The Two-Sided Experimental Model of ImmunoCAP Inhibition Test as a Useful Tool for the Examination of Allergens Cross-Reactivity on the Example of α-Gal and Mammalian Meat Sensitization—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients History
2.2. Laboratory Procedures
2.2.1. Standard Laboratory Methods
2.2.2. ImmunoCAP Inhibition Test (IT)
2.2.3. The Experiment Scheme
2.3. Control
2.4. Statistical Analysis
3. Results
3.1. Results before ImmunoCAP Inhibition Test
3.2. Results after ImmunoCAPInhibition Test with α-Gal (o215-ImmunoCAP Inhibition Test; o215-IT)
3.3. Results after ImmunoCAP Inhibition Test with Beef (f27-ImmunoCAP Inhibition Test; f27-IT)
3.4. Control Results
4. Discussion
5. Conclusions
6. Study Limitations and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aalberse, R.C. Structural biology of allergens. J. Allergy Clin. Immunol. 2000, 106, 228–238. [Google Scholar] [CrossRef]
- Altmann, F. Coping with cross-reactive carbohydrate determinants in allergy diagnosis. Allergo J. Int. 2016, 25, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Ukleja-Sokołowska, N.; Gawrońska-Ukleja, E.; Lis, K.; Żbikowska-Gotz, M.; Sokołowski, Ł.; Bartuzi, Z. Anaphylactic reaction in patient allergic to mango. Allergy Asthma Clin. Immunol. 2018, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Savi, E.; Incorvaia, C.; Boni, E.; Mauro, M.; Peveri, S.; Pravettoni, V.; Quercia, O.; Reccardini, F.; Montagni, M.; Pessina, L.; et al. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study. PLoS ONE 2017, 12, e0180270. [Google Scholar] [CrossRef] [PubMed]
- Caruso, B.; Bonadonna, P.; Severino, M.G.; Manfredi, M.; Dama, A.; Schiappoli, M.; Rizzotti, P.; Senna, G.; Passalacqua, G. Evaluation of the IgE cross-reactions among vespid venoms. A possible approach for the choice of immunotherapy. Allergy 2007, 62, 561–564. [Google Scholar] [CrossRef]
- Schmidt-Hieltjes, Y.; Teodorowicz, M.; Jansen, A.; den Hartog, G.; Elfvering-Berendsen, L.; de Jong, N.W.; Savelkoul, H.F.; Ruinemans-Koerts, J. An alternative inhibition method for determining cross-reactive allergens. Clin. Chem. Lab. Med. 2017, 55, 248–253. [Google Scholar] [CrossRef]
- Aalberse, R.C. Assessment of allergen cross-reactivity. Clin. Mol. Allergy 2007, 5, 2. [Google Scholar] [CrossRef]
- Bernardi, M.L.; Giangrieco, I.; Camardella, L.; Ferrara, R.; Palazzo, P.; Panico, M.R.; Crescenzo, R.; Carratore, V.; Zennaro, D.; Liso, M.; et al. Allergenic lipid transfer proteins from plant-derived foods do not immunologically and clinically behave homogeneously: The kiwifruit LTP as a model. PLoS ONE 2011, 6, e27856. [Google Scholar] [CrossRef]
- Ukleja-Sokołowska, N.; Gawrońska-Ukleja, E.; Żbikowska-Gotz, M.; Bartuzi, Z.; Sokołowski, Ł. Sunflower seed allergy. Int. J. Immunopathol. Pharmacol. 2016, 29, 498–503. [Google Scholar] [CrossRef]
- Bastiaan-Net, S.; Batstra, M.R.; Aazamy, N.; Savelkoul, H.F.J.; van der Valk, J.P.M.; van Wijk, R.G.; Schreurs, M.W.J.; Wichers, H.J.; de Jong, N.W. IgE cross-reactivity measurement of cashew nut, hazelnut and peanut using a novel IMMULITE inhibition method. Clin. Chem. Lab. Med. 2020, 58, 1875–1883. [Google Scholar] [CrossRef]
