CDDO, an Anti-Inflammatory and Antioxidant Compound, Attenuates Vasospasm and Neuronal Cell Apoptosis in Rats Subjected to Experimental Subarachnoid Hemorrhage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Animals
2.4. SAH Induction
2.5. Neurological Behavioral Assessment
2.6. Tissue Processing
2.7. Morphometric Assessment of BA
2.8. Immunofluorescence
2.9. Enzyme-Linked Immunosorbent Assay (ELISA)
2.10. Western Blot Analysis
2.11. Statistical Analysis
3. Results
3.1. CDDO Protects Neuron Cells
3.2. Neurological Behavioral Assessment
3.3. Morphological Changes in BA
3.4. Changes in the Thickness of BA
3.5. Cross-Sectional Area Changes in BA
3.6. Proliferation of Microglia and Astrocytes
3.7. ELISA of Proinflammatory Factors
3.8. DNA Damage of Neuron Cells
3.9. Western Blot Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bederson, J.B.; Connolly, E.S.; Batjer, H.H.; Dacey, R.G.; Dion, J.E.; Diringer, M.N.; Duldner, J.E., Jr.; Harbaugh, R.E.; Patel, A.B.; Rosenwasser, R.H.; et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 2009, 40, 994–1025. [Google Scholar] [CrossRef]
- Alaraj, A.; Charbel, F.T.; Amin-Hanjani, S. Peri-operative measures for treatment and prevention of cerebral vasospasm following subarachnoid hemorrhage. Neurol. Res. 2009, 31, 651–659. [Google Scholar] [CrossRef]
- Kassell, N.F.; Sasaki, T.; Colohan, A.R.; Nazar, G. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 1985, 16, 562–572. [Google Scholar] [CrossRef]
- Bavarsad Shahripour, R.; Harrigan, M.R.; Alexandrov, A.V. N-acetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities. Brain Behav. 2014, 4, 108–122. [Google Scholar] [CrossRef]
- Cahill, J.; Calvert, J.W.; Zhang, J.H. Mechanisms of early brain injury after subarachnoid hemorrhage. J. Cereb. Blood Flow. Metab. 2006, 26, 1341–1353. [Google Scholar] [CrossRef]
- Park, S.; Yamaguchi, M.; Zhou, C.; Calvert, J.W.; Tang, J.; Zhang, J.H. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke 2004, 35, 2412–2417. [Google Scholar] [CrossRef]
- Cheng, G.; Wei, L.; Sun, Z.-D.; Zhao, S.-G.; Liu, X.-Z. Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci. 2009, 10, 7. [Google Scholar] [CrossRef]
- Yamauchi, K.; Nakano, Y.; Imai, T.; Takagi, T.; Tsuruma, K.; Shimazawa, M.; Iwama, T.; Hara, H. A novel nuclear factor erythroid 2-related factor 2 (Nrf2) activator RS9 attenuates brain injury after ischemia reperfusion in mice. Neuroscience 2016, 333, 302–310. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, S.; Zhang, M.; Weng, Z.; Li, P.; Gan, Y.; Zhang, L.; Cao, G.; Gao, Y.; Leak, R.K.; et al. Pharmacological induction of heme oxygenase-1 by a triterpenoid protects neurons against ischemic injury. Stroke 2012, 43, 1390–1397. [Google Scholar] [CrossRef]
- Jeon, H.; Ai, J.; Sabri, M.; Tariq, A.; Shang, X.; Chen, G.; Macdonald, R.L. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci. 2009, 10, 103. [Google Scholar] [CrossRef]
- Provencio, J.J.; Vora, N. Subarachnoid hemorrhage and inflammation: Bench to bedside and back. Semin. Neurol. 2005, 25, 435–444. [Google Scholar] [CrossRef]
- Huang, L.T.; Li, H.; Sun, Q.; Liu, M.; Li, W.D.; Li, S.; Yu, Z.; Wei, W.T.; Hang, C.H. IL-33 expression in the cerebral cortex following experimental subarachnoid hemorrhage in rats. Cell Mol. Neurobiol. 2015, 35, 493–501. [Google Scholar] [CrossRef]
