Proteogenomics in Nephrology: A New Frontier in Nephrological Research
Abstract
:1. Introduction to Proteogenomics in Nephrology
2. Methodological Framework of Proteogenomics
3. Proteogenomic Breakthroughs in Nephrology: Case Study Insights
4. Advancements in Biomarker Discovery for Kidney Diseases
- Cystatin C is a C-type lectin, synthesized in all nucleated cells of the kidney, emerges as a superior marker for estimating glomerular filtration rate (GFR), with studies demonstrating its advantage over traditional creatinine-based methods in various patient populations (reference to meta-analysis or systematic review). Its levels, often unaffected by muscle mass, make it particularly valuable in assessing kidney function in elderly and pediatric patients. [31].
- β-Trace Protein (BTP) and Kidney Injury Molecule 1 (KIM-1) are highlighted for their roles in evaluating renal tubular integrity. BTP’s utility extends beyond kidney function assessment to potentially pinpoint specific tubular injuries, while KIM-1 stands out in detecting acute kidney injury (AKI) transitioning to CKD, offering a prognostic marker for disease progression. Protein is produced by the proximal tubules of the kidney [32,33,34,35].
- Neutrophil Gelatinase-Associated Lipocalin (NGAL) is accentuated for its rapid response to kidney injury, serving as an early biomarker for AKI, with elevated urinary levels indicative of tubular damage before significant changes in GFR occur. This makes NGAL a critical tool for early intervention strategies [36,37].
- Liver-Type Fatty Acid–Binding Protein (L-FABP) and Asymmetric Dimethylarginine (ADMA) are discussed for their specific links to diabetic nephropathy and cardiovascular risks in CKD patients, respectively. L-FABP’s association with oxidative stress in diabetic nephropathy positions it as a marker for both diagnosis and monitoring disease severity. ADMA, by reflecting nitric oxide synthesis inhibition, offers insights into endothelial dysfunction, a common complication in CKD [38,39,40]
- Furthermore, the role of microRNAs in CKD is explored, emphasizing their potential as non-invasive biomarkers for disease detection and monitoring. Changes in microRNA profiles have been correlated with CKD progression and response to treatment, illustrating the dynamic nature of gene expression regulation in kidney disease pathogenesis [27,28,30].
5. Challenges and Solutions in Proteogenomic Analysis
- Use of Advanced Computational Tools: Leveraging high-performance computing and cloud computing platforms can help manage the large volume of data generated in proteogenomics analysis. For example, Hadoop MapReduce and Amazon Web Services have been used to run X!Tandem in parallel on collections of commodity computers [44].
- Standardization of Software: Establishing standards for proteogenomics software can ensure consistency across different research groups. This could involve creating common interfaces or formats for input and output data [13].
- Peptide Spectrum Matching (PSM) Tools: These tools are used to match experimental spectra with theoretical spectra to identify peptides. Examples include PGTools, Galaxy-P, ProteoAnnotator, IPAW, JUMPg, Graph2Pro/Var2Pep, NextSearch, and PGP. These tools support execution on distributed memory environments using job scheduling frameworks like PBS or Torque [1,46,48].
6. Clinical Implications and Future Directions
- Diabetic Nephropathy: In a study published in the Journal of American Society of Nephrology, urinary proteomics was used to analyze the impact of diabetes on kidney function. The researchers found that diabetes significantly affected the urinary proteome, suggesting that it could serve as a potential biomarker for diabetic nephropathy [52].
- Chronic Kidney Disease (CKD): Another study, also published in the Journal of American Society of Nephrology, explored the use of urinary proteomics in the diagnosis and monitoring of CKD. The researchers used a technique called Collision Energy Mass Spectrometry (CE-MS) to analyze the human urinary proteome, aiming to discover biomarkers for CKD and other kidney diseases [53].
- Aristolochic Acid Toxicity: Aristolochic acid is a poisonous substance that can cause kidney failure. A study published in the journal, Kidney International, used proteogenomics to investigate the toxic effects of aristolochic acid on cultured renal epithelial cells. The researchers found that the drug caused significant changes in the proteome of the cells, indicating its potential as a therapeutic target [54].