- Lis, K.; Ukleja-Sokołowska, N.; Adamczak, R.; Bartuzi, Z. Experimental Research Models to Assess the Cross-Reactivity between Can f 5 and Human PSA-Two Different Perspectives. Int. J. Mol. Sci. 2022, 23, 11223. [Google Scholar] [CrossRef]
- Sweeney, M.J.; Kay, C.; Klotz, L.R.; Klotz, S.D. An IgE inhibition assay for the detection of allergen specific IgE. Ann. Allergy 1981, 46, 295–300. [Google Scholar]
- Macher, B.A.; Galili, U. The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: A carbohydrate of unique evolution and clinical relevance. Biochim. Biophys. Acta 2008, 1780, 75–88. [Google Scholar] [CrossRef]
- Martín-Lázaro, J.; Núñez-Orjales, R.; González-Guzmán, L.A.; González, M.T.; Boquete, M.; Carballada, F. Galactose-α-1,3-galactose (alpha-gal) allergy: First pediatric case in a series of patients in Spain. Allergol. Immunopathol. 2020, 48, 251–258. [Google Scholar] [CrossRef]
- Hilger, C.; Fischer, J.; Wölbing, F.; Biedermann, T. Role and Mechanism of Galactose-Alpha-1,3-Galactose in the Elicitation of Delayed Anaphylactic Reactions to Red Meat. Curr. Allergy Asthma Rep. 2019, 19, 3. [Google Scholar] [CrossRef]
- Platts-Mills, T.A.E.; Li, R.C.; Keshavarz, B.; Smith, A.R.; Wilson, J.M. Diagnosis and Management of Patients with the α-Gal Syndrome. J. Allergy Clin. Immunol. Pract. 2020, 8, 15–23.e1. [Google Scholar] [CrossRef]
- Román-Carrasco, P.; Hemmer, W.; Cabezas-Cruz, A.; Hodžić, A.; de la Fuente, J.; Swoboda, I. The α-Gal Syndrome and Potential Mechanisms. Front. Allergy 2021, 2, 783279. [Google Scholar] [CrossRef]
- Ün, M.; Dağaşan, S. Alpha-Gal Syndrome. JEB Med. Sci. 2020, 1, 102–106. [Google Scholar] [CrossRef]
- Richards, N.E.; Richards, R.D., Jr. Alpha-Gal Allergy as a Cause of Intestinal Symptoms in a Gastroenterology Community Practice. S. Med. J. 2021, 114, 169–173. [Google Scholar] [CrossRef]
- Wilson, J.M.; Schuyler, A.J.; Schroeder, N.; Platts-Mills, T.A. Galactose-α-1,3-Galactose: Atypical Food Allergen or Model IgE Hypersensitivity? Curr. Allergy Asthma Rep. 2017, 17, 8. [Google Scholar] [CrossRef]
- Mateo Borrega, M.B.; Garcia, B.; Larramendi, C.H.; Azofra, J.; González Mancebo, E.; Alvarado, M.I.; de Durana, M.D.A.D.; NúñezOrjales, R.; Diéguez, M.C.; Guilarte, M.; et al. IgE-Mediated Sensitization to Galactose-α-1,3- Galactose (α-Gal) in Urticaria and Anaphylaxis in Spain: Geographical Variations and Risk Factors. J. Investig. Allergol. Clin. Immunol. 2019, 29, 436–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mabelane, T.; Ogunbanjo, G.A. Ingestion of mammalian meat and alpha-gal allergy: Clinical relevance in primary care. Afr. J. Prim. Health Care Fam. Med. 2019, 11, e1–e5. [Google Scholar] [CrossRef] [PubMed]
- Chakrapani, N.; Fischer, J.; Swiontek, K.; Codreanu-Morel, F.; Hannachi, F.; Morisset, M.; Mugemana, C.; Bulaev, D.; Blank, S.; Bindslev-Jensen, C.; et al. α-Gal present on both glycolipids and glycoproteins contributes to immune response in meat-allergic patients. J. Allergy Clin. Immunol. 2022, 150, 396–405.e11. [Google Scholar] [CrossRef] [PubMed]