- Van Dijk, B.J.; Vergouwen, M.D.; Kelfkens, M.M.; Rinkel, G.J.; Hol, E.M. Glial cell response after aneurysmal subarachnoid hemorrhage—Functional consequences and clinical implications. Biochim. Biophys. Acta 2016, 1862, 492–505. [Google Scholar] [CrossRef]
- Wang, J.Y. DNA damage and apoptosis. Cell Death Differ. 2001, 8, 1047–1048. [Google Scholar] [CrossRef]
- Haruma, J.; Teshigawara, K.; Hishikawa, T.; Wang, D.; Liu, K.; Wake, H.; Mori, S.; Takahashi, H.K.; Sugiu, K.; Date, I.; et al. Anti-high mobility group box-1 (HMGB1) antibody attenuates delayed cerebral vasospasm and brain injury after subarachnoid hemorrhage in rats. Sci. Rep. 2016, 6, 37755. [Google Scholar] [CrossRef]
- Maddahi, A.; Povlsen, G.K.; Edvinsson, L. Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J. Neuroinflamm. 2012, 9, 274. [Google Scholar] [CrossRef]
- Zetterling, M.; Hallberg, L.; Hillered, L.; Karlsson, T.; Enblad, P.; Ronne Engström, E. Brain energy metabolism in patients with spontaneous subarachnoid hemorrhage and global cerebral edema. Neurosurgery 2010, 66, 1102–1110. [Google Scholar] [CrossRef]
- Altay, O.; Suzuki, H.; Hasegawa, Y.; Caner, B.; Krafft, P.R.; Fujii, M.; Tang, J.; Zhang, J.H. Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke 2012, 43, 2513–2516. [Google Scholar]
- Sozen, T.; Tsuchiyama, R.; Hasegawa, Y.; Suzuki, H.; Jadhav, V.; Nishizawa, S.; Zhang, J.H. Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke 2009, 40, 2519–2525. [Google Scholar] [CrossRef]
- Chen, S.; Feng, H.; Sherchan, P.; Klebe, D.; Zhao, G.; Sun, X.; Zhang, J.; Tang, J.; Zhang, J.H. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog. Neurobiol. 2014, 115, 64–91. [Google Scholar] [CrossRef]
- Murakami, K.; Koide, M.; Dumont, T.M.; Russell, S.R.; Tranmer, B.I.; Wellman, G.C. Subarachnoid Hemorrhage Induces Gliosis and Increased Expression of the Pro-inflammatory Cytokine High Mobility Group Box 1 Protein. Transl. Stroke Res. 2011, 2, 72–79. [Google Scholar] [CrossRef]
- Hanafy, K.A. The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J. Neuroinflamm. 2013, 10, 83. [Google Scholar] [CrossRef]
- Yu, Z.; Tang, L.; Chen, L.; Li, J.; Wu, W.; Hu, C. Role for HIF-1alpha and Downstream Pathways in Regulating Neuronal Injury after Intracerebral Hemorrhage in Diabetes. Cell Physiol. Biochem. 2015, 37, 67–76. [Google Scholar] [CrossRef]
- Ishii, T.; Itoh, K.; Takahashi, S.; Sato, H.; Yanagawa, T.; Katoh, Y.; Bannai, S.; Yamamoto, M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 2000, 275, 16023–16029. [Google Scholar] [CrossRef]
- Lei, X.; Li, H.; Li, M.; Dong, Q.; Zhao, H.; Zhang, Z.; Sun, B.; Mao, L. The novel Nrf2 activator CDDO-EA attenuates cerebral ischemic injury by promoting microglia/macrophage polarization toward M2 phenotype in mice. CNS Neurosci. Ther. 2021, 27, 82–91. [Google Scholar] [CrossRef]
- Wang, X.; Bynum, J.A.; Stavchansky, S.; Bowman, P.D. Cytoprotection of human endothelial cells against oxidative stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): Application of systems biology to understand the mechanism of action. Eur. J. Pharmacol. 2014, 734, 122–131. [Google Scholar] [CrossRef]
- Mattson, M.P.; Camandola, S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Investig. 2001, 107, 247–254. [Google Scholar] [CrossRef]
