Spatial Multi-Omics in Alzheimer’s Disease: A Multi-Dimensional Approach to Understanding Pathology and Progression
Abstract
:1. Introduction
2. Spatial Omics Methods
2.1. Space Proteomics Techniques
2.1.1. Cyclic Fluorescent Imaging
2.1.2. Mass Spectrometry Imaging
2.2. Spatial Transcriptomic Techniques
Overview of Post-Experimental Analysis in Spatial Transcriptomics
2.3. Spatial Epigenomic Techniques
3. Applications of Spatial Omics in AD
3.1. Application of Spatial Proteomics in the Study of AD
3.2. Application of Spatial Metabolomics in the Study of AD
3.3. Application of Spatial Transcriptomics in the Study of AD
4. Conclusions and Challenges
5. Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- Cummings, J.; Zhou, Y.; Lee, G.; Zhong, K.; Fonseca, J.; Cheng, F. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement. 2023, 9, e12385. [Google Scholar] [CrossRef]
- Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med. 2018, 284, 643–663. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.J. Spatial transcriptomics coming of age. Nat. Rev. Genet. 2019, 20, 317. [Google Scholar] [CrossRef]
- Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016, 353, 78–82. [Google Scholar] [CrossRef]
- Eng, C.-H.L.; Lawson, M.; Zhu, Q.; Dries, R.; Koulena, N.; Takei, Y.; Yun, J.; Cronin, C.; Karp, C.; Yuan, G.-C.; et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 2019, 568, 235–239. [Google Scholar] [CrossRef]
- Chen, K.H.; Boettiger, A.N.; Moffitt, J.R.; Wang, S.; Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015, 348, aaa6090. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.R.; Izar, B.; Wang, S.; Yapp, C.; Mei, S.; Shah, P.M.; Santagata, S.; Sorger, P.K. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife 2018, 7, e31657. [Google Scholar] [CrossRef] [PubMed]
- Tillner, J.; Wu, V.; Jones, E.A.; Pringle, S.D.; Karancsi, T.; Dannhorn, A.; Veselkov, K.; McKenzie, J.S.; Takats, Z. Faster, More Reproducible DESI-MS for Biological Tissue Imaging. J. Am. Soc. Mass Spectrom. 2017, 28, 2090–2098. [Google Scholar] [CrossRef] [PubMed]
- Saka, S.K.; Wang, Y.; Kishi, J.Y.; Zhu, A.; Zeng, Y.; Xie, W.; Kirli, K.; Yapp, C.; Cicconet, M.; Beliveau, B.J.; et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 2019, 37, 1080–1090. [Google Scholar] [CrossRef]
- MacDonald, M.L.; Favo, D.; Garver, M.; Sun, Z.; Arion, D.; Ding, Y.; Yates, N.; Sweet, R.A.; Lewis, D.A. Laser capture microdissection–targeted mass spectrometry: A method for multiplexed protein quantification within individual layers of the cerebral cortex. Neuropsychopharmacology 2018, 44, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.E.; San Roman, E.; Manuel, I.; Giralt, M.T.; Ferrer, I.; Rodríguez-Puertas, R. Imaging mass spectrometry (IMS) of cortical lipids from preclinical to severe stages of Alzheimer’s disease. Biochim. Biophys. Acta Biomembr. 2017, 1859 Pt B, 1604–1614. [Google Scholar] [CrossRef]
- Prentice, B.M.; Hart, N.J.; Phillips, N.; Haliyur, R.; Judd, A.; Armandala, R.; Spraggins, J.M.; Lowe, C.L.; Boyd, K.L.; Stein, R.W.; et al. Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue. Diabetologia 2019, 62, 1036–1047. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.J.; Patterson, N.H.; Putnam, N.E.; Wilde, A.D.; Weiss, A.; Perry, W.J.; Cassat, J.E.; Skaar, E.P.; Caprioli, R.M.; Spraggins, J.M. MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted Proteomic Studies. Anal. Chem. 2019, 91, 7578–7585. [Google Scholar] [CrossRef] [PubMed]
