Differential Expression of Subsets of Genes Related to HDL Metabolism and Atherogenesis in the Peripheral Blood in Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Laboratory Tests
2.2. Gene Expression Analysis by Real-Time RT-PCR
2.3. Interaction between Protein Products of Genes and Pathway Analyses
2.4. Statistical Analysis
3. Results
3.1. Lipid and Lipoprotein Levels and Anthropometric Data of the Patients
3.2. Expression of Genes Related to HDL Metabolism and Atherogenesis in Control and CAD Cohorts
3.2.1. Differential Gene Expression
3.2.2. Functional Enrichment Analysis and Protein–Protein Interactions
3.3. Association of Transcripts with Lipids in Control and CAD Cohorts
3.3.1. Bivariate Correlations between Transcript and Lipid Levels
3.3.2. Contribution of Transcript to HDL-C Level by Multiple Regression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Groenen, A.G.; Halmos, B.; Tall, A.R.; Westerterp, M. Cholesterol efflux pathways, inflammation, and atherosclerosis. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 426–439. [Google Scholar] [CrossRef]
- Rasheed, A.; Cummins, C.L. Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int. J. Mol. Sci. 2018, 19, 2307. [Google Scholar] [CrossRef]
- Dergunov, A.D.; Baserova, V.B. Different Pathways of Cellular Cholesterol Efflux. Cell Biochem. Biophys. 2022, 80, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Cuchel, M.; Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 2011, 364, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Abe, R.J.; Abe, J.I.; Nguyen, M.T.H.; Olmsted-Davis, E.A.; Mamun, A.; Banerjee, P.; Cooke, J.P.; Fang, L.; Pownall, H.; Le, N.T. Free Cholesterol Bioavailability and Atherosclerosis. Curr. Atheroscler. Rep. 2022, 24, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Agarwala, A.P.; Rodrigues, A.; Risman, M.; McCoy, M.; Trindade, K.; Qu, L.; Cuchel, M.; Billheimer, J.; Rader, D.J. High-Density Lipoprotein (HDL) Phospholipid Content and Cholesterol Efflux Capacity Are Reduced in Patients With Very High HDL Cholesterol and Coronary Disease. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1515–1519. [Google Scholar] [CrossRef]
- Josefs, T.; Wouters, K.; Tietge, U.J.F.; Annema, W.; Dullaart, R.P.F.; Vaisar, T.; Arts, I.C.W.; van der Kallen, C.J.H.; Stehouwer, C.D.A.; Schalkwijk, C.G.; et al. High-density lipoprotein cholesterol efflux capacity is not associated with atherosclerosis and prevalence of cardiovascular outcome: The CODAM study. J. Clin. Lipidol. 2020, 14, 122–132. [Google Scholar] [CrossRef]
- Asztalos, B.F.; Llera-Moya, M.; Dallal, G.E.; Horvath, K.V.; Schaefer, E.J.; Rothblat, G.H. Differential effects of HDL subpopulations on cellular ABCA1- and SR-BI-mediated cholesterol efflux. J. Lipid Res. 2005, 46, 2246–2253. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Z.W.; Zeng, P.H.; Zhou, Y.J.; Yin, W.J. Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle 2022, 21, 1121–1139. [Google Scholar] [CrossRef]
- Matsuo, M. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. J. Pharmacol. Sci. 2022, 148, 197–203. [Google Scholar] [CrossRef]
- Camont, L.; Chapman, M.J.; Kontush, A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med. 2011, 17, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.J.; Azhar, S.; Kraemer, F.B. SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annu. Rev. Physiol. 2018, 80, 95–116. [Google Scholar] [CrossRef]
- Han, J.; Nicholson, A.C.; Zhou, X.; Feng, J.; Gotto, A.M., Jr.; Hajjar, D.P. Oxidized low density lipoprotein decreases macrophage expression of scavenger receptor B-I. J. Biol. Chem. 2001, 276, 16567–16572. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.; Wroblewski, J.M.; Webb, N.R.; van der Westhuyzen, D.R. Impact of phospholipid transfer protein on nascent high-density lipoprotein formation and remodeling. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1910–1916. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 2002, 109, 1125–1131. [Google Scholar] [CrossRef]
- Repa, J.J.; Liang, G.; Ou, J.; Bashmakov, Y.; Lobaccaro, J.M.; Shimomura, I.; Shan, B.; Brown, M.S.; Goldstein, J.L.; Mangelsdorf, D.J. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 2000, 14, 2819–2830. [Google Scholar] [CrossRef]
- Russo-Savage, L.; Schulman, I.G. Liver X receptors and liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166121. [Google Scholar] [CrossRef]