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lin, M.S.; Varunjikar, M.S.; Lie, K.K.; Søfteland, L.; Dellafiora, L.; Ørnsrud, R.; Sanden, M.; Berntssen, M.H.G.; Dorne, J.L.C.M.; Bafna, V.; et al. Multi-tissue proteogenomic analysis for mechanistic toxicology studies in non-model species. Environ. Int. 2023, 182, 108309. [Google Scholar] [CrossRef] [PubMed]
- Heck, M.; Neely, B.A. Proteomics in Non-model Organisms: A New Analytical Frontier. J. Proteome Res. 2020, 19, 3595–3606. [Google Scholar] [CrossRef] [PubMed]
- Thiery, J.; Fahrner, M. Integration of proteomics in the molecular tumor board. Proteomics 2023, e2300002. [Google Scholar] [CrossRef] [PubMed]
- Mertins, P.; Mani, D.R.; Ruggles, K.V.; Gillette, M.A.; Clauser, K.R.; Wang, P.; Wang, X.; Qiao, J.W.; Cao, S.; Petralia, F.; et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 2016, 534, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Krug, K.; Jaehnig, E.J.; Satpathy, S.; Blumenberg, L.; Karpova, A.; Anurag, M.; Miles, G.; Mertins, P.; Geffen, Y.; Tang, L.C.; et al. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell 2020, 183, 1436–1456.e1431. [Google Scholar] [CrossRef] [PubMed]
- Witwer, K.W.; Goberdhan, D.C.; O’Driscoll, L.; Théry, C.; Welsh, J.A.; Blenkiron, C.; Buzás, E.I.; Di Vizio, D.; Erdbrügger, U.; Falcón-Pérez, J.M.; et al. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. J. Extracell. Vesicles 2021, 10, e12182. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Niño, M.D.; Sanz, A.B.; Ramos, A.M.; Ruiz-Ortega, M.; Ortiz, A. Translational science in chronic kidney disease. Clin. Sci. 2017, 131, 1617–1629. [Google Scholar] [CrossRef]
- Rajczewski, A.T.; Jagtap, P.D.; Griffin, T.J. An overview of technologies for MS-based proteomics-centric multi-omics. Expert Rev. Proteom. 2022, 19, 165–181. [Google Scholar] [CrossRef]
- Kleiner, M. Metaproteomics: Much More than Measuring Gene Expression in Microbial Communities. mSystems 2019, 4. [Google Scholar] [CrossRef]
- Karaduta, O.; Dvanajscak, Z.; Zybailov, B. Metaproteomics-An Advantageous Option in Studies of Host-Microbiota Interaction. Microorganisms 2021, 9, 980. [Google Scholar] [CrossRef]
- de Souza, E.V.; Bookout, A.L.; Barnes, C.A.; Miller, B.; Machado, P.; Basso, L.A.; Bizarro, C.V.; Saghatelian, A. The Integration of Proteogenomics and Ribosome Profiling Circumvents Key Limitations to Increase the Coverage and Confidence of Novel Microproteins. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Graw, S.; Chappell, K.; Washam, C.L.; Gies, A.; Bird, J.; Robeson, M.S.; Byrum, S.D. Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics 2021, 17, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, L.I.; Ivanov, M.V.; Goncharov, A.O.; Kliuchnikova, A.A.; Bubis, J.A.; Lobas, A.A.; Solovyeva, E.M.; Pyatnitskiy, M.A.; Ovchinnikov, R.K.; Kukharsky, M.S.; et al. Massive Proteogenomic Reanalysis of Publicly Available Proteomic Datasets of Human Tissues in Search for Protein Recoding via Adenosine-to-Inosine RNA Editing. J. Proteome Res. 2023, 22, 1695–1711. [Google Scholar] [CrossRef] [PubMed]
- Byrum, S.D.; Taverna, S.D.; Tackett, A.J. Purification of a specific native genomic locus for proteomic analysis. Nucleic Acids Res. 2013, 41, e195. [Google Scholar] [CrossRef] [PubMed]