- Murray, H.C.; Johnson, K.; Sedlock, A.; Highet, B.; Dieriks, B.V.; Anekal, P.V.; Faull, R.L.M.; Curtis, M.A.; Koretsky, A.; Maric, D. Lamina-specific immunohistochemical signatures in the olfactory bulb of healthy, Alzheimer’s and Parkinson’s disease patients. Commun. Biol. 2022, 5, 88. [Google Scholar] [CrossRef] [PubMed]
- Unsihuay, D.; Yin, R.; Sanchez, D.M.; Yang, M.; Li, Y.; Sun, X.; Dey, S.K.; Laskin, J. High-resolution imaging and identification of biomolecules using Nano-DESI coupled to ion mobility spectrometry. Anal. Chim. Acta 2021, 1186, 339085. [Google Scholar] [CrossRef]
- Zhu, Y.; Piehowski, P.D.; Zhao, R.; Chen, J.; Shen, Y.; Moore, R.J.; Shukla, A.K.; Petyuk, V.A.; Campbell-Thompson, M.; Mathews, C.E.; et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat. Commun. 2018, 9, 882. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Deng, Y.; Su, G.; Enninful, A.; Guo, C.C.; Tebaldi, T.; Zhang, D.; Kim, D.; Bai, Z.; et al. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue. Cell 2020, 183, 1665–1681.e18. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Bhatt, R.; Birditt, B.; Brown, C.; Brown, E.; Chantranuvatana, K.; Danaher, P.; Dunaway, D.; Filanoski, B.; Garrison, R.G.; et al. High-Plex Multiomic Analysis in FFPE Tissue at Single-Cellular and Subcellular Resolution by Spatial Molecular Imaging. bioRxiv 2021, bioRxiv:2021.11.03.467020. [Google Scholar]
- Merritt, C.R.; Ong, G.T.; Church, S.E.; Barker, K.; Danaher, P.; Geiss, G.; Hoang, M.; Jung, J.; Liang, Y.; McKay-Fleisch, J.; et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 2020, 38, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Rumpler, E.; Göcz, B.; Skrapits, K.; Sárvári, M.; Takács, S.; Farkas, I.; Póliska, S.; Papp, M.; Solymosi, N.; Hrabovszky, E. Development of a versatile LCM-Seq method for spatial transcriptomics of fluorescently tagged cholinergic neuron populations. J. Biol. Chem. 2023, 299, 105121. [Google Scholar] [CrossRef] [PubMed]
- Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 2019, 363, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Liao, S.; Cheng, M.; Ma, K.; Wu, L.; Lai, Y.; Qiu, X.; Yang, J.; Xu, J.; Hao, S.; et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 2022, 185, 1777–1792.e21. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chang, Y.; Li, L.; Acosta, D.; Li, Y.; Guo, Q.; Wang, C.; Turkes, E.; Morrison, C.; Julian, D.; et al. Spatially resolved transcriptomics reveals genes associated with the vulnerability of middle temporal gyrus in Alzheimer’s disease. Acta Neuropathol. Commun. 2022, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Janesick, A.; Shelansky, R.; Gottscho, A.; Wagner, F.; Rouault, M.; Beliakoff, G.; de Oliveira, M.F.; Kohlway, A.; Abousoud, J.; Morrison, C.; et al. High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue. bioRxiv 2022, bioRxiv:2022.10.06.510405. [Google Scholar]
- Zhang, D.; Deng, Y.; Kukanja, P.; Agirre, E.; Bartosovic, M.; Dong, M.; Ma, C.; Ma, S.; Su, G.; Bao, S.; et al. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 2023, 616, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Ang, C.E.; Zhuang, X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 2023, 186, 2275–2279. [Google Scholar] [CrossRef]
- Zhang, H.; Delafield, D.G.; Li, L. Mass spectrometry imaging: The rise of spatially resolved single-cell omics. Nat. Methods 2023, 20, 327–330. [Google Scholar] [CrossRef]