- Popescu, F.D.; Vieru, M. Precision medicine allergy immunoassay methods for assessing immunoglobulin E sensitization to aeroallergen molecules. World J. Methodol. 2018, 8, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Villalta, D.; Cecchi, L.; Farsi, A.; Chiarini, F.; Minale, P.; Voltolini, S.; Scala, E.; Quercia, O.; Muratore, L.; Pravettoni, V.; et al. Galactose-α-1,3-galactose syndrome: An Italian survey. Eur. Ann. Allergy Clin. Immunol. 2017, 49, 263–269. [Google Scholar] [CrossRef]
- Pisazka, V.; Duscher, G.; Hodžić, A.; Reider, N.; Allerberger, F. Alpha-gal allergy after a tick bite in Austria. Wien. Klin. Wochenschr. 2019, 131, 385–388. [Google Scholar] [CrossRef]
- Jappe, U.; Minge, S.; Kreft, B.; Ludwig, A.; Przybilla, B.; Walker, A.; Varga, R.; Seidel, P.; Biedermann, T.; Anemüller, W.; et al. Meat allergy associated with galactosyl-α-(1,3)-galactose (α-Gal)-Closing diagnostic gaps by anti-α-Gal IgE immune profiling. Allergy 2018, 73, 93–105. [Google Scholar] [CrossRef]
- Kollmann, D.; Nagl, B.; Ebner, C.; Emminger, W.; Wöhrl, S.; Kitzmüller, C.; Vrtala, S.; Mangold, A.; Ankersmit, H.J.; Bohle, B. The quantity and quality of α-gal-specific antibodies differ in individuals with and without delayed red meat allergy. Allergy 2017, 72, 266–273. [Google Scholar] [CrossRef]
- Apostolovic, D.; Tran, T.A.; Hamsten, C.; Starkhammar, M.; CirkovicVelickovic, T.; van Hage, M. Immunoproteomics of processed beef proteins reveal novel galactose-α-1,3-galactose-containing allergens. Allergy 2014, 69, 1308–1315. [Google Scholar] [CrossRef]
- Perusko, M.; Apostolovic, D.; Kiewiet, M.B.G.; Grundström, J.; Hamsten, C.; Starkhammar, M.; CirkovicVelickovic, T.; van Hage, M. Bovine γ-globulin, lactoferrin, and lactoperoxidase are relevant bovine milk allergens in patients with α-Gal syndrome. Allergy 2021, 76, 3766–3775. [Google Scholar] [CrossRef]
- Gonzalez-Quintela, A.; Laursen, A.S.D.; Vidal, C.; Skaaby, T.; Gude, F.; Linneberg, A. IgE antibodies to alpha-gal in the general adult population: Relationship with tick bites, atopy, and cat ownership. Clin. Exp. Allergy 2014, 44, 1061–1068. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, J.; Yin, J.; Sun, J.L.; Sun, Y.; Wu, K.; Katial, R. Delayed Anaphylaxis to Red Meat Associated With Specific IgE Antibodies to Galactose. Allergy Asthma Immunol. Res. 2015, 7, 92–94. [Google Scholar] [CrossRef]
- Bäcker, A.E.; Holgersson, J.; Samuelsson, B.E.; Karlsson, H. Rapid and sensitive GC/MS characterization of glycolipid released Galalpha1,3Gal-terminated oligosaccharides from small organ specimens of a single pig. Glycobiology 1998, 8, 533–545. [Google Scholar] [CrossRef]
- Takahashi, H.; Chinuki, Y.; Tanaka, A.; Morita, E. Laminin γ-1 and collagen α-1 (VI) chain are galactose-α-1,3-galactose-bound allergens in beef. Allergy 2014, 69, 199–207. [Google Scholar] [CrossRef]
- Hilger, C.; Fischer, J.; Swiontek, K.; Hentges, F.; Lehners, C.; Eberlein, B.; Morisset, M.; Biedermann, T.; Ollert, M. Two galactose-α-1,3-galactose carrying peptidases from pork kidney mediate anaphylactogenic responses in delayed meat allergy. Allergy 2016, 71, 711–719. [Google Scholar] [CrossRef]
- f27 Beef. Available online: https://www.thermofisher.com/diagnostic-education/hcp/wo/en/resource-center/allergen-encyclopedia/whole-allergens.html?key=f27 (accessed on 22 November 2022).
- Sela-Culang, I.; Kunik, V.; Ofran, Y. The structural basis of antibody-antigen recognition. Front. Immunol. 2013, 4, 302. [Google Scholar] [CrossRef]
- Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14 (Suppl. 2), 49. [Google Scholar] [CrossRef]
- Rutkowski, K.; Sowa, P.; Mroczko, B.; Pancewicz, S.; Rutkowski, R.; Czupryna, P.; Groblewska, M.; Łukaszewicz-Zając, M.; Moniuszko-Malinowska, A. Sensitisation and allergic reactions to alpha-1,3-galactose in Podlasie, Poland, an area endemic for tick-borne infections. Infect. Dis. (Lond) 2022, 54, 572–579. [Google Scholar] [CrossRef]
- Brzozowska, M.; Mokrzycka, N.; Porebski, G. Alpha-gal syndrome: The first report in Poland. Cent. Eur. J. Immunol. 2021, 46, 398–400. [Google Scholar] [CrossRef]
Measured Analyte | Inhibition Test (IT)-Stage | Results | p Wilcoxon Test | p Friedman ANOVA | [%] Inhibition | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Patient 1 | Patient 2 | Patient 3 | Patient 1 | Patient 2 | Patient 3 | |||||||||
ALEX2 Results | ||||||||||||||
Total IgE [kU/L] | before IT | 2602 | 714 | 134 | 0.05 | |||||||||
after o215-IT | 160 | 20 | 114 | 0.11 | 93.85 | 97.2 | 14.93 | |||||||
after f27-IT | 1484 | 478 | 128 | 0.11 | 42.99 | 33.1 | 4.47 | |||||||
Bos d_meat (beef) IgE [kUA/L] | before IT | 2.03 | 3.18 | 0.53 | 0.05 | |||||||||
after IT o215 | <0.1 | <0.1 | <0.1 | 0.11 | 100 | 100 | 100 | |||||||
after IT f27 | <0.1 | <0.1 | <0.1 | 0.11 | 100 | 100 | 100 | |||||||
Sus d_meat (pork) IgE [kUA/L] | before IT | 0.38 | 0.49 | <0.1 | 0.13 | |||||||||
after o215-IT | 0.21 | <0.1 | <0.1 | 0.18 | 44.74 | 100 | - | |||||||
after f27-IT | 0.36 | 0.46 | <0.1 | 0.18 | 5.26 | 6.12 | - | |||||||
Equ c_meat (horseflesh) IgE [kUA/L] | before IT | 1.8 | 3.17 | 0.25 | 0.05 | |||||||||
after o215-IT | <0.1 | 0.11 | 0.2 | 0.11 | 100 | 96.53 | 20 | |||||||
after f27-IT | 1.7 | 3.12 | 0.25 | 0.18 | 5.5 | 1.58 | 0 | |||||||
Ovi a_meat (lamb/mutton) IgE [kUA/L] | before IT | <0.1 | 0.59 | <0.1 | 0.36 | |||||||||
after o215-IT | <0.1 | <0.1 | <0.1 | - | - | 100 | - | |||||||
after f27-IT | <0.1 | 0.58 | <0.1 | - | - | 1.69 | - | |||||||
Oryc_meat (rabbit meat) IgE [kUA/L] | before IT | 0.76 | 0.53 | <0.1 | 0.22 | |||||||||
after o215-IT | <0.1 | <0.1 | <0.1 | 0.18 | 100 | 100 | - | |||||||
after f27-IT | 0.45 | 0.53 | <0.1 | 0.65 | 1.3 | 0 | - | |||||||
Gal d_meat (chicken) IgE [kUA/L] | before IT | <0.1 | <0.1 | <0.1 | - | |||||||||
after o215-IT | <0.1 | <0.1 | <0.1 | - | - | - | - | |||||||
after f27-IT | <0.1 | <0.1 | <0.1 | - | - | - | - | |||||||
Mel d_meat (turkey) IgE [kUA/L] | before IT | <0.1 | <0.1 | <0.1 | - | |||||||||
after o215-IT | <0.1 | <0.1 | <0.1 | - | - | - | - | |||||||
after f27-IT | <0.1 | <0.1 | <0.1 | - | - | - | - | |||||||
Bos d 6 IgE [kUA/L] (serum albumin) | before IT | <0.1 | <0.1 | <0.1 | - | |||||||||
after o215-IT | <0.1 | <0.1 | <0.1 | - | - | - | - | |||||||
after f27-IT | <0.1 | <0.1 | <0.1 | - | - | - | - | |||||||
Sus d 1 IgE [kUA/L] (serum albumin) | before IT | <0.1 | <0.1 | <0.1 | - | |||||||||
after o215-IT | <0.1 | <0.1 | <0.1 | - | - | - | - | |||||||