- Cheng, Y.; Manabe, I.; Hayakawa, S.; Endo, Y.; Oishi, Y. Caspase-11 contributes to site-1 protease cleavage and SREBP1 activation in the inflammatory response of macrophages. Front. Immunol. 2023, 14, 1009973. [Google Scholar] [CrossRef]
- Im, S.S.; Yousef, L.; Blaschitz, C.; Liu, J.Z.; Edwards, R.A.; Young, S.G.; Raffatellu, M.; Osborne, T.F. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 2011, 13, 540–549. [Google Scholar] [CrossRef]
- Peng, C.; Lei, P.; Li, X.; Xie, H.; Yang, X.; Zhang, T.; Cao, Z.; Zhang, J. Down-regulated of SREBP-1 in circulating leukocyte is a risk factor for atherosclerosis: A case control study. Lipids Health Dis. 2019, 18, 177. [Google Scholar] [CrossRef]
- Perez-Belmonte, L.M.; Moreno-Santos, I.; Cabrera-Bueno, F.; Sanchez-Espin, G.; Castellano, D.; Such, M.; Crespo-Leiro, M.G.; Carrasco-Chinchilla, F.; Alonso-Pulpon, L.; Lopez-Garrido, M.; et al. Expression of Sterol Regulatory Element-Binding Proteins in epicardial adipose tissue in patients with coronary artery disease and diabetes mellitus: Preliminary study. Int. J. Med.Sci. 2017, 14, 268–274. [Google Scholar] [CrossRef]
- Goldstein, J.L.; DeBose-Boyd, R.A.; Brown, M.S. Protein sensors for membrane sterols. Cell 2006, 124, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.H.; Fu, Y.C.; Zhang, D.W.; Yin, K.; Tang, C.K. Foam cells in atherosclerosis. Clin. Chim. Acta 2013, 424, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Heisler, D.B.; Johnson, K.A.; Ma, D.H.; Ohlson, M.B.; Zhang, L.; Tran, M.; Corley, C.D.; Abrams, M.E.; McDonald, J.G.; Schoggins, J.W.; et al. A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection. Elife 2023, 12, e83534. [Google Scholar] [CrossRef]
- Li, Q.; Wang, M.; Zhang, S.; Jin, M.; Chen, R.; Luo, Y.; Sun, X. Single-cell RNA sequencing in atherosclerosis: Mechanism and precision medicine. Front. Pharmacol. 2022, 13, 977490. [Google Scholar] [CrossRef]
- Cochain, C.; Vafadarnejad, E.; Arampatzi, P.; Pelisek, J.; Winkels, H.; Ley, K.; Wolf, D.; Saliba, A.E.; Zernecke, A. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circ. Res. 2018, 122, 1661–1674. [Google Scholar] [CrossRef]
- Kim, K.; Shim, D.; Lee, J.S.; Zaitsev, K.; Williams, J.W.; Kim, K.W.; Jang, M.Y.; Seok, J.H.; Yun, T.J.; Lee, S.H.; et al. Transcriptome Analysis Reveals Nonfoamy Rather Than Foamy Plaque Macrophages Are Proinflammatory in Atherosclerotic Murine Models. Circ. Res. 2018, 123, 1127–1142. [Google Scholar] [CrossRef]
- Westerterp, M.; Fotakis, P.; Ouimet, M.; Bochem, A.E.; Zhang, H.; Molusky, M.M.; Wang, W.; Abramowicz, S.; la Bastide-van, G.S.; Wang, N.; et al. Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis. Circulation 2018, 138, 898–912. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, P.; Kothari, V.; Thomas, D.G.; Westerterp, M.; Molusky, M.M.; Altin, E.; Abramowicz, S.; Wang, N.; He, Y.; Heinecke, J.W.; et al. Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over Proinflammatory Effects in Atherosclerotic Plaques. Arterioscler. Thromb. Vasc. Biol. 2019, 39, e253–e272. [Google Scholar] [CrossRef]
- Van der Vorst, E.P.C.; Theodorou, K.; Wu, Y.; Hoeksema, M.A.; Goossens, P.; Bursill, C.A.; Aliyev, T.; Huitema, L.F.A.; Tas, S.W.; Wolfs, I.M.J.; et al. High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-kB/STAT1-IRF1 Signaling. Cell Metab. 2017, 25, 197–207. [Google Scholar] [CrossRef]
- Dergunova, L.V.; Nosova, E.V.; Dmitrieva, V.G.; Rozhkova, A.V.; Bazaeva, E.V.; Limborska, S.A.; Dergunov, A.D. HDL cholesterol is associated with PBMC expression of genes involved in HDL metabolism and atherogenesis. J. Med. Biochem. 2020, 39, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Carbon, S.; Douglass, E.; Good, B.M.; Unni, D.R.; Harris, N.L.; Mungall, C.J.; Basu, S.; Chisholm, R.L.; Dodson, R.J.; Hartline, E.; et al. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Nakaya, A. The KEGG databases at GenomeNet. Nucleic Acids Res. 2002, 30, 42–46. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef]
- Vandesompele, J.; De, P.K.; Pattyn, F.; Poppe, B.; Van, R.N.; De, P.A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef]
- McDonald, J.H. Multiple comparisons. In Handbook of Biological Statistics, 3rd ed.; Sparky House Publishing: Baltimore, MD, USA, 2014; pp. 254–260. Available online: http://www.biostathandbook.com/multiplecomparisons.html (accessed on 14 July 2023).
