Black Chokeberry (Aronia melanocarpa) Juice Supplementation Improves Oxidative Stress and Aging Markers in Testis of Aged Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aronia Melanocarpa Juice Analysis and Composition
2.2. Animals
2.3. HE Staining
2.4. Immunohistochemistry
2.5. Morphometric Analysis
- −
- Thickness of the epithelium of seminiferous tubule in μm;
- −
- Mean perimeter of seminiferous tubules in μm
- −
- Surface area of the seminiferous tubules in μm2;
- −
- Average number of blood vessels surrounding one tubule;
- −
- Average number of spermatogonia, spermatocytes, and spermatids in the seminiferous tubules.
2.6. Statistical Analysis
3. Results
3.1. Right Testis Weight
3.2. Routine HE Staining
3.3. Morphometric Analysis of Tubules Morphology
3.4. Immunohistochemistry
3.4.1. TRK-C and NT3 Immunoreactions
3.4.2. nNOS, eNOS, and MAS1 Immunoreaction
4. Discussion
4.1. Morphological Changes
4.2. TRK-C and NT3 Immunoreaction
4.3. nNOS, eNOS, and Mas1 Immunoreaction
4.4. Antioxidants and Steroidogenic Function of Leydig Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunes, S.; Hekim, G.N.T.; Arslan, M.A.; Asci, R. Effects of Aging on the Male Reproductive System. J. Assist. Reprod. Genet. 2016, 33, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Choubey, M.; Ranjan, A.; Bora, P.S.; Baltazar, F.; Martin, L.J.; Krishna, A. Role of Adiponectin as a Modulator of Testicular Function during Aging in Mice. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Choubey, M.; Ranjan, A.; Krishna, A. Adiponectin/AdipoRs Signaling as a Key Player in Testicular Aging and Associated Metabolic Disorders. In Vitamins and Hormones; Academic Press: Cambridge, MA, USA, 2021; pp. 611–634. [Google Scholar] [CrossRef]
- Frungieri, M.B.; Calandra, R.S.; Bartke, A.; Matzkin, M.E. Male and Female Gonadal Ageing: Its Impact on Health Span and Life Span. Mech. Ageing Dev. 2021, 197, 111519. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.M.; El-Fadaly, A.B.; Metawea, A.G.; Khaled, B.E.A. Aging Changes of the Testis in Albino Rat: Light, Electron Microscopic, Morphometric, Immunohistochemical and Biochemical Study. Folia Morphol. 2020, 79, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Matzkin, M.E.; Calandra, R.S.; Rossi, S.P.; Bartke, A.; Frungieri, M.B. Hallmarks of Testicular Aging: The Challenge of Anti-Inflammatory and Antioxidant Therapies Using Natural And/or Pharmacological Compounds to Improve the Physiopathological Status of the Aged Male Gonad. Cells 2021, 10, 3114. [Google Scholar] [CrossRef] [PubMed]
- Choubey, M.; Ranjan, A.; Bora, P.S.; Baltazar, F.; Krishna, A. Direct Actions of Adiponectin on Changes in Reproductive, Metabolic, and Anti-Oxidative Enzymes Status in the Testis of Adult Mice. Gen. Comp. Endocrinol. 2019, 279, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Asadi, N. The Impact of Oxidative Stress on Testicular Function and the Role of Antioxidants in Improving It: A Review. J. Clin. Diagn. Res. 2017, 11, IE01. [Google Scholar] [CrossRef] [PubMed]