- Pizzi, M.; Sarnico, I.; Lanzillotta, A.; Battistin, L.; Spano, P. Post-ischemic brain damage: NF-kappaB dimer heterogeneity as a molecular determinant of neuron vulnerability. FEBS J. 2009, 276, 27–35. [Google Scholar] [CrossRef]
- Tsai, T.H.; Lin, S.H.; Wu, C.H.; Tsai, Y.C.; Yang, S.F.; Lin, C.L. Mechanisms and therapeutic implications of RTA 408, an activator of Nrf2, in subarachnoid hemorrhage-induced delayed cerebral vasospasm and secondary brain injury. PLoS ONE 2020, 15, e0240122. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, H.; Wu, F.; Liu, Z.; Cheng, Y.; Wang, C. Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. Oxid. Med. Cell Longev. 2020, 2020, 4683943. [Google Scholar] [CrossRef]
- Tran, T.A.; McCoy, M.K.; Sporn, M.B.; Tansey, M.G. The synthetic triterpenoid CDDO-methyl ester modulates microglial activities, inhibits TNF production, and provides dopaminergic neuroprotection. J. Neuroinflamm. 2008, 5, 14. [Google Scholar] [CrossRef]
- Lu, C.C.; Lin, C.Y.; Lu, Y.Y.; Tsai, H.P.; Lin, C.L.; Wu, C.H. CDDO regulates central and peripheral sensitization to attenuate post-herpetic neuralgia by targeting TRPV1/PKC-δ/p-Akt signals. J. Cell Mol. Med. 2024, 28, e18131. [Google Scholar] [CrossRef]
Motor | Behavior | Score |
---|---|---|
Ambulation | Normal (symmetric and coordinated) | 0 |
Toes flat under the body while walking with ataxia | 1 | |
Knuckle walking | 2 | |
Movement in lower extremities but unable to knuckle walk | 3 | |
No movement, dragging lower extremities | 4 | |
Placing/stepping reflex | Normal (coordinated lifting and placing response) | 0 |
Weak response | 1 | |
No stepping | 2 |
Treatment | Ambulation | Placing/Stepping Reflex | MDI |
---|---|---|---|
Control | 0 | 0 | 0 |
SAH | 3.09 ± 0.091 | 1.91 ± 0.301 | 5.00 ± 0.447 |
SAH + 10 mg/kg of CDDO | 2.38 ± 0.140 | 1.61 ± 0.140 | 4.00 ± 0.707 * |
SAH + 20 mg/kg of CDDO | 1.083 ± 0.193 *** | 0.67 ± 0.142 *** | 1.75 ± 0.866 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winardi, W.; Lo, Y.-P.; Tsai, H.-P.; Huang, Y.-H.; Tseng, T.-T.; Chung, C.-L. CDDO, an Anti-Inflammatory and Antioxidant Compound, Attenuates Vasospasm and Neuronal Cell Apoptosis in Rats Subjected to Experimental Subarachnoid Hemorrhage. Curr. Issues Mol. Biol. 2024, 46, 4688-4700. https://doi.org/10.3390/cimb46050283
Winardi W, Lo Y-P, Tsai H-P, Huang Y-H, Tseng T-T, Chung C-L. CDDO, an Anti-Inflammatory and Antioxidant Compound, Attenuates Vasospasm and Neuronal Cell Apoptosis in Rats Subjected to Experimental Subarachnoid Hemorrhage. Current Issues in Molecular Biology. 2024; 46(5):4688-4700. https://doi.org/10.3390/cimb46050283
Chicago/Turabian StyleWinardi, William, Yun-Ping Lo, Hung-Pei Tsai, Yu-Hua Huang, Tzu-Ting Tseng, and Chia-Li Chung. 2024. "CDDO, an Anti-Inflammatory and Antioxidant Compound, Attenuates Vasospasm and Neuronal Cell Apoptosis in Rats Subjected to Experimental Subarachnoid Hemorrhage" Current Issues in Molecular Biology 46, no. 5: 4688-4700. https://doi.org/10.3390/cimb46050283
APA StyleWinardi, W., Lo, Y.-P., Tsai, H.-P., Huang, Y.-H., Tseng, T.-T., & Chung, C.-L. (2024). CDDO, an Anti-Inflammatory and Antioxidant Compound, Attenuates Vasospasm and Neuronal Cell Apoptosis in Rats Subjected to Experimental Subarachnoid Hemorrhage. Current Issues in Molecular Biology, 46(5), 4688-4700. https://doi.org/10.3390/cimb46050283