- Mengelkoch, S.; Miryam Schüssler-Fiorenza Rose, S.; Lautman, Z.; Alley, J.C.; Roos, L.G.; Ehlert, B.; Moriarity, D.P.; Lancaster, S.; Snyder, M.P.; Slavich, G.M. Multi-omics approaches in psychoneuroimmunology and health research: Conceptual considerations and methodological recommendations. Brain Behav. Immun. 2023, 114, 475–487. [Google Scholar] [CrossRef]
- Zybailov, B.L.; Glazko, G.V.; Rahmatallah, Y.; Andreyev, D.S.; McElroy, T.; Karaduta, O.; Byrum, S.D.; Orr, L.; Tackett, A.J.; Mackintosh, S.G.; et al. Metaproteomics reveals potential mechanisms by which dietary resistant starch supplementation attenuates chronic kidney disease progression in rats. PLoS ONE 2019, 14, e0199274. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.C.; Das, D.; Zhang, Y.; Chen, M.X.; Fernie, A.R.; Zhu, F.Y.; Han, J. Proteogenomics-based functional genome research: Approaches, applications, and perspectives in plants. Trends Biotechnol. 2023, 41, 1532–1548. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Lu, Y.; Song, Y.M.; Dong, J.; Li, R.Y.; Wang, G.L.; Wang, X.; Zhang, S.D.; Dong, Z.H.; Lu, M.; et al. Integrative genomic study of Chinese clear cell renal cell carcinoma reveals features associated with thrombus. Nat. Commun. 2020, 11, 739. [Google Scholar] [CrossRef]
- Dizman, N.; Lyou, Y.; Salgia, N.; Bergerot, P.G.; Hsu, J.; Enriquez, D.; Izatt, T.; Trent, J.M.; Byron, S.; Pal, S. Correlates of clinical benefit from immunotherapy and targeted therapy in metastatic renal cell carcinoma: Comprehensive genomic and transcriptomic analysis. J. Immunother. Cancer 2020, 8, e000953. [Google Scholar] [CrossRef]
- Clark, D.J.; Dhanasekaran, S.M.; Petralia, F.; Pan, J.; Song, X.; Hu, Y.; da Veiga Leprevost, F.; Reva, B.; Lih, T.M.; Chang, H.Y.; et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell 2019, 179, 964–983.e931, Erratum in Cell 2020, 180, 207. [Google Scholar] [CrossRef]
- Subramanian, S.; Ahmad, T. Autosomal Recessive Polycystic Kidney Disease. In Autosomal Recessive Polycystic Kidney Disease; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Rroji, M.; Figurek, A.; Spasovski, G. Proteomic Approaches and Potential Applications in Autosomal Dominant Polycystic Kidney Disease and Fabry Disease. Diagnostics 2023, 13, 1152. [Google Scholar] [CrossRef] [PubMed]
- Raby, K.L.; Horsely, H.; McCarthy-Boxer, A.; Norman, J.T.; Wilson, P.D. Urinary exosome proteomic profiling defines stage-specific rapid progression of autosomal dominant polycystic kidney disease and tolvaptan efficacy. BBA Adv. 2021, 1, 100013. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, N.; Hanna, R.M.; Al-Baghdadi, M.; Ameen, K.M.; Arman, F.; Nobahkt, E.; Kamgar, M.; Rastogi, A. Advances in Autosomal Dominant Polycystic Kidney Disease: A Clinical Review. Kidney Med. 2020, 2, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.K.; Kamm, M.A.; Teo, S.M.; Inouye, M.; Wagner, J.; Kirkwood, C.D. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: A systematic review. Inflamm. Bowel Dis. 2015, 21, 1219–1228. [Google Scholar] [CrossRef]
- Zhang, W.R.; Parikh, C.R. Biomarkers of Acute and Chronic Kidney Disease. Annu. Rev. Physiol. 2019, 81, 309–333. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Ibrahim, S.T.; Chinnadurai, R.; Green, D.; Taal, M.; Whetton, T.D.; Kalra, P.A. A Paradigm to Discover Biomarkers Associated With Chronic Kidney Disease Progression. Biomark. Insights 2020, 15, 1177271920976146. [Google Scholar] [CrossRef]