- Dergunov, A.D.; Litvinov, D.Y.; Bazaeva, E.V.; Dmitrieva, V.G.; Nosova, E.V.; Rozhkova, A.V.; Dergunova, L.V. Relation of High-Density Lipoprotein Charge Heterogeneity, Cholesterol Efflux Capacity, and the Expression of High-Density Lipoprotein-Related Genes in Mononuclear Cells to the HDL-Cholesterol Level. Lipids 2018, 53, 979–991. [Google Scholar] [CrossRef]
- Chen, H.H.; Stewart, A.F. Transcriptomic Signature of Atherosclerosis in the Peripheral Blood: Fact or Fiction? Curr. Atheroscler. Rep. 2016, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jiang, S.; Ma, Y.; Ma, J.; Hassan, W.; Shang, J. Peripheral-blood gene expression profiling studies for coronary artery disease and its severity in Xinjiang population in China. Lipids Health Dis. 2018, 17, 154. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Song, C.; Liu, Q.; Zhang, R.; Fu, R.; Wang, H.; Yin, D.; Song, W.; Zhang, H.; Dou, K. Gene Expression Analysis Suggests Immunological Changes of Peripheral Blood Monocytes in the Progression of Patients With Coronary Artery Disease. Front. Genet. 2021, 12, 641117. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Yin, R.X.; Huang, F.; Yang, S.; Chen, W.X.; Wu, J.Z. Integrated analysis of gene expression changes associated with coronary artery disease. Lipids Health Dis. 2019, 18, 92. [Google Scholar] [CrossRef] [PubMed]
- Prakash, T.; Ramachandra, N.B. Integrated Network and Gene Ontology Analysis Identifies Key Genes and Pathways for Coronary Artery Diseases. Avicenna J. Med. Biotechnol. 2021, 13, 15–23. [Google Scholar] [CrossRef]
- Byars, S.G.; Inouye, M. Genome-Wide Association Studies and Risk Scores for Coronary Artery Disease: Sex Biases. Adv. Exp. Med. Biol. 2018, 1065, 627–642. [Google Scholar]
- Litvinov, D.Y.; Savushkin, E.V.; Dergunov, A.D. Intracellular and Plasma Membrane Events in Cholesterol Transport and Homeostasis. J. Lipids 2018, 2018, 3965054. [Google Scholar] [CrossRef]
- Alagarsamy, J.; Jaeschke, A.; Hui, D.Y. Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int. J. Mol. Sci. 2022, 23, 9892. [Google Scholar] [CrossRef]
- Ference, B.A.; Kastelein, J.J.P.; Ray, K.K.; Ginsberg, H.N.; Chapman, M.J.; Packard, C.J.; Laufs, U.; Oliver-Williams, C.; Wood, A.M.; Butterworth, A.S.; et al. Association of Triglyceride-Lowering LPL Variants and LDL-C-Lowering LDLR Variants With Risk of Coronary Heart Disease. JAMA 2019, 321, 364–373. [Google Scholar] [CrossRef]
- Kanonidou, C. Small dense low-density lipoprotein: Analytical review. Clin. Chim. Acta 2021, 520, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Seo, T.; Al-Haideri, M.; Treskova, E.; Worgall, T.S.; Kako, Y.; Goldberg, I.J.; Deckelbaum, R.J. Lipoprotein lipase-mediated selective uptake from low density lipoprotein requires cell surface proteoglycans and is independent of scavenger receptor class B type 1. J. Biol. Chem. 2000, 275, 30355–30362. [Google Scholar] [CrossRef]
- Bayly, G.R. Lipids and Disorders of Lipoprotein Metabolism. In Clinical Biochemistry: Metabolic and Clinical Aspects Chapter 37, 3rd ed.; Marshall, W.J., Lapsley, M., Day, A.P., Ayling, R.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 702–736. [Google Scholar]
