Hidden Pitfalls of Using Onion Pollen in Molecular Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Pollen Collection
2.2. PCR on Pollen Suspension
2.3. Evaluating the Effect of Pollenkitt on PCR
2.4. Microscopy of the Onion Pollenkitt
2.5. Wet Manual Pollination of Onion Flowers
3. Results
3.1. Direct PCR on Pollen Suspension of Onion
3.2. Hand Pollination with Wetted Pollen Grains
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paffetti, D.; Vettori, C.; Caramelli, D.; Vernesi, C.; Lari, M.; Paganelli, A.; Paule, L.; Giannini, R. Unexpected presence of Fagus orientalis complex in Italy as inferred from 45,000-year-old DNA pollen samples from Venice lagoon. BMC Evol. Biol. 2007, 7, S6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parducci, L.; Suyama, Y.; Lascoux, M.; Bennett, K.D. Ancient DNA from pollen: A genetic record of population history in Scots pine. Mol. Ecol. 2005, 14, 2873–2882. [Google Scholar] [CrossRef] [PubMed]
- Suyama, Y.; Kawamuro, K.; Kinoshita, I.; Yoshimura, K.; Tsumura, Y.; Takahara, H. DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat. Genes Genet. Syst. 1996, 71, 145–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alotaibi, S.S.; Sayed, S.M.; Alosaimi, M.; Alharthi, R.; Banjar, A.; Abdulqader, N.; Alhamed, R. Pollen molecular biology: Applications in the forensic palynology and future prospects: A review. Saudi J. Biol. Sci. 2020, 27, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Lale, S.V.; Gill, H.S. Pollen grains as a novel microcarrier for oral delivery of proteins. Int. J. Pharm. 2018, 552, 352–359. [Google Scholar] [CrossRef]
- Atwe, S.U.; Ma, Y.; Gill, H.S. Pollen grains for oral vaccination. J. Control. Release 2014, 194, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Ravindra, K.; Goyal, A.; Mor, S. Pollen allergy: Developing multi-sectorial strategies for its prevention and control in lower and middle-income countries. Int. J. Hyg. Environ. Health 2022, 242, 113951. [Google Scholar] [CrossRef]
- Ziegenhagen, B.; Schauerte, M.; Kormutak, A.; Scholz, F. Plastid DNA polymorphism of megagametophytes and pollen in two Abies species. Silvae Genet. 1996, 45, 355–358. [Google Scholar]
- Aziz, A.N.; Seabrook, J.E.; Tai, G.C. Amplification of RAPD markers from single pollen grains of diploid (2N= 2X= 24) potato. Am. J. Potato Res. 1999, 76, 179–182. [Google Scholar] [CrossRef]
- Matsuki, Y.; Isagi, Y.; Suyama, Y. The determination of multiple microsatellite genotypes and DNA sequences from a single pollen grain. Mol. Ecol. Notes 2007, 7, 194–198. [Google Scholar] [CrossRef]
- Aziz, A.; Sauve, R. Genetic mapping of Echinacea purpurea via individual pollen DNA fingerprinting. Mol. Breed. 2008, 21, 227–232. [Google Scholar] [CrossRef]
- Chen, P.H.; Pan, Y.B.; Chen, R.K. High-throughput procedure for single pollen grain collection and polymerase chain reaction in plants. J. Integr. Plant Biol. 2008, 50, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Mase, N.; Sawamura, Y.; Yamamoto, T.; Takada, N.; Nishio, S.; Saito, T.; Iketani, H. Direct genotyping of single pollen grains of a self-compatible mutant of Japanese pear (Pyrus pyrifolia) revealed inheritance of a duplicated chromosomal segment containing a second S-haplotype. Euphytica 2014, 200, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, S.; Schütze, K.; Donnison, I.S.; Grant, S.R.; Kuroiwa, T.; Kawano, S. Single pollen typing combined with laser-mediated manipulation. Plant J. 1999, 20, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Hess, D.; Gresshoff, P.M.; Fielitz, U.; Gleiss, D. Uptake of protein and bacteriophage into swelling and germinating pollen of Petunia hybrida. Z. Pflanzenphysiol. 1975, 74, 371–376. [Google Scholar] [CrossRef]
- Ohta, Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 1986, 83, 715–719. [Google Scholar] [CrossRef] [Green Version]
- Booy, G.; Krens, F.; Huizing, H. Attempted pollen-mediated transformation of maize. J. Plant Physiol. 1989, 135, 319–324. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Saunders, J.A.; Matthews, B.F.; Pittarelli, G.W. DNA uptake during electroporation of germinating pollen grains. Plant Sci. 1990, 70, 181–190. [Google Scholar] [CrossRef]
- Twell, D.; Klein, T.M.; McCormick, S. Transformation of pollen by particle bombardment. In Plant Tissue Culture Manual; Springer: Berlin/Heidelberg, Germany, 1991; pp. 631–644. [Google Scholar]