- Higashisaka, K.; Takeya, S.; Kamada, H.; Obana, M.; Maeda, M.; Kabayama, M.; Yamamoto, K.; Ishida, N.; Isaka, R.; Tsujino, H.; et al. Identification of biomarkers of chronic kidney disease among kidney-derived proteins. Clin. Proteomics 2022, 19, 3. [Google Scholar] [CrossRef] [PubMed]
- Mizdrak, M.; Kumrić, M.; Kurir, T.T.; Božić, J. Emerging Biomarkers for Early Detection of Chronic Kidney Disease. J. Pers. Med. 2022, 12, 548. [Google Scholar] [CrossRef]
- Schrauben, S.J.; Shou, H.; Zhang, X.; Anderson, A.H.; Bonventre, J.V.; Chen, J.; Coca, S.; Furth, S.L.; Greenberg, J.H.; Gutierrez, O.M.; et al. Association of Multiple Plasma Biomarker Concentrations with Progression of Prevalent Diabetic Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. J. Am. Soc. Nephrol. 2021, 32, 115–126. [Google Scholar] [CrossRef]
- Hoste, E.; Bihorac, A.; Al-Khafaji, A.; Ortega, L.M.; Ostermann, M.; Haase, M.; Zacharowski, K.; Wunderink, R.; Heung, M.; Lissauer, M.; et al. Identification and validation of biomarkers of persistent acute kidney injury: The RUBY study. Intensive Care Med. 2020, 46, 943–953. [Google Scholar] [CrossRef]
- Inker, L.A.; Couture, S.J.; Tighiouart, H.; Abraham, A.G.; Beck, G.J.; Feldman, H.I.; Greene, T.; Gudnason, V.; Karger, A.B.; Eckfeldt, J.H.; et al. A New Panel-Estimated GFR, Including β. Am. J. Kidney Dis. 2021, 77, 673–683.e671. [Google Scholar] [CrossRef] [PubMed]
- Kane-Gill, S.L.; Peerapornratana, S.; Wong, A.; Murugan, R.; Groetzinger, L.M.; Kim, C.; Smithburger, P.L.; Then, J.; Kellum, J.A. Use of tissue inhibitor of metalloproteinase 2 and insulin-like growth factor binding protein 7 [TIMP2]•[IGFBP7] as an AKI risk screening tool to manage patients in the real-world setting. J. Crit. Care 2020, 57, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Hatton, G.E.; Wang, Y.W.; Isbell, K.D.; Finkel, K.W.; Kao, L.S.; Wade, C.E. Urinary cell cycle arrest proteins urinary tissue inhibitor of metalloprotease 2 and insulin-like growth factor binding protein 7 predict acute kidney injury after severe trauma: A prospective observational study. J. Trauma. Acute Care Surg. 2020, 89, 761–767. [Google Scholar] [CrossRef]
- Schulz, C.A.; Engström, G.; Nilsson, J.; Almgren, P.; Petkovic, M.; Christensson, A.; Nilsson, P.M.; Melander, O.; Orho-Melander, M. Plasma kidney injury molecule-1 (p-KIM-1) levels and deterioration of kidney function over 16 years. Nephrol. Dial. Transplant. 2020, 35, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Koyner, J.L.; Chawla, L.S.; Bihorac, A.; Gunnerson, K.J.; Schroeder, R.; Demirjian, S.; Hodgson, L.; Frey, J.A.; Wilber, S.T.; Kampf, J.P.; et al. Performance of a Standardized Clinical Assay for Urinary C-C Motif Chemokine Ligand 14 (CCL14) for Persistent Severe Acute Kidney Injury. Kidney360 2022, 3, 1158–1168. [Google Scholar] [CrossRef]
- Banai, A.; Rozenfeld, K.L.; Levit, D.; Merdler, I.; Loewenstein, I.; Banai, S.; Shacham, Y. Neutrophil gelatinase-associated lipocalin (NGAL) for the prediction of acute kidney injury in chronic kidney disease patients treated with primary percutaneous coronary intervention. Int. J. Cardiol. Heart Vasc. 2021, 32, 100695. [Google Scholar] [CrossRef] [PubMed]