- Goulopoulou, S.; McCarthy, C.G.; Webb, R.C. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol. Rev. 2016, 68, 142–167. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Z.; Ye, D.; Feng, Y.; Liu, M.; Xu, Y.; Wang, M.; Zhang, J.; Liu, J.; Zhao, M.; et al. The Role of CXC Chemokines in Cardiovascular Diseases. Front. Pharmacol. 2021, 12, 765768. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, L.M.; Lin, E.; Mick, E.; Koupenova, M.; Weinberg, E.O.; Kramer, C.D.; Genco, C.A.; Tanriverdi, K.; Larson, M.G.; Benjamin, E.J.; et al. Interleukin 1 receptor 1 and interleukin 1b regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Rogacev, K.S.; Zawada, A.M.; Emrich, I.; Seiler, S.; Bohm, M.; Fliser, D.; Woollard, K.J.; Heine, G.H. Lower Apo A-I and lower HDL-C levels are associated with higher intermediate CD14++CD16+ monocyte counts that predict cardiovascular events in chronic kidney disease. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2120–2127. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, R.B.; Yin, X.; Larson, M.G.; Yamamoto, J.F.; Fontes, J.D.; Kathiresan, S.; Rong, J.; Levy, D.; Keaney, J.F., Jr.; Wang, T.J.; et al. Multiple inflammatory biomarkers in relation to cardiovascular events and mortality in the community. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1728–1733. [Google Scholar] [CrossRef]
- Xiao, X.; Yang, C.; Qu, S.L.; Shao, Y.D.; Zhou, C.Y.; Chao, R.; Huang, L.; Zhang, C. S100 proteins in atherosclerosis. Clin. Chim. Acta 2020, 502, 293–304. [Google Scholar] [CrossRef]
- Xiao, S.; Kuang, C. Identification of crucial genes that induce coronary atherosclerosis through endothelial cell dysfunction in AMI-identifying hub genes by WGCNA. Am. J. Transl. Res. 2022, 14, 8166–8174. [Google Scholar]
- Antonov, A.S.; Kolodgie, F.D.; Munn, D.H.; Gerrity, R.G. Regulation of macrophage foam cell formation by alphaVbeta3 integrin: Potential role in human atherosclerosis. Am. J. Pathol. 2004, 165, 247–258. [Google Scholar] [CrossRef]
- Schneider, J.G.; Zhu, Y.; Coleman, T.; Semenkovich, C.F. Macrophage beta3 integrin suppresses hyperlipidemia-induced inflammation by modulating TNFalpha expression. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2699–2706. [Google Scholar] [CrossRef] [PubMed]
- Dergunov, A.D.; Ponthieux, A.; Mel’kin, M.V.; Lambert, D.; Sokolova, O.Y.; Akhmedzhanov, N.M.; Visvikis-Siest, S.; Siest, G. Capillary isotachophoresis study of lipoprotein network sensitive to apolipoprotein E phenotype. 2. ApoE and apoC-III relations in triglyceride clearance. Mol. Cell. Biochem. 2009, 325, 25–40. [Google Scholar] [CrossRef]
- Manchev, V.T.; Hilpert, M.; Berrou, E.; Elaib, Z.; Aouba, A.; Boukour, S.; Souquere, S.; Pierron, G.; Rameau, P.; Andrews, R.; et al. A new form of macrothrombocytopenia induced by a germ-line mutation in the PRKACG gene. Blood 2014, 124, 2554–2563. [Google Scholar] [CrossRef]