- Gerdes, M.J.; Sevinsky, C.J.; Sood, A.; Adak, S.; Bello, M.O.; Bordwell, A.; Can, A.; Corwin, A.; Dinn, S.; Filkins, R.J.; et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. USA 2013, 110, 11982–11987. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.-M.; Veneziano, R.; Gordonov, S.; Li, L.; Danielson, E.; de Arce, K.P.; Park, D.; Kulesa, A.B.; Wamhoff, E.-C.; Blainey, P.C.; et al. Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes. Nat. Commun. 2019, 10, 4377. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, R.M.; Farmer, T.B.; Gile, J. Molecular Imaging of Biological Samples: Localization of Peptides and Proteins Using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751–4760. [Google Scholar] [CrossRef] [PubMed]
- Takáts, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef]
- Laskin, J.; Heath, B.S.; Roach, P.J.; Cazares, L.; Semmes, O.J. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 2012, 84, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Lechene, C.; Hillion, F.; McMahon, G.; Benson, D.; Kleinfeld, A.M.; Kampf, J.P.; Distel, D.; Luyten, Y.; Bonventre, J.; Hentschel, D.; et al. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J. Biol. 2006, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, M.L.; Bailey, A.P.; Senyo, S.E.; Guillermier, C.; Perlstein, T.S.; Gould, A.P.; Lee, R.T.; Lechene, C.P. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature 2012, 481, 516–519. [Google Scholar] [CrossRef]
- Keren, L.; Bosse, M.; Marquez, D.; Angoshtari, R.; Jain, S.; Varma, S.; Yang, S.-R.; Kurian, A.; Van Valen, D.; West, R.; et al. A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 2018, 174, 1373–1387.e19. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Clair, G.; Chrisler, W.B.; Shen, Y.; Zhao, R.; Shukla, A.K.; Moore, R.J.; Misra, R.S.; Pryhuber, G.S.; Smith, R.D.; et al. Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic Nanodroplet Sample Preparation and Ultrasensitive NanoLC-MS. Angew. Chem. Int. Ed. Engl. 2018, 57, 12370–12374. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, Y.; Dou, M.; Xu, K.; Chu, R.K.; Chrisler, W.B.; Zhao, R.; Hixson, K.K.; Kelly, R.T. Spatially Resolved Proteome Profiling of <200 Cells from Tomato Fruit Pericarp by Integrating Laser-Capture Microdissection with Nanodroplet Sample Preparation. Anal. Chem. 2018, 90, 11106–11114. [Google Scholar] [CrossRef]
- Wang, X.; Allen, W.E.; Wright, M.A.; Sylwestrak, E.L.; Samusik, N.; Vesuna, S.; Evans, K.; Liu, C.; Ramakrishnan, C.; Liu, J.; et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018, 361, aat5691. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Lubeck, E.; Zhou, W.; Cai, L. seqFISH Accurately Detects Transcripts in Single Cells and Reveals Robust Spatial Organization in the Hippocampus. Neuron 2017, 94, 752–758.e1. [Google Scholar] [CrossRef]
- Salmén, F.; Ståhl, P.L.; Mollbrink, A.; Navarro, J.F.; Vickovic, S.; Frisén, J.; Lundeberg, J. Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in mammalian tissue sections. Nat. Protoc. 2018, 13, 2501–2534. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Bartosovic, M.; Ma, S.; Zhang, D.; Kukanja, P.; Xiao, Y.; Su, G.; Liu, Y.; Qin, X.; Rosoklija, G.B.; et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 2022, 609, 375–383. [Google Scholar] [CrossRef]
- Deng, Y.; Bartosovic, M.; Kukanja, P.; Zhang, D.; Liu, Y.; Su, G.; Enninful, A.; Bai, Z.; Castelo-Branco, G.; Fan, R. Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level. Science 2022, 375, 681–686. [Google Scholar] [CrossRef]