- Syntin, P.; Chen, H.; Zirkin, B.R.; Robaire, B. Gene Expression in Brown Norway Rat Leydig Cells: Effects of Age and of Age-Related Germ Cell Loss. Endocrinology 2001, 142, 5277–5285. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, S.S.; Agarwal, A.; Halabi, J.; Tvrda, E. Contemporary Evidence on the Physiological Role of Reactive Oxygen Species in Human Sperm Function. J. Assist. Reprod. Genet. 2015, 32, 509–520. [Google Scholar] [CrossRef]
- Choubey, M.; Ranjan, A.; Bora, P.S.; Krishna, A. Protective Role of Adiponectin against Testicular Impairment in High-Fat Diet/Streptozotocin-Induced Type 2 Diabetic Mice. Biochimie 2020, 168, 41–52. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, W.-J.; Li, J.; Chen, Q.-J.; Liang, W.-B.; Gu, Y.-Q. Quantitative Histological Analysis and Ultrastructure of the Aging Human Testis. Int. Urol. Nephrol. 2013, 46, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Gianzo, M.; Subirán, N. Regulation of Male Fertility by the Renin-Angiotensin System. Int. J. Mol. Sci. 2020, 21, 7943. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.; Sernia, C. The Renin-Angiotensin System and Male Reproduction: New Functions for Old Hormones. J. Mol. Endocrinol. 2003, 30, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.; Frenzel, K.; Hubert, C.; Lyng, R.; Muller, L.; Michaud, A.; Xiao, H.D.; Adams, J.W.; Capecchi, M.R.; Corvol, P.; et al. Male Fertility Is Dependent on Dipeptidase Activity of Testis ACE. Nat. Med. 2005, 11, 1140–1142. [Google Scholar] [CrossRef]
- Deguchi, E.; Tani, T.; Watanabe, H.; Yamada, S.; Kondoh, G. Dipeptidase-Inactivated TACE Action in Vivo: Selective Inhibition of Sperm-Zona Pellucida Binding in the Mouse1. Biol. Reprod. 2007, 77, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Pencheva, M.; Koeva, Y.; Pavlova, E.; Atanassova, N. Stage Specific Expression of Angiotensin-Converting Enzyme and Thickened Lamina Propria in Relation to Male Fertility. Folia Medica 2022, 64, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Pencheva, M.; Rashev, P.; Koeva, Y.; Atanassova, N.; Keskinova, D. The Testicular Form of Angiotensin Converting Enzyme as a Marker for Human Sperm Quality Assessment. Folia Medica 2023, 65, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, R.; Wei, C.; Wang, X.; Wu, X.; Fan, R.; Yu, X.; Li, Z.; Mao, R.; Hu, J.; et al. Exogenous Nucleotides Ameliorate Age-Related Decline in Testosterone in Male Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice by Modulating the Local Renin-Angiotensin System Antioxidant Pathway. Nutrients 2023, 15, 5130. [Google Scholar] [CrossRef] [PubMed]
- Passos-Silva, D.G.; Verano-Braga, T.; Santos, R.A. Angiotensin-(1-7): Beyond the cardio-renal actions. Clin. Sci. 2013, 124, 443–456. [Google Scholar] [CrossRef]
- Pauls, K.; Metzger, R.; Steger, K.; Klonisch, T.; Danilov, S.; Franke, F.E. Isoforms of Angiotensin I-Converting Enzyme in the Development and Differentiation of Human Testis and Epididymis. Andrologia 2003, 35, 32–43. [Google Scholar] [CrossRef]
- Herr, D.; Bekes, I.; Wulff, C. Local Renin-Angiotensin System in the Reproductive System. Front. Endocrinol. 2013, 4, 150. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1–9. Circ. Res. 2000, 87, e1–e9. [Google Scholar] [CrossRef]
- Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of Local Renin-Angiotensin Systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef] [PubMed]