- Moen, L.V.; Sener, Z.; Volchenkov, R.; Svarstad, A.C.; Eriksen, A.M.; Holen, H.L.; Skalhegg, B.S. Ablation of the Cbeta2 subunit of PKA in immune cells leads to increased susceptibility to systemic inflammation in mice. Eur. J. Immunol. 2017, 47, 1880–1889. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, J.; Tang, Y.; Wang, Y.; Zhao, J.; Ding, L.; Peng, Y.; Zhang, Z. Transcriptome-wide analysis reveals the coregulation of RNA-binding proteins and alternative splicing genes in the development of atherosclerosis. Sci. Rep. 2023, 13, 1764. [Google Scholar] [CrossRef]
- Raghavan, S.; Singh, N.K.; Gali, S.; Mani, A.M.; Rao, G.N. Protein Kinase C theta Via Activating Transcription Factor 2-Mediated CD36 Expression and Foam Cell Formation of Ly6C(hi) Cells Contributes to Atherosclerosis. Circulation 2018, 138, 2395–2412. [Google Scholar] [CrossRef] [PubMed]
Control (n = 63) | CAD (n = 76) | p | |
---|---|---|---|
HDL-C, mM | 1.25 ± 0.43 | 1.21 ± 0.57 | 0.133 |
Chol, mM | 5.04 ±1.28 | 4.21 ± 1.32 & | 0.000 |
LDL-C, mM | 3.08 ± 1.04 | 2.32 ± 0.97 & | 0.000 |
VLDL-C, mM | 0.72 ± 0.34 | 0.68 ± 0.31 | 0.559 |
nonHDL-C, mM | 3.79 ± 1.10 | 3.00 ± 1.04 & | 0.000 |
TG, mM | 1.55 ± 0.74 | 1.48 ± 0.68 | 0.697 |
atherogenicity index | 3.32 ± 1.25 | 2.87 ± 1.40 & | 0.017 |
apoA-I, mg/dL | 140.51 ± 38.19 | 157.83 ± 48.7 & | 0.027 |
apoB, mg/dL | 87.32 ± 20.67 | 84.27 ± 25.37 | 0.259 |
BMI, kg/m2 | 28.63 ± 2.75 | 28.14 ± 3.57 | 0.599 |
age, year | 49.05± 5.63 | 54.07 ± 4.18 & | 0.000 |
Term | Count | Genes | FDR |
---|---|---|---|
Biological Process | |||
GO:0042632~cholesterol homeostasis | 11 | ABCA1, SCARB1, CETP, ABCA5, NR1H2, LPL, LCAT, NR1H3, APOA1, APOE, LDLR | 5.03 × 10−14 |
GO:0034375~high-density lipoprotein particle remodeling | 7 | SCARB1, CETP, ABCA5, LCAT, APOA1, APOE, PLTP | 8.94 × 10−12 |
GO:0043691~reverse cholesterol transport | 7 | ABCA1, SCARB1, CETP, ABCA5, LCAT, APOA1, APOE | 1.38 × 10−11 |
GO:0010745~negative regulation of macrophage derived foam cell differentiation | 6 | ABCA1, CETP, ABCA5, NR1H2, ITGB3, NR1H3 | 6.34 × 10−10 |
GO:0006869~lipid transport | 8 | ABCA1, SCARB1, CETP, ABCA5, APOA1, PCTP, APOE, PLTP | 4.64 × 10−9 |
GO:0010875~positive regulation of cholesterol efflux | 6 | ABCA1, NR1H2, NR1H3, APOA1, APOE, PLTP | 2.62 × 10−8 |
GO:0034372~very-low-density lipoprotein particle remodeling | 5 | CETP, LPL, LCAT, APOA1, APOE | 2.99 × 10−8 |
GO:0070328~triglyceride homeostasis | 6 | SCARB1, CETP, LPL, NR1H3, APOA1, APOE | 8.82 × 10−8 |
GO:0008203~cholesterol metabolic process | 7 | ABCA1, CETP, ABCA5, LCAT, APOA1, APOE, LDLR | 8.82 × 10−8 |
GO:0030301~cholesterol transport | 5 | CETP, ABCA5, LCAT, APOA1, LDLR | 1.20 × 10−6 |
GO:0033344~cholesterol efflux | 5 | ABCA1, SCARB1, ABCA5, APOA1, APOE | 2.61 × 10−6 |
GO:0006954~inflammatory response | 9 | IL1R1, IL1B, S100A12, TLR8, CD14, TNFRSF1B, CXCL5, S100A8, TNFRSF1A | 2.95 × 10−6 |
GO:0034384~high-density lipoprotein particle clearance | 4 | SCARB1, APOA1, APOE, LDLR | 3.62 × 10−6 |
GO:0015914~phospholipid transport | 5 | SCARB1, CETP, PCTP, PLTP, LDLR | 9.50 × 10−6 |
GO:0050729~positive regulation of inflammatory response | 6 | IL1B, LPL, S100A12, LDLR, S100A8, TNFRSF1A | 1.34 × 10−5 |
GO:0034380~high-density lipoprotein particle assembly | 4 | ABCA1, APOA1, APOE, PRKACA | 1.84 × 10−5 |
GO:0010867~positive regulation of triglyceride biosynthetic process | 4 | SCARB1, NR1H2, NR1H3, LDLR | 3.57 × 10−5 |
GO:0006898~receptor-mediated endocytosis | 5 | AMN, ITGAM, CD14, APOE, LDLR | 1.23 × 10−4 |
GO:0071222~cellular response to lipopolysaccharide | 6 | ABCA1, IL1B, NR1H3, CD14, TNFRSF1B, CXCL5 | 1.51 × 10−4 |
GO:0006629~lipid metabolic process | 6 | NR1H2, LPL, LCAT, NR1H3, PLTP, LDLR | 2.98 × 10−4 |
GO:0032369~negative regulation of lipid transport | 3 | NR1H2, ITGB3, NR1H3 | 2.98 × 10−4 |
GO:0042158~lipoprotein biosynthetic process | 3 | LCAT, APOA1, APOE | 4.73 × 10−4 |
GO:0032376~positive regulation of cholesterol transport | 3 | CETP, NR1H2, NR1H3 | 6.50 × 10−4 |
GO:0070508~cholesterol import | 3 | SCARB1, APOA1, LDLR | 6.50 × 10−4 |
GO:0032489~regulation of Cdc42 protein signal transduction | 3 | ABCA1, APOA1, APOE | 0.001163 |
GO:0051006~positive regulation of lipoprotein lipase activity | 3 | NR1H2, NR1H3, APOA1 | 0.001794 |
GO:0010887~negative regulation of cholesterol storage | 3 | ABCA1, NR1H2, NR1H3 | 0.002109 |
GO:0033700~phospholipid efflux | 3 | ABCA1, APOA1, APOE | 0.00288 |
GO:0071260~cellular response to mechanical stimulus | 4 | IL1B, ITGB3, TLR8, TNFRSF1A | 0.003053 |
GO:0045723~positive regulation of fatty acid biosynthetic process | 3 | NR1H2, NR1H3, APOA1 | 0.003133 |
GO:0032729~positive regulation of interferon-gamma production | 4 | IL1R1, IL1B, TLR8, CD14 | 0.003204 |
GO:0030593~neutrophil chemotaxis | 4 | IL1B, S100A12, CXCL5, S100A8 | 0.003466 |
GO:0055091~phospholipid homeostasis | 3 | ABCA1, CETP, APOA1 | 0.004246 |
GO:0051044~positive regulation of membrane protein ectodomain proteolysis | 3 | IL1B, APOE, TNFRSF1B | 0.004632 |
GO:0046470~phosphatidylcholine metabolic process | 3 | CETP, LCAT, APOA1 | 0.00616 |
GO:0050728~negative regulation of inflammatory response | 4 | NR1H3, APOA1, APOE, TNFRSF1A | 0.012719 |
GO:0006641~triglyceride metabolic process | 3 | CETP, LPL, APOE | 0.017257 |
GO:0031663~lipopolysaccharide-mediated signaling pathway | 3 | SCARB1, IL1B, CD14 | 0.022846 |
GO:0006644~phospholipid metabolic process | 3 | LPL, LCAT, APOA1 | 0.036972 |
GO:0090108~positive regulation of high-density lipoprotein particle assembly | 2 | ABCA1, NR1H2 | 0.036972 |
GO:0010899~regulation of phosphatidylcholine catabolic process | 2 | SCARB1, LDLR | 0.036972 |
GO:0061771~response to caloric restriction | 2 | APOE, LDLR | 0.036972 |
GO:0032757~positive regulation of interleukin-8 production | 3 | IL1B, TLR8, CD14 | 0.040866 |
GO:0002790~peptide secretion | 2 | ABCA1, S100A8 | 0.043243 |
GO:1902339~positive regulation of apoptotic process involved in morphogenesis | 2 | TNFRSF1B, TNFRSF1A | 0.043243 |
GO:0090107~regulation of high-density lipoprotein particle assembly | 2 | ABCA1, LCAT | 0.043243 |
Molecular function | |||
GO:0031210~phosphatidylcholine binding | 5 | ABCA1, CETP, APOA1, PCTP, PLTP | 1.35 × 10−5 |
GO:0001540~beta-amyloid binding | 5 | SCARB1, ITGAM, APOA1, APOE, LDLR | 3.40 × 10−4 |
GO:0008289~lipid binding | 6 | SCARB1, CETP, APOA1, PCTP, APOE, PLTP | 3.40 × 10−4 |
GO:0034186~apolipoprotein A-I binding | 3 | ABCA1, SCARB1, LCAT | 6.56 × 10−4 |
GO:0071813~lipoprotein particle binding | 3 | LPL, APOE, LDLR | 0.001294 |
GO:0015485~cholesterol binding | 4 | ABCA1, CETP, NR1H3, APOA1 | 0.001294 |
GO:0008035~high-density lipoprotein particle binding | 3 | SCARB1, APOA1, PLTP | 0.002458 |
GO:0030169~low-density lipoprotein particle binding | 3 | SCARB1, PLTP, LDLR | 0.004408 |
GO:0034185~apolipoprotein binding | 3 | ABCA1, SCARB1, LPL | 0.004408 |
GO:0005319~lipid transporter activity | 3 | ABCA1, ABCA5, APOE | 0.011161 |
GO:0005102~receptor binding | 5 | ABCA1, AMN, LPL, APOA1, APOE | 0.030793 |
GO:0005507~copper ion binding | 3 | ALB, S100A12, F5 | 0.035664 |
Cellular component | |||
GO:0005615~extracellular space | 16 | CETP, AMN, ITGAM, APOA1, LPL, LCAT, CXCL5, F5, TNFRSF1A, IL1B, ALB, S100A12, CD14, APOE, PLTP, S100A8 | 2.71 × 10−7 |
GO:0005576~extracellular region | 16 | CETP, IL1R1, APOA1, LPL, LCAT, TNFRSF1B, CXCL5, F5, TNFRSF1A, IL1B, ALB, S100A12, CD14, APOE, PLTP, S100A8 | 4.41 × 10−7 |
GO:0034364~high-density lipoprotein particle | 5 | CETP, LCAT, APOA1, APOE, PLTP | 1.55 × 10−6 |
GO:0005886~plasma membrane | 19 | ABCA1, SCARB1, AMN, ITGAM, ABCA5, IL1R1, ITGB3, APOA1, LPL, TNFRSF1B, F5, TNFRSF1A, S100A12, TLR8, CD14, APOE, PRKACA, LDLR, S100A8 | 2.95 × 10−4 |
GO:0009897~external side of plasma membrane | 7 | ABCA1, ITGAM, IL1R1, ITGB3, TLR8, CD14, LDLR | 6.99 × 10−4 |
GO:0070062~extracellular exosome | 12 | SCARB1, CETP, AMN, ITGAM, ITGB3, ALB, LCAT, APOA1, CD14, APOE, PRKACA, S100A8 | 0.001074 |
GO:0042627~chylomicron | 3 | LPL, APOA1, APOE | 0.002452 |
GO:0043235~receptor complex | 5 | AMN, ITGB3, NR1H3, LDLR, TNFRSF1A | 0.002594 |
GO:0034361~very-low-density lipoprotein particle | 3 | LPL, APOA1, APOE | 0.004377 |
GO:0009986~cell surface | 6 | SCARB1, ITGAM, ITGB3, LPL, LDLR, TNFRSF1A | 0.014727 |
GO:0005794~Golgi apparatus | 7 | ABCA1, ABCA5, ALB, CD14, APOE, LDLR, F5 | 0.031004 |
GO:0030139~endocytic vesicle | 3 | ABCA1, AMN, APOA1 | 0.033311 |
GO:0045121~membrane raft | 4 | ABCA1, CD14, TNFRSF1B, TNFRSF1A | 0.033311 |
GO:0010008~endosome membrane | 4 | AMN, TLR8, CD14, LDLR | 0.037424 |
GO:0002947~tumor necrosis factor receptor superfamily complex | 2 | TNFRSF1B, TNFRSF1A | 0.032813 |
GO:0005788~endoplasmic reticulum lumen | 4 | ALB, APOA1, APOE, F5 | 0.041851 |
GO:0005764~lysosome | 4 | SCARB1, ABCA5, IL1B, LDLR | 0.041851 |
Gene | HDL-C | TG | Chol | apoA-I |
---|---|---|---|---|
Control | ||||
APOA1 | 0.323 (0.011) | |||
CUBN | −0.322 (0.010) | −0.305 (0.015) | ||
HDLBP | −0.324 (0.010) | |||
LCAT | −0.336 (0.008) | |||
SOAT1 | −0.397 (0.002) | |||
CAD | ||||
ABCG1 | 0.294 (0.010) | 0.273 (0.018) | ||
ALB | 0.451 (0.000) | 0.343 (0.002) | 0.453 (0.000) | |
AMN | 0.304 (0.008) | |||
BMP1 | −0.332 (0.003) | −0.345 (0.002) | ||
CUBN | 0.546 (0.000) | −0.375 (0.001) | 0.553 (0.000) | |
HDLBP | 0.335 (0.003) | 0.371 (0.001) | ||
HMGCR | −0.314 (0.006) | −0.319 (0.005) | ||
LCAT | −0.319 (0.005) | −0.330 (0.004) | −0.426 (0.000) | |
PLTP | −0.287 (0.012) | |||
PRKACB | −0.438 (0.000) | 0.366 (0.001) | −0.475 (0.000) | |
PRKACG | 0.414 (0.000) | −0.345 (0.002) | 0.394 (0.001) | |
SOAT1 | −0.353 (0.002) | −0.388 (0.001) |
Gene | HDL-C | TG | Chol | apoA-I |