- Naruse, H.; Ishii, J.; Takahashi, H.; Kitagawa, F.; Nishimura, H.; Kawai, H.; Muramatsu, T.; Harada, M.; Yamada, A.; Fujiwara, W.; et al. Urinary Liver-Type Fatty-Acid-Binding Protein Predicts Long-Term Adverse Outcomes in Medical Cardiac Intensive Care Units. J. Clin. Med. 2020, 9, 482. [Google Scholar] [CrossRef]
- Ashokachakkaravarthy, K.; Rajappa, M.; Parameswaran, S.; Satheesh, S.; Priyadarshini, G.; Mohan Raj, P.S.; Revathy, G.; Priyadarssini, M. Asymmetric dimethylarginine and angiopoietin-like protein-2 are independent predictors of cardiovascular risk in pre-dialysis non-diabetic chronic kidney disease patients. Int. Urol. Nephrol. 2020, 52, 1321–1328. [Google Scholar] [CrossRef]
- Oliva-Damaso, E.; Oliva-Damaso, N.; Rodriguez-Esparragon, F.; Payan, J.; Baamonde-Laborda, E.; Gonzalez-Cabrera, F.; Santana-Estupiñan, R.; Rodriguez-Perez, J.C. Asymmetric (ADMA) and Symmetric (SDMA) Dimethylarginines in Chronic Kidney Disease: A Clinical Approach. Int. J. Mol. Sci. 2019, 20, 3668. [Google Scholar] [CrossRef]
- Bringans, S.D.; Ito, J.; Stoll, T.; Winfield, K.; Phillips, M.; Peters, K.; Davis, W.A.; Davis, T.M.E.; Lipscombe, R.J. Comprehensive mass spectrometry based biomarker discovery and validation platform as applied to diabetic kidney disease. EuPA Open Proteom. 2017, 14, 1–10. [Google Scholar] [CrossRef]
- Stojnev, S.; Pejcic, M.; Dolicanin, Z.; Velickovic, L.J.; Dimov, I.; Stefanovic, V. Challenges of genomics and proteomics in nephrology. Ren. Fail. 2009, 31, 765–772. [Google Scholar] [CrossRef]
- Eicher, T.; Patt, A.; Kautto, E.; Machiraju, R.; Mathé, E.; Zhang, Y. Challenges in proteogenomics: A comparison of analysis methods with the case study of the DREAM proteogenomics sub-challenge. BMC Bioinform. 2019, 20, 669. [Google Scholar] [CrossRef]
- Tariq, M.U.; Haseeb, M.; Aledhari, M.; Razzak, R.; Parizi, R.M.; Saeed, F. Methods for Proteogenomics Data Analysis, Challenges, and Scalability Bottlenecks: A Survey. IEEE Access 2021, 9, 5497–5516. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A.L.; Bateman, N.W.; Barakat, W.; Makohon-Moore, S.C.; Abulez, T.; Driscoll, J.A.; Schaaf, J.P.; Hood, B.L.; Conrads, K.A.; Zhou, M.; et al. Mapping three-dimensional intratumor proteomic heterogeneity in uterine serous carcinoma by multiregion microsampling. Clin. Proteomics 2024, 21, 4. [Google Scholar] [CrossRef]
- Axelsson, G.T.; Jonmundsson, T.; Woo, Y.; Frick, E.A.; Aspelund, T.; Loureiro, J.J.; Orth, A.P.; Jennings, L.L.; Gudmundsson, G.; Emilsson, V.; et al. Proteomic associations with forced expiratory volume: A Mendelian randomisation study. Respir. Res. 2024, 25, 44. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Kim, S.; Chowdhury, S.; Li, Z.; Yang, M.; Yoo, S.; Petralia, F.; Jacobsen, J.; Li, J.J.; Ge, X.; et al. DreamAI: Algorithm for the imputation of proteomics data. bioRxiv 2021, 2020.2007.2021.214205. [Google Scholar] [CrossRef]
- Oleg, K.; Loutfouz, Z. Shk-9: A new tool in approach of glycoprotein annotation. SoftwareX 2018, 7, 302–303. [Google Scholar] [CrossRef]
- Gurdeep Singh, R.; Tanca, A.; Palomba, A.; Van der Jeugt, F.; Verschaffelt, P.; Uzzau, S.; Martens, L.; Dawyndt, P.; Mesuere, B. Unipept 4.0: Functional Analysis of Metaproteome Data. J. Proteome Res. 2019, 18, 606–615. [Google Scholar] [CrossRef]