- Ferraguti, G.; Fanfarillo, F.; Tarani, L.; Blaconà, G.; Tarani, F.; Barbato, C.; Minni, A.; Ralli, M.; Francati, S.; Greco, A.; et al. NGF and the Male Reproductive System: Potential Clinical Applications in Infertility. Int. J. Mol. Sci. 2022, 23, 13127. [Google Scholar] [CrossRef] [PubMed]
- Koeva, Y.; Davidoff, M.; Popova, L. Immunocytochemical Expression of P75LNGFR and TrkA in Leydig Cells of the Human Testis. Folia Medica 1999, 41, 53–58. [Google Scholar] [PubMed]
- Koeva, Y.A. Immunolocalization of Neurotrophic Factors and Their Receptors in the Leydig Cells of Rat during Postnatal Development. Folia Medica 2002, 44, 27–31. [Google Scholar] [PubMed]
- Dutta, S.; Sengupta, P. The Role of Nitric Oxide on Male and Female Reproduction. Malays. J. Med. Sci. 2022, 29, 18–30. [Google Scholar] [CrossRef]
- Förstermann, U.; Gath, I.; Schwarz, P.; Closs, E.I.; Kleinert, H. Isoforms of Nitric Oxide Synthase: Properties, Cellular Distribution and Expressional Control. Biochem. Pharmacol. 1995, 50, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.L.; Martin, E.; Turko, I.V.; Murad, F. Novel Effects of Nitric Oxide. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 203–236. [Google Scholar] [CrossRef]
- Grisham, M.B.; Jourd’Heuil, D.; Wink, D.A. I. Physiological Chemistry of Nitric Oxide and Its Metabolites: Implications in Inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 1999, 276, G315–G321. [Google Scholar] [CrossRef]
- Nikki, P.Y.; Lee, C. Yan Cheng Nitric Oxide/Nitric Oxide Synthase, Spermatogenesis, and Tight Junction Dynamics. Biol. Reprod. 2004, 70, 267–276. [Google Scholar] [CrossRef] [PubMed]
- O’Bryan, M.K.; Zini, A.; Cheng, C.Y.; Schlegel, P.N. Human Sperm Endothelial Nitric Oxide Synthase Expression: Correlation with Sperm Motility. Fertil. Steril. 1998, 70, 1143–1147. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.J.; Touaibia, M. Improvement of Testicular Steroidogenesis Using Flavonoids and Isoflavonoids for Prevention of Late-Onset Male Hypogonadism. Antioxidants 2020, 9, 237. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia Melanocarpa) Polyphenols: In Vitro and in Vivo Evidences and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Valcheva-Kuzmanova, S.V.; Belcheva, A. Current knowledge of Aronia melanocarpa as a medicinal plant. Folia Medica 2006, 48, 11–17. [Google Scholar] [PubMed]
- Valcheva-Kuzmanova, S.; Kuzmanov, K.; Tsanova-Savova, S.; Mihova, V.; Krasnaliev, I.; Borisova, P.; Belcheva, A. Lipid-Lowering Effects of Aronia Melanocarpa Fruit Juice In Rats Fed Cholesterol-Containing Diets. J. Food Biochem. 2007, 31, 589–602. [Google Scholar] [CrossRef]
- Valcheva-Kuzmanova, S.; Kuzmanov, A.; Kuzmanova, V.; Tzaneva, M. Aronia Melanocarpa Fruit Juice Ameliorates the Symptoms of Inflammatory Bowel Disease in TNBS-Induced Colitis in Rats. Food Chem. Toxicol. 2018, 113, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yu, W.; Zhang, C.; Liu, H.; Fan, J.; Wei, J. The Protective Effect and Mechanism of Aornia Melanocarpa Elliot Anthocyanins on IBD Model Mice. Food Biosci. 2021, 41, 101075. [Google Scholar] [CrossRef]