---|---|---|---|---|
Control | ||||
MGST1 | −0.393 (0.002) | −0.434 (0.001) | ||
TLR8 | −0.378 (0.002) | |||
CAD | ||||
CD14 | −0.430 (0.000) | −0.426 (0.000) | ||
CD36 | −0.570 (0.000) | 0.335 (0.003) | −0.441 (0.000) | −0.571 (0.000) |
CYBA | −0.334 (0.003) | −0.363 (0.001) | ||
F5 | −0.357 (0.002) | −0.364 (0.001) | ||
MGST1 | −0.270 (0.018) | −0.333 (0.003) | ||
NPC2 | −0.357 (0.002) | −0.366 (0.001) | −0.370 (0.001) | |
OLR1 | −0.367 (0.001) | 0.416 (0.000) | −0.346 (0.002) | |
PRKCQ | 0.455 (0.000) | 0.429 (0.000) | ||
S100A12 | −0.438 (0.000) | −0.443 (0.000) | ||
S100A8 | −0.452 (0.000) | −0.413 (0.000) | ||
S100A9 | −0.406 (0.000) | −0.364 (0.001) | ||
SLPI | −0.381 (0.001) | 0.430 (0.000) | −0.396 (0.000) | |
SREBF1 | 0.316 (0.005) | |||
TLR5 | −0.322 (0.005) | −0.354 (0.002) | ||
TLR8 | −0.349 (0.002) | −0.337 (0.003) | ||
VEGFA | −0.346 (0.002) | −0.232 (0.004) |
Independent Variable | β ± SEM | p | R2 | VIF | DW | |
---|---|---|---|---|---|---|
Control (n = 54) | 0.594 | 1.76 | ||||
SOAT1 | −0.521 ± 0.094 | 0.000 | 1.08 | |||
TLR8 | −0.222 ± 0.095 | 0.023 | 1.08 | |||
nonHDL-C | 0.265 ± 0.098 | 0.009 | 1.16 | |||
TG | −0.319 ± 0.098 | 0.002 | 1.16 | |||
CAD (n = 75) | 0.785 | 1.70 | ||||
PRKACB | −0.273 ± 0.064 | 0.000 | 1.27 | |||
PRKACG | 0.190 ± 0.062 | 0.003 | 1.18 | |||
LCAT | −0.340 ± 0.071 | 0.000 | 1.53 | |||
PRKCQ | 0.166 ± 0.074 | 0.028 | 1.68 | |||
S100A8 | −0.216 ± 0.072 | 0.004 | 1.60 | |||
SREBF1 | 0.306 ± 0.071 | 0.000 | 1.54 | |||
nonHDL-C | 0.206 ± 0.071 | 0.005 | 1.56 | |||
TG | −0.243 ± 0.074 | 0.002 | 1.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dergunov, A.D.; Nosova, E.V.; Rozhkova, A.V.; Vinogradina, M.A.; Baserova, V.B.; Popov, M.A.; Limborska, S.A.; Dergunova, L.V. Differential Expression of Subsets of Genes Related to HDL Metabolism and Atherogenesis in the Peripheral Blood in Coronary Artery Disease. Curr. Issues Mol. Biol. 2023, 45, 6823-6841. https://doi.org/10.3390/cimb45080431
Dergunov AD, Nosova EV, Rozhkova AV, Vinogradina MA, Baserova VB, Popov MA, Limborska SA, Dergunova LV. Differential Expression of Subsets of Genes Related to HDL Metabolism and Atherogenesis in the Peripheral Blood in Coronary Artery Disease. Current Issues in Molecular Biology. 2023; 45(8):6823-6841. https://doi.org/10.3390/cimb45080431
Chicago/Turabian StyleDergunov, Alexander D., Elena V. Nosova, Alexandra V. Rozhkova, Margarita A. Vinogradina, Veronika B. Baserova, Mikhail A. Popov, Svetlana A. Limborska, and Liudmila V. Dergunova. 2023. "Differential Expression of Subsets of Genes Related to HDL Metabolism and Atherogenesis in the Peripheral Blood in Coronary Artery Disease" Current Issues in Molecular Biology 45, no. 8: 6823-6841. https://doi.org/10.3390/cimb45080431
APA StyleDergunov, A. D., Nosova, E. V., Rozhkova, A. V., Vinogradina, M. A., Baserova, V. B., Popov, M. A., Limborska, S. A., & Dergunova, L. V. (2023). Differential Expression of Subsets of Genes Related to HDL Metabolism and Atherogenesis in the Peripheral Blood in Coronary Artery Disease. Current Issues in Molecular Biology, 45(8), 6823-6841. https://doi.org/10.3390/cimb45080431