- Cheng, K.; Ning, Z.; Zhang, X.; Li, L.; Liao, B.; Mayne, J.; Stintzi, A.; Figeys, D. MetaLab: An automated pipeline for metaproteomic data analysis. Microbiome 2017, 5, 157. [Google Scholar] [CrossRef]
- Saeed, F.; Haseeb, M.; Iyengar, S. Communication lower-bounds for distributed-memory computations for mass spectrometry based omics data. J. Parallel Distrib. Comput. 2022, 161, 37–47. [Google Scholar] [CrossRef]
- Merchant, M.L. Mass spectrometry in chronic kidney disease research. Adv. Chronic Kidney Dis. 2010, 17, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Sanda, M.; Benicky, J.; Goldman, R. Low Collision Energy Fragmentation in Structure-Specific Glycoproteomics Analysis. Anal. Chem. 2020, 92, 8262–8267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Bai, L.; Wu, X.Q.; Tian, X.; Feng, J.; Wu, X.; Shi, G.H.; Pei, X.; Lyu, J.; Yang, G.; et al. Proteogenomics of clear cell renal cell carcinoma response to tyrosine kinase inhibitor. Nat. Commun. 2023, 14, 4274. [Google Scholar] [CrossRef] [PubMed]
Observable Traits | Methods/Technique | Category of Data | Rough Count of Attributes | |
---|---|---|---|---|
Phenotype | Clinical Metadata | Sample Annotation | 10–100 | |
DNA | Whole Exome Sequencing Whole Genome Sequencing | Germline mutations Somatic Mutations CNA | 10–20 K 20–30 K 15–20 K | |
Methylation Array | DNA methylation | 15–20 K | ||
RNA | RNA-seq | mRNA Circular RNA | 15–20 K | |
miRNA-seq | miRNA | 2–3 K | ||
Protein | LC proteomics | Proteins Phosphorylation Acetylation | 10–15 K 30–50 K 5–10 K | |
MS proteomics | Ubiquitylation Glycosylation | 10–20 K 10–15 K |
Protein Name | Peptide | Pilot Study ACR p-Value | Validation Study ACR p-Value | Validation Study eGFR p-Value |
---|---|---|---|---|
Adiponectin (ADIPO) | GDIGETGVPGAEGPR | 0.008 | 0.251 | 0.089 |
Apolipoprotein A-IV (APOA4) | LEPYADQLR, ISASAEELR | >0.1 0.083 | 0.002 <0.001 | <0.001 <0.001 |
Apolipoprotein C-III (APOC3) | DALSSVQESQVAQQAR | 0.056 | 0.701 | 0.004 |
Complement C1q subcomponent subunit B (C1QB) | IAFSATR | 0.002 | 0.063 | 0.382 |
Complement factor H-related protein 2 (CFHR2) | TGDIVEFVCK LVYPSCEEK | >0.1 0.030 | 0.090 0.010 | <0.001 <0.001 |
Hemoglobin subunit beta (HBB) | SAVTALWGK | 0.052 | <0.001 | 0.355 |
Insulin-like growth factor-binding protein 3 (IBP3) | VNVDEVGGEALGR, ALAQCAPPPAVCAELVR | 0.052 0.083 | <0.001 <0.001 | 0.346 0.060 |
Protein AMBP (AMBP) | FLNVLSPR, TVAACNLPIVR | 0.069 >0.1 | <0.001 0.017 | 0.019 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavali, K.; Coker, H.; Youngblood, E.; Karaduta, O. Proteogenomics in Nephrology: A New Frontier in Nephrological Research. Curr. Issues Mol. Biol. 2024, 46, 4595-4608. https://doi.org/10.3390/cimb46050279
Chavali K, Coker H, Youngblood E, Karaduta O. Proteogenomics in Nephrology: A New Frontier in Nephrological Research. Current Issues in Molecular Biology. 2024; 46(5):4595-4608. https://doi.org/10.3390/cimb46050279
Chicago/Turabian StyleChavali, Kavya, Holley Coker, Emily Youngblood, and Oleg Karaduta. 2024. "Proteogenomics in Nephrology: A New Frontier in Nephrological Research" Current Issues in Molecular Biology 46, no. 5: 4595-4608. https://doi.org/10.3390/cimb46050279
APA StyleChavali, K., Coker, H., Youngblood, E., & Karaduta, O. (2024). Proteogenomics in Nephrology: A New Frontier in Nephrological Research. Current Issues in Molecular Biology, 46(5), 4595-4608. https://doi.org/10.3390/cimb46050279