after f27-IT | <0.1 | <0.1 | <0.1 | - | - | - | - | |||||||
ISACE112i results | ||||||||||||||
anti-α-Gal IgE (nGal-alpha-1,3-Gal) [ISU-E] | before IT | 12 | 0.3 | <0.3 | ||||||||||
ImmunoCAP results | ||||||||||||||
anti-α-Gal IgE (nGal-alpha-1,3-Gal) [kUA/L] | before IT | 302 | 35.8 | 0.7 | 0.049 | |||||||||
after o215-IT | 43.6 | 4.28 | <0.1 | 0.11 | 85.56 | 88.04 | 100 | |||||||
after f27-IT | 161 | 26.1 | <0.1 | 0.11 | 46.69 | 27.09 | 100 | |||||||
anti-f27 (beef) IgE [kUA/L] | before IT | 26 | 0.38 | 0.51 | 0.059 | |||||||||
after o215-IT | 16.76 | 0.21 | <0.1 | 0.11 | 35.54 | 44.74 | 100 | |||||||
after f27-IT | 0.99 | <0.1 | <0.1 | 0.11 | 96.19 | 100 | 100 | |||||||
anti-f26 (pork) IgE [kUA/L] | before IT | 7.2 | <0.1 | <0.1 | ||||||||||
anti-f213 (rabbit meat) [kUA/L] IgE | before IT | 1.64 | <0.1 | <0.1 | ||||||||||
anti-f88 (mutton) IgE [kUA/L] | before IT | 2.47 | <0.1 | <0.1 | ||||||||||
anti-c74 (gelatine) IgE [kUA/L] | before IT | <0.1 | <0.1 | <0.1 | ||||||||||
anti-f83 (chicken) IgE [kUA/L] | before IT | <0.1 | <0.1 | <0.1 |
Control Analyte | Inhibition Test (IT)-Stage | Result | [%] Inhibition |
---|---|---|---|
Patient 1 | |||
Aln g 1 IgE (alder pollen; PR-10) [kU/L] | before IT | 0.49 | |
after o215-IT | 0.51 | −4.08 | |
after f27-IT | 0.48 | 2.04 | |
Amb a 1 IgE (ragweed pollen; pectate lyase) [kUA/L] | before IT | 0.40 | |
after IT o215 | 0.41 | −2.5 | |
after IT f27 | 0.41 | −2.5 | |
Gly m 5 IgE (soya bean; 7S vicilin) [kUA/L] | before IT | 1.24 | |
after o215-IT | 1.25 | −0.8 | |
after f27-IT | 1.32 | −6.45 | |
Act d 1 IgE (kiwi fruit; actinidin) [kUA/L] | before IT | 0.62 | |
after o215-IT | 0.65 | −4.83 | |
after f27-IT | 0.64 | −3.22 | |
Mal d 1 IgE (apple, PR-10) [kUA/L] | before IT | 0.44 | |
after o215-IT | 0.47 | −6.82 | |
after f27-IT | 0.44 | 0 | |
Ves v 5 IgE (wasp venom, antigen 5) [kUA/L] | before IT | 1.31 | |
after o215-IT | 1.32 | −0.76 | |
after f27-IT | 1.30 | 0.76 | |
Patient 2 | |||
Bet v 1 IgE (birch pollen, PR-10) [kU/L] | before IT | 0.63 | |
after o215-IT | 0.62 | 1.59 | |
after f27-IT | 0.64 | −1.59 | |
Ara h 8 IgE (peanut; PR-10) [kUA/L] | before IT | 0.33 | |
after IT o215 | 0.35 | −6.06 | |
after IT f27 | 0.32 | 3.12 | |
Act d 2 IgE (kiwi fruit; thaumatin-like protein) [kUA/L] | before IT | 0.48 | |
after o215-IT | 0.48 | 0 | |
after f27-IT | 0.51 | −6.25 | |
Canf 4 IgE (domestic dog; lipocalin) [kUA/L] | before IT | 1.79 | |
after o215-IT | 1.83 | −2.23 | |
after f27-IT | 1.80 | −0.56 | |
Fel d 4 IgE (domestic cat; lipocalin) [kUA/L] | before IT | 0.35 | |
after o215-IT | 0.36 | −2.86 | |
after f27-IT | 0.37 | −5.71 | |
Patient 3 | |||
Aln g 1 (alder pollen; PR-10) [kU/L] | before IT | 3.93 | |
after o215-IT | 3.98 | −1.27 | |
after f27-IT | 3.9 | 0.76 | |
Bet v 1 IgE (birch pollen, PR-10) [kUA/L] | before IT | 30.49 | |
after IT o215 | 29.46 | 3.38 | |
after IT f27 | 30.51 | −0.07 | |
Cor a 1.0103 IgE (hazel pollen, PR-10) [kUA/L] | before IT | 4.52 | |
after o215-IT | 4.58 | −1.33 | |
after f27-IT | 4.55 | −0.66 | |