- Platonova, E.Y.; Shaposhnikov, M.; Lee, H.Y.; Lee, J.-H.; Min, K. Alexey Moskalev Black Chokeberry (Aronia melanocarpa) Extracts in Terms of Geroprotector Criteria. Trends Food Sci. Technol. 2021, 114, 570–584. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Topolov, M.; Dimitrova, S.; Uzunova, Y.; Valcheva-Kuzmanova, S.; Kratchanova, M.; Vladimirova-Kitova, L.; Denev, P. Aronia melanocarpa (Michx.) Elliot Fruit Juice Reveals Neuroprotective Effect and Improves Cognitive and Locomotor Functions of Aged Rats. Food Chem. Toxicol. 2019, 132, 110674. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Vladimirova-Kitova, L.; Bivolarski, I.; Pencheva, M.; Denev, P. Aronia Melanocarpa Fruit Juice Modulates ACE2 Immunoexpression and Diminishes Age-Related Remodeling of Coronary Arteries in Rats. Foods 2022, 11, 1220. [Google Scholar] [CrossRef]
- Chalkleyh, W. Method for the Quantitative Morphologic Analysis of Tissues. JNCI J. Natl. Cancer Inst. 1943, 4, 47–53. [Google Scholar] [CrossRef]
- Reid, M. Morphometric Methods in Veterinary Pathology: A Review. Vet. Pathol. 1980, 17, 522–543. [Google Scholar] [CrossRef] [PubMed]
- Meistrich, M.L.; Hess, R.A. Assessment of spermatogenesis through staging of seminiferous tubules. Methods Mol. Biol. 2013, 927, 299–307. [Google Scholar] [CrossRef]
- Miranda, E.P.; Lorenzini, F.; Neves, B.V.D.; Melchioretto, E.F.; Hota, T.; De Fraga, R. Stereological and morphological analysis of the effects of aging on spermatogenesis in rat testis. Acta Cir. Bras. 2018, 33, 904–913. [Google Scholar] [CrossRef]
- Abd El-Meseeh, N.A.; El-Shaarawy, E.A.; AlDomairy, A.F.; Sehly, R.A. Changes in rat testis morphology and androgen receptor expression around the age of puberty. Ann. Anat. 2016, 205, 37–44. [Google Scholar] [CrossRef]
- Berndtson, W.E.; Thompson, T.L. Age as a factor influencing the power and sensitivity of experiments for assessing body weight, testis size, and spermatogenesis in rats. J. Androl. 1990, 11, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Davidoff, M.S.; Bargheer, O.; Paust, H.-J.; Pusch, W.; Koeva, Y.; Ježek, D.; Holstein, A.F.; Middendorff, R. The Expression of Neurotrophins and Their Receptors in the Prenatal and Adult Human Testis: Evidence for Functions in Leydig Cells. Histochem. Cell Biol. 2006, 126, 199–211. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X. The Potential Roles of Neurotrophins in Male Reproduction. Reproduction 2013, 145, R89–R95. [Google Scholar] [CrossRef]
- Manna, P.R.; Jo, Y.; Stocco, D.M. Regulation of Leydig Cell Steroidogenesis by Extracellular Signal-Regulated Kinase 1/2: Role of Protein Kinase A and Protein Kinase C Signaling. J. Endocrinol. 2007, 193, 53–63. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Z.; Ma, F.; Chen, Q.; Lin, L.; Xu, Q.; Li, Y.; Xin, X.; Pan, P.; Huang, T.; et al. Neurotrophin-3 Stimulates Stem Leydig Cell Proliferation during Regeneration in Rats. J. Cell. Mol. Med. 2020, 24, 13679–13689. [Google Scholar] [CrossRef]
- Espinet, C.; Gonzalo, H.; Fleitas, C.; Menal, M.; Egea, J. Oxidative Stress and Neurodegenerative Diseases: A Neurotrophic Approach. Curr. Drug Targets 2015, 16, 20–30. [Google Scholar] [CrossRef]
- Arias-Sánchez, R.A.; Torner, L.; Fenton Navarro, B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023, 28, 5415. [Google Scholar] [CrossRef]
- Tejada, S.; Sarubbo, F.; Jiménez-García, M.; Ramis, M.R.; Monserrat-Mesquida, M.; Quetglas-Llabrés, M.M.; Capó, X.; Esteban, S.; Sureda, A.; Moranta, D. Mitigating Age-Related Cognitive Decline and Oxidative Status in Rats Treated with Catechin and Polyphenon-60. Nutrients 2024, 16, 368. [Google Scholar] [CrossRef]
- Xu, D.; Gao, L.-N.; Song, X.-J.; Dong, Q.-W.; Chen, Y.-B.; Cui, Y.-L.; Wang, Q. Enhanced Antidepressant Effects of BDNF-Quercetin Alginate Nanogels for Depression Therapy. J. Nanobiotechnol. 2023, 21, 379. [Google Scholar] [CrossRef]
- Li, H.; Chen, F.-J.; Yang, W.-L.; Qiao, H.-Z.; Zhang, S.-J. Quercetin Improves Cognitive Disorder in Aging Mice by Inhibiting NLRP3 Inflammasome Activation. Food Funct. 2021, 12, 717–725. [Google Scholar] [CrossRef]
- Abdelmeguid, N.E.; Hammad, T.M.; Abdel-Moneim, A.M.; Salam, S.A. Effect of Epigallocatechin-3-Gallate on Stress-Induced Depression in a Mouse Model: Role of Interleukin-1β and Brain-Derived Neurotrophic Factor. Neurochem. Res. 2022, 47, 3464–3475. [Google Scholar] [CrossRef]
- Ding, M.; Ma, H.; Man, Y.; LV, H. Protective Effects of a Green Tea Polyphenol, Epigallocatechin-3-Gallate, against Sevoflurane-Induced Neuronal Apoptosis Involve Regulation of CREB/BDNF/TrkB and PI3K/Akt/MTOR Signalling Pathways in Neonatal Mice. Can. J. Physiol. Pharmacol. 2017, 95, 1396–1405. [Google Scholar] [CrossRef]
- Williams, C.M.; El Mohsen, M.A.; Vauzour, D.; Rendeiro, C.; Butler, L.T.; Ellis, J.A.; Whiteman, M.; Spencer, J.P.E. Blueberry-Induced Changes in Spatial Working Memory Correlate with Changes in Hippocampal CREB Phosphorylation and Brain-Derived Neurotrophic Factor (BDNF) Levels. Free Rad. Biol. Med. 2008, 45, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Rendeiro, C.; Vauzour, D.; Rattray, M.; Waffo-Téguo, P.; Mérillon, J.M.; Butler, L.T.; Williams, C.M.; Spencer, J.P.E. Dietary Levels of Pure Flavonoids Improve Spatial Memory Performance and Increase Hippocampal Brain-Derived Neurotrophic Factor. PLoS ONE 2013, 8, e63535. [Google Scholar] [CrossRef]
- Qin, L.; Wang, J.; Wu, X.; Song, L.; Zhang, Y.; Gong, M.; Wang, Y.; Li, B. Antidepressant Effects of 70% Ethanolic Extract of Lonicerae Japonicae Flos and It Contained Chlorogenic Acid via Upregulation of BDNF-TrkB Pathway in the Hippocampus of Mice. Brain Res. Bull. 2023, 204, 110796. [Google Scholar] [CrossRef]
- Miyazaki, S.; Fujita, Y.; Oikawa, H.; Takekoshi, H.; Soya, H.; Ogata, M.; Fujikawa, T. Combination of Syringaresinol–Di–O–β-d-Glucoside and Chlorogenic Acid Shows Behavioral Pharmacological Anxiolytic Activity and Activation of Hippocampal BDNF–TrkB Signaling. Sci. Rep. 2020, 10, 18177. [Google Scholar] [CrossRef]
- Zini, A.; Abitbol, J.; Girardi, S.K.; Schulsinger, D.; Goldstein, M.; Schlegel, P.N. Germ Cell Apoptosis and Endothelial Nitric Oxide Synthase (ENos) Expression Following Ischemia-Reperfusion Injury to Testis. Arch. Androl. 1998, 41, 57–65. [Google Scholar] [CrossRef]
- Middendorff, R.; Müller, D.; Wichers, S.; Holstein, A.F.; Davidoff, M.S. Evidence for Production and Functional Activity of Nitric Oxide in Seminiferous Tubules and Blood Vessels of the Human Testis. J. Clin. Endocrinol. Metab. 1997, 82, 4154–4161. [Google Scholar] [CrossRef]
- Zini, A.; Abitbol, J.; Schulsinger, D.; Goldstein, M.; Schlegel, P.N. Restoration of Spermatogenesis after Scrotal Replacement of Experimentally Cryptorchid Rat Testis: Assessment of Germ Cell Apoptosis and ENOS Expression. Urology 1999, 53, 223–227. [Google Scholar] [CrossRef]
- Burnett, A.L.; Ricker, D.D.; Chamness, S.L.; Maguire, M.P.; Crone, J.K.; Bredt, D.S.; Snyder, S.H.; Thomas, S.K. Chang Localization of Nitric Oxide Synthase in the Reproductive Organs of the Male Rat. Biol. Reprod. 1995, 52, 1–7. [Google Scholar] [CrossRef]
- Kuo, W.W.; Baskaran, R.; Lin, J.Y.; Day, C.H.; Lin, Y.-M.; Ho, T.-J.; Chen, R.-J.; Lin, M.-Y.; Viswanadha Vijaya Padma, V.V.; Huang, C.-Y. Low-dose rapamycin prevents Ang-II-induced toxicity in Leydig cells and testicular dysfunction in hypertensive SHR model. J. Biochem. Mol. Toxicol. 2022, 36, e23128. [Google Scholar] [CrossRef]
- Pencheva, M.; Keskinova, D.; Rashev, P.; Koeva, Y.; Atanassova, N. Localization and Distribution of Testicular Angiotensin I Converting Enzyme (ACE) in Neck and Mid-Piece of Spermatozoa from Infertile Men in Relation to Sperm Motility. Cells 2021, 10, 3572. [Google Scholar] [CrossRef]
- Santos, R.A.S.; Silva, A.C.S.E.; Maric, C.; Silva, D.M.R.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.B.; Lopes, M.T.; Bader, M.; et al. Angiotensin-(1–7) Is an Endogenous Ligand for the G Protein-Coupled Receptor Mas. Proc. Natl. Acad. Sci. USA 2003, 100, 8258–8263. [Google Scholar] [CrossRef] [PubMed]
- Unger, T. Blood Pressure Lowering and Renin-Angiotensin System Blockade. J. Hypertens. 2003, 21, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Mahon, J.M.; Carr, R.D.; Nicol, A.K.; Henderson, I.W. Angiotensin (1-7) Is an Antagonist at the Type 1 Angiotensin II Receptor. J. Hypertens. 1994, 12, 1377–1382. [Google Scholar] [CrossRef]
- Alenina, N.; Baranova, T.; Smirnow, E.; Bader, M.; Lippoldt, A.; Patkin, E.; Walther, T. Cell Type-Specific Expression of the Mas Proto-Oncogene in Testis. J. Histochem. Cytochem. 2002, 50, 691–695. [Google Scholar] [CrossRef]
- Santos, R.A.S.; Ferreira, A.J.; Verano-Braga, T.; Bader, M. Angiotensin-Converting Enzyme 2, Angiotensin-(1–7) and Mas: New Players of the Renin–Angiotensin System. J. Endocrinol. 2012, 216, R1–R17. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Qu, Y.; Wang, L.; Geng, D.; Chen, W.; Li, L.; Tian, Y.; Chang, S.; Zhao, C.; et al. The Roles of P38 MAPK → COX2 and NF-ΚB → COX2 Signal Pathways in Age-Related Testosterone Reduction. Sci. Rep. 2019, 9, 10556. [Google Scholar] [CrossRef]
- Cocuzza, M.; Athayde, K.S.; Agarwal, A.; Sharma, R.; Pagani, R.; Lucon, A.M.; Srougi, M.; Hallak, J. Age-Related Increase of Reactive Oxygen Species in Neat Semen in Healthy Fertile Men. Urology 2008, 71, 490–494. [Google Scholar] [CrossRef]
- Zirkin, B.R.; Papadopoulos, V. Leydig Cells: Formation, Function, and Regulation. Biol. Reprod. 2018, 99, 101–111. [Google Scholar] [CrossRef]
- Hanukoglu, I. Antioxidant Protective Mechanisms against Reactive Oxygen Species (ROS) Generated by Mitochondrial P450 Systems in Steroidogenic Cells. Drug Metab. Rev. 2006, 38, 171–196. [Google Scholar] [CrossRef] [PubMed]
- Loveland, K.L.; Klein, B.; Pueschl, D.; Indumathy, S.; Bergmann, M.; Loveland, B.E.; Hedger, M.P.; Schuppe, H.-C. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front. Endocrinol. 2017, 8, 307. [Google Scholar] [CrossRef]
- Hales, D.B. Testicular Macrophage Modulation of Leydig Cell Steroidogenesis. J. Reprod. Immunol. 2002, 57, 3–18. [Google Scholar] [CrossRef]
- Beattie, M.C.; Chen, H.; Fan, J.; Papadopoulos, V.; Miller, P.; Zirkin, B.R. Aging and Luteinizing Hormone Effects on Reactive Oxygen Species Production and DNA Damage in Rat Leydig Cells. Biol. Reprod. 2013, 88, 100. [Google Scholar] [CrossRef]
- Dong, S.; Chen, C.; Zhang, J.; Gao, Y.; Zeng, X.; Zhang, X. Testicular Aging, Male Fertility and Beyond. Front. Endocrinol. 2022, 13, 1012119. [Google Scholar] [CrossRef] [PubMed]
- Padgett, L.E.; Broniowska, K.A.; Hansen, P.A.; Corbett, J.A.; Tse, H.M. The Role of Reactive Oxygen Species and Proinflammatory Cytokines in Type 1 Diabetes Pathogenesis. Ann. N. Y. Acad. Sci. 2013, 1281, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pandey, A.K.; Yin, X.; Chen, J.J.; Stocco, D.M.; Grammas, P.; Wang, X. Effects of apigenin on steroidogenesis and steroidogenic acute regulatory gene expression in mouse Leydig cells. J. Nutr. Biochem. 2011, 22, 212–218. [Google Scholar] [CrossRef]
- Wang, X.; Stocco, D.M. The Decline in Testosterone Biosynthesis during Male Aging: A Consequence of Multiple Alterations. Mol. Cell. Endocrinol. 2005, 238, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, X.; Wu, N.; Zhu, C.; Jiang, X.; Yuan, K.; Li, Y.; Sun, J.; Bai, W. Anthocyanins Prevent AAPH-Induced Steroidogenesis Disorder in Leydig Cells by Counteracting Oxidative Stress and StAR Abnormal Expression in a Structure-Dependent Manner. Antioxidants 2023, 12, 508. [Google Scholar] [CrossRef]
- King, S.R. Gonadal Transactivation of STARD1, CYP11A1 and HSD3B. Front. Biosci. 2012, 17, 824. [Google Scholar] [CrossRef]
- Cormier, M.; Ghouili, F.; Roumaud, P.; Martin, L.J.; Touaibia, M. Influence of Flavonols and Quercetin Derivative Compounds on MA-10 Leydig Cells Steroidogenic Genes Expressions. Toxicol. In Vitro 2017, 44, 111–121. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Nagpal, M.L.; Stocco, D.M.; Lin, T. Effects of Genistein, Resveratrol, and Quercetin on Steroidogenesis and Proliferation of MA-10 Mouse Leydig Tumor Cells. J. Endocrinol. 2007, 192, 527–537. [Google Scholar] [CrossRef]
- Wang, X.J. Natural Flavonoids in StAR Gene Expression and Testosterone Biosynthesis in Leydig Cell Aging. In Basic and Clinical Endocrinology Up-to-Date; Akin, F., Ed.; InTech Open: Rijeka, Croatia, 2011; pp. 179–208. [Google Scholar] [CrossRef]
- Kirkland, J.L.; Tchkonia, T. Senolytic Drugs: From Discovery to Translation. J. Intern. Med. 2020, 288, 518–536. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.-L.; Pu, H.; Chen, S.-Y.; Wang, S.-W.; Wang, P.S. Effects of Catechin, Epicatechin and Epigallocatechin Gallate on Testosterone Production in Rat Leydig Cells. J. Cell. Biochem. 2010, 110, 333–342. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hu, Y.; Jiang, X.; Chen, T.; Ma, Y.-B.; Wu, S.; Sun, J.; Jiao, R.; Li, X.; Deng, L.; et al. Cyanidin-3-O-Glucoside Inhibits the UVB-Induced ROS/COX-2 Pathway in HaCaT Cells. J. Photochem. Photobiol. B 2017, 177, 24–31. [Google Scholar] [CrossRef]
- Ma, M.-M.; Li, Y.; Liu, X.-Y.; Zhu, W.-W.; Ren, X.; Kong, G.-Q.; Huang, X.; Wang, L.-P.; Luo, L.-Q.; Wang, X.-Z. Cyanidin-3-O-Glucoside Ameliorates Lipopolysaccharide-Induced Injury Both in Vivo and in Vitro Suppression of NF-ΚB and MAPK Pathways. Inflammation 2015, 38, 1669–1682. [Google Scholar] [CrossRef] [PubMed]
Phenolics | (mg/L) |
Total polyphenols (Folin–Ciocalteu) | 11,237.4 ± 456.2 |
Quercetin | 49.6 ± 3.2 |
Quercetin-3-β-glucoside | 228.8 ± 11.0 |
Rutin | 446.5 ± 12.5 |
Epicatechin | 408.2 ± 25.6 |
Cyanidin-3-galactoside | 1498.4 ± 102.3 |
Cyanidin-3-glucoside | 120.1 ± 8.7 |
Cyanidin-3-arabinoside | 501.9 ± 31.8 |
Cyanidin-3-xyloside | 4.59 ± 0.2 |
Chlorogenic acid | 1375.6 ± 80.3 |
Neochlorogenic acid | 1543.1 ± 111.2 |
Sugars | (g/L) |
Fructose | 35.8 ± 2.1 |
Glucose | 28.0 ± 2.7 |
Sorbitol | 105.8 ± 7.0 |
Sucrose | 1.1 ± 0.1 |
Group | Right Testis | |
---|---|---|
Absolute Weight, [g] | Relative Weight, [%] | |
CY | 0.91 ± 0.31 a | 0.57 |
CO | 1.64 ± 0.28 b | 0.41 |
A | 1.72 ± 0.29 b | 0.41 |
Group | Number of | |||
---|---|---|---|---|
Seminiferous Tubules in Microscopic Field (100×) | Spermatogonia | Spermatocytes | Spermatids | |
CY | 14.3 ± 0.23 b | 117.15 ± 5.21 b | 472.33 ± 32.14 b | 787.39 ± 18.11 b |
CO | 10.5 ± 0.42 a | 93.62 ± 2.74 a | 316.21 ± 14.12 a | 554.27 ± 13.76 a |
A | 13.1 ±0.39 b | 109.17 ± 3.73 b | 458.57 ± 25.15 b | 759.18 ± 21.7 b |
Group | Testis | NT3 Receptor Immunoexpression Intensity | TRK-C Immunoexpression Intensity |
---|---|---|---|
CY | Leydig cells | +++ | +++ |
CO | Leydig cells | + | + |
A | Leydig cells | ++ | ++ |
Testis | nNOS | eNOS | MAS1 | |
---|---|---|---|---|
CY | Germ cells | +++ | + | ++ |
Leydig cells | +++ | + | + | |
Capillaries | +++ | - | +++ | |
CO | Germ cells | + | + | + |
Leydig cells | ++ | + | ++ | |
Capillaries | ++ | - | + | |
A | Germ cells | ++ | +++ | ++ |
Leydig cells | +++ | ++ | ++ | |
Capillaries | +++ | - | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daskalova, E.; Pencheva, M.; Denev, P. Black Chokeberry (Aronia melanocarpa) Juice Supplementation Improves Oxidative Stress and Aging Markers in Testis of Aged Rats. Curr. Issues Mol. Biol. 2024, 46, 4452-4470. https://doi.org/10.3390/cimb46050270
Daskalova E, Pencheva M, Denev P. Black Chokeberry (Aronia melanocarpa) Juice Supplementation Improves Oxidative Stress and Aging Markers in Testis of Aged Rats. Current Issues in Molecular Biology. 2024; 46(5):4452-4470. https://doi.org/10.3390/cimb46050270
Chicago/Turabian StyleDaskalova, Elena, Mina Pencheva, and Petko Denev. 2024. "Black Chokeberry (Aronia melanocarpa) Juice Supplementation Improves Oxidative Stress and Aging Markers in Testis of Aged Rats" Current Issues in Molecular Biology 46, no. 5: 4452-4470. https://doi.org/10.3390/cimb46050270
APA StyleDaskalova, E., Pencheva, M., & Denev, P. (2024). Black Chokeberry (Aronia melanocarpa) Juice Supplementation Improves Oxidative Stress and Aging Markers in Testis of Aged Rats. Current Issues in Molecular Biology, 46(5), 4452-4470. https://doi.org/10.3390/cimb46050270