- Schreiber, D.N.; Dresselhaus, T. In vitro pollen germination and transient transformation ofZea mays and other plant species. Plant Mol. Biol. Rep. 2003, 21, 31–41. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, Z.; Wang, Y.; Chen, W.; Sun, C.; Cui, B.; Cui, J.; Yu, M.; Zeng, Z.; Guo, S.; et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants 2017, 3, 956–964. [Google Scholar] [CrossRef]
- Nagahara, S.; Higashiyama, T.; Mizuta, Y. Detection of a biolistic delivery of fluorescent markers and CRISPR/Cas9 to the pollen tube. Plant Reprod. 2021, 34, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, N.; Kanwal, M.; Norman, M.; Downs, J.; Ahmad, N.; Mago, R.; Bariana, H.; Muellner, M.; Bansal, U.; Jones, B.J. Wheat pollen uptake of CRISPR/Cas9 RNP-PDMAEMA nanoassemblies results in targeted loss of gene function in progeny. bioRxiv 2022. [Google Scholar] [CrossRef]
- Levin, I.; Gilboa, N. Direct PCR using tomato pollen grain suspensions. BioTechniques 1997, 23, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Petersen, G.; Johansen, B.; Seberg, O. PCR and sequencing from a single pollen grain. Plant Mol. Biol. 1996, 31, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Pacini, E.; Hesse, M. Pollenkitt–its composition, forms and functions. Flora-Morphol. Distrib. Funct. Ecol. Plants 2005, 200, 399–415. [Google Scholar] [CrossRef]
- Prisle, N.L.; Lin, J.J.; Purdue, S.; Lin, H.; Meredith, J.C.; Nenes, A. Cloud condensation nuclei activity of six pollenkitts and the influence of their surface activity. Atmos. Chem. Phys. 2019, 19, 4741–4761. [Google Scholar] [CrossRef] [Green Version]
- Chichiriccò, G.; Pacini, E.; Lanza, B. Pollenkitt of some monocotyledons: Lipid composition and implications for pollen germination. Plant Biol. 2019, 21, 920–926. [Google Scholar] [CrossRef]
- Rogers, S.O.; Bendich, A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 1985, 5, 69–76. [Google Scholar] [CrossRef]
- Brewbaker, J.L.; Kwack, B.H. The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot. 1963, 50, 859–865. [Google Scholar] [CrossRef]
- Imai, S.; Tsuge, N.; Tomotake, M.; Nagatome, Y.; Sawada, H.; Nagata, T.; Kumagai, H. An onion enzyme that makes the eyes water. Nature 2002, 419, 685. [Google Scholar] [CrossRef]
- Masamura, N.; McCallum, J.; Khrustaleva, L.; Kenel, F.; Pither-Joyce, M.; Shono, J.; Suzuki, G.; Mukai, Y.; Yamauchi, N.; Shigyo, M. Chromosomal organization and sequence diversity of genes encoding lachrymatory factor synthase in Allium cepa L. G3 Genes Genomes Genet. 2012, 2, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Suyama, Y. Procedure for single-pollen genotyping. In Single-Pollen Genotyping; Springer: Berlin/Heidelberg, Germany, 2011; pp. 7–15. [Google Scholar]
- Heslop-Harrison, J. Tapetal origin of pollen-coat substances in Lilium. New Phytol. 1968, 67, 779–786. [Google Scholar] [CrossRef]
- Hesse, M. Pollenkitt development and composition in Tilia platyphyllos (Tiliaceae) analysed by conventional. Tapetum Cytol. Funct. Biochem. Evol. 2012, 7, 39. [Google Scholar]
- Dobson, H.E. Survey of pollen and pollenkitt lipids–chemical cues to flower visitors? Am. J. Bot. 1988, 75, 170–182. [Google Scholar] [CrossRef]
- Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63, 3741–3751. [Google Scholar] [CrossRef]
Treatment | Number of Flowers in Umbel | Number Flowers that Set Seeds, (%) |
---|---|---|
Wet pollination with pollen growing medium | 56 | 20 (35.7) |
Wet pollination with 12% sucrose solution | 52 | 33 (63.5) |
Manual pollination with un-wetted pollen grains | 61 | 40 (65.5) |
Open pollination by insects | 62 | 58 (93.5) |
Negative control | 0 | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mardini, M.; Ermolaev, A.; Khrustaleva, L. Hidden Pitfalls of Using Onion Pollen in Molecular Research. Curr. Issues Mol. Biol. 2023, 45, 1065-1072. https://doi.org/10.3390/cimb45020070
Mardini M, Ermolaev A, Khrustaleva L. Hidden Pitfalls of Using Onion Pollen in Molecular Research. Current Issues in Molecular Biology. 2023; 45(2):1065-1072. https://doi.org/10.3390/cimb45020070
Chicago/Turabian StyleMardini, Majd, Aleksey Ermolaev, and Ludmila Khrustaleva. 2023. "Hidden Pitfalls of Using Onion Pollen in Molecular Research" Current Issues in Molecular Biology 45, no. 2: 1065-1072. https://doi.org/10.3390/cimb45020070
APA StyleMardini, M., Ermolaev, A., & Khrustaleva, L. (2023). Hidden Pitfalls of Using Onion Pollen in Molecular Research. Current Issues in Molecular Biology, 45(2), 1065-1072. https://doi.org/10.3390/cimb45020070