Amb a 4 IgE (ragweed pollen; defensin-like protein) [kUA/L] | before IT | 1.79 | |
after o215-IT | 1.89 | −5.59 | |
after f27-IT | 1.89 | −5.59 | |
Art v 1 IgE (mugwort pollen; defensin-like protein) [kUA/L] | before IT | 17.85 | |
after o215-IT | 17.85 | 0 | |
after f27-IT | 17.82 | 0.17 | |
Ara h 8 IgE (peanut; PR-10) [kUA/L] | before IT | 1.68 | |
after o215-IT | 1.65 | 1.79 | |
after f27-IT | 1.67 | 0.6 | |
Gly m 4 IgE (soya bean; PR-10) [kUA/L] | before IT | 2.01 | |
after IT o215 | 1.98 | 1.49 | |
after IT f27 | 1.99 | 1 | |
Api g 1 IgE (celery root; PR-10) [kUA/L] | before IT | 3.86 | |
after o215-IT | 3.84 | 0.52 | |
after f27-IT | 3.87 | −0.26 | |
Cor a 1.0401 IgE (hazelnut; PR-10) [kUA/L] | before IT | 6.62 | |
after o215-IT | 6.62 | 0 | |
after f27-IT | 6.64 | −0.3 | |
Ani s 3 IgE (Anisakis simplex; tropomyosin) [kUA/L] | before IT | 0.31 | |
after o215-IT | 0.31 | 0 | |
after f27-IT | 0.32 | −3.23 | |
Can f urine (Can f 5) IgE (domestic dog; arginine esterase) [kUA/L] | before IT | 3.99 | |
after o215-IT | 4 | −0.25 | |
after f27-IT | 4.01 | −5 | |
Can f 1 IgE (domestic dog; lipocalin) [kUA/L] | before IT | 25.5 | |
after IT o215 | 24.8 | 2.75 | |
after IT f27 | 24.81 | 2.71 | |
Fel d 7 IgE (domestic cat; lipocalin) [kUA/L] | before IT | 6.49 | |
after o215-IT | 6.73 | −3.7 | |
after f27-IT | 6.69 | −3.1 | |
Ves v 5 IgE (wasp venom, antigen 5) [kUA/L] | before IT | 0.39 | |
after IT o215 | 0.37 | 5.12 | |
after IT f27 | 0.4 | −2.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lis, K.; Ukleja-Sokołowska, N.; Karwowska, K.; Wernik, J.; Pawłowska, M.; Bartuzi, Z. The Two-Sided Experimental Model of ImmunoCAP Inhibition Test as a Useful Tool for the Examination of Allergens Cross-Reactivity on the Example of α-Gal and Mammalian Meat Sensitization—A Preliminary Study. Curr. Issues Mol. Biol. 2023, 45, 1168-1182. https://doi.org/10.3390/cimb45020077
Lis K, Ukleja-Sokołowska N, Karwowska K, Wernik J, Pawłowska M, Bartuzi Z. The Two-Sided Experimental Model of ImmunoCAP Inhibition Test as a Useful Tool for the Examination of Allergens Cross-Reactivity on the Example of α-Gal and Mammalian Meat Sensitization—A Preliminary Study. Current Issues in Molecular Biology. 2023; 45(2):1168-1182. https://doi.org/10.3390/cimb45020077
Chicago/Turabian StyleLis, Kinga, Natalia Ukleja-Sokołowska, Kornelia Karwowska, Joanna Wernik, Małgorzata Pawłowska, and Zbigniew Bartuzi. 2023. "The Two-Sided Experimental Model of ImmunoCAP Inhibition Test as a Useful Tool for the Examination of Allergens Cross-Reactivity on the Example of α-Gal and Mammalian Meat Sensitization—A Preliminary Study" Current Issues in Molecular Biology 45, no. 2: 1168-1182. https://doi.org/10.3390/cimb45020077
APA StyleLis, K., Ukleja-Sokołowska, N., Karwowska, K., Wernik, J., Pawłowska, M., & Bartuzi, Z. (2023). The Two-Sided Experimental Model of ImmunoCAP Inhibition Test as a Useful Tool for the Examination of Allergens Cross-Reactivity on the Example of α-Gal and Mammalian Meat Sensitization—A Preliminary Study. Current Issues in Molecular Biology, 45(2), 1168-1182. https://doi.org/10.3390/cimb45020077