- Williams, C.G.; Lee, H.J.; Asatsuma, T.; Vento-Tormo, R.; Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022, 14, 68. [Google Scholar] [CrossRef]
- Wang, H.; Huang, R.; Nelson, J.; Gao, C.; Tran, M.; Yeaton, A.; Felt, K.; Pfaff, K.L.; Bowman, T.; Rodig, S.J.; et al. Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. bioRxiv 2023. [Google Scholar] [CrossRef]
- He, S.; Bhatt, R.; Brown, C.; Brown, E.A.; Buhr, D.L.; Chantranuvatana, K.; Danaher, P.; Dunaway, D.; Garrison, R.G.; Geiss, G.; et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 2022, 40, 1794–1806. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Chen, R.; Chen, X. SpatialDB: A database for spatially resolved transcriptomes. Nucleic Acids Res. 2019, 48, D233–D237. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, W.; Yang, T.; Chen, J.; Huang, Y.; Gould, J.; Du, W.; Yang, F.; Li, L.; Lai, T.; et al. STOmicsDB: A database of Spatial Transcriptomic data. bioRxiv 2022, bioRxiv:2022.03.11.481421. [Google Scholar]
- Yuan, Z.; Pan, W.; Zhao, X.; Zhao, F.; Xu, Z.; Li, X.; Zhao, Y.; Zhang, M.Q.; Yao, J. SODB facilitates comprehensive exploration of spatial omics data. Nat. Methods 2023, 20, 387–399. [Google Scholar] [CrossRef]
- Li, Y.; Dennis, S.; Hutch, M.R.; Li, Y.; Broad, M.S.; Zeng, Z.; Luo, Y. SOAR: A spatial transcriptomics analysis resource to model spatial variability and cell type interactions. bioRxiv 2022, bioRxiv:2022.04.17.488596. [Google Scholar]
- Dries, R.; Zhu, Q.; Dong, R.; Eng, C.-H.L.; Li, H.; Liu, K.; Fu, Y.; Zhao, T.; Sarkar, A.; Bao, F.; et al. Giotto: A toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 2021, 22, 78. [Google Scholar] [CrossRef] [PubMed]
- Avila Cobos, F.; Alquicira-Hernandez, J.; Powell, J.E.; Mestdagh, P.; De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 2020, 11, 5650. [Google Scholar] [CrossRef]
- Lopez, R.; Nazaret, A.; Langevin, M.; Samaran, J.; Regier, J.; Jordan, M.I.; Yosef, N. A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements. arXiv 2019, arXiv:1905.02269. [Google Scholar]
- Maseda, F.; Cang, Z.; Nie, Q. DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data. Front. Genet. 2021, 12, 636743. [Google Scholar] [CrossRef]
- Peng, T.; Chen, G.; Tan, K. GLUER: Integrative analysis of single-cell omics and imaging data by deep neural network. BioRxiv 2021. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, L. Cell type-specific potential pathogenic genes and functional pathways in Alzheimer’s Disease. BMC Neurol. 2021, 21, 381. [Google Scholar] [CrossRef]
- Garcia-Alonso, L.; Handfield, L.-F.; Roberts, K.; Nikolakopoulou, K.; Fernando, R.C.; Gardner, L.; Woodhams, B.; Arutyunyan, A.; Polanski, K.; Hoo, R.; et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet. 2021, 53, 1698–1711. [Google Scholar] [CrossRef]
- Kleshchevnikov, V.; Shmatko, A.; Dann, E.; Aivazidis, A.; King, H.W.; Li, T.; Lomakin, A.; Kedlian, V.; Jain, M.S.; Park, J.S.; et al. Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomics. BioRxiv 2020. [Google Scholar] [CrossRef]
- Fischer, D.S.; Schaar, A.C.; Theis, F.J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 2023, 41, 332–336. [Google Scholar] [CrossRef]
- Bafna, M.; Li, H.; Zhang, X. CLARIFY: Cell–cell interaction and gene regulatory network refinement from spatially resolved transcriptomics. Bioinformatics 2023, 39 (Suppl. S1), i484–i493. [Google Scholar] [CrossRef]
- Li, Z.; Wang, T.; Liu, P.; Huang, Y. SpatialDM for rapid identification of spatially co-expressed ligand–receptor and revealing cell–cell communication patterns. