging 2007, 28, 1873–1888. [Google Scholar] [CrossRef]
- Bassett, D.S.; Gazzaniga, M.S. Understanding complexity in the human brain. Trends Cogn. Sci. 2011, 15, 200–209. [Google Scholar] [CrossRef]
- Armand, E.J.; Li, J.; Xie, F.; Luo, C.; Mukamel, E.A. Single-cell sequencing of brain cell transcriptomes and epigenomes. Neuron 2021, 109, 11–26. [Google Scholar] [CrossRef]
- Ximerakis, M.; Lipnick, S.L.; Innes, B.T.; Simmons, S.K.; Adiconis, X.; Dionne, D.; Mayweather, B.A.; Nguyen, L.; Niziolek, Z.; Ozek, C.; et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 2019, 22, 1696–1708. [Google Scholar] [CrossRef]
- Ratz, M.; von Berlin, L.; Larsson, L.; Martin, M.; Westholm, J.O.; La Manno, G.; Lundeberg, J.; Frisén, J. Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nat. Neurosci. 2022, 25, 285–294. [Google Scholar] [CrossRef]
- He, L.; Vanlandewijck, M.; Mäe, M.A.; Andrae, J.; Ando, K.; Del Gaudio, F.; Nahar, K.; Lebouvier, T.; Laviña, B.; Gouveia, L.; et al. Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci. Data 2018, 5, 180160. [Google Scholar] [CrossRef] [PubMed]
- Allen, W.E.; Blosser, T.R.; Sullivan, Z.A.; Dulac, C.; Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 2023, 186, 194–208. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krokidis, M.G.; Vrahatis, A.G.; Lazaros, K.; Skolariki, K.; Exarchos, T.P.; Vlamos, P. Machine Learning Analysis of Alzheimer’s Disease Single-Cell RNA-Sequencing Data across Cortex and Hippocampus Regions. Curr. Issues Mol. Biol. 2023, 45, 8652-8669. https://doi.org/10.3390/cimb45110544
Krokidis MG, Vrahatis AG, Lazaros K, Skolariki K, Exarchos TP, Vlamos P. Machine Learning Analysis of Alzheimer’s Disease Single-Cell RNA-Sequencing Data across Cortex and Hippocampus Regions. Current Issues in Molecular Biology. 2023; 45(11):8652-8669. https://doi.org/10.3390/cimb45110544
Chicago/Turabian StyleKrokidis, Marios G., Aristidis G. Vrahatis, Konstantinos Lazaros, Konstantina Skolariki, Themis P. Exarchos, and Panagiotis Vlamos. 2023. "Machine Learning Analysis of Alzheimer’s Disease Single-Cell RNA-Sequencing Data across Cortex and Hippocampus Regions" Current Issues in Molecular Biology 45, no. 11: 8652-8669. https://doi.org/10.3390/cimb45110544
APA StyleKrokidis, M. G., Vrahatis, A. G., Lazaros, K., Skolariki, K., Exarchos, T. P., & Vlamos, P. (2023). Machine Learning Analysis of Alzheimer’s Disease Single-Cell RNA-Sequencing Data across Cortex and Hippocampus Regions. Current Issues in Molecular Biology, 45(11), 8652-8669. https://doi.org/10.3390/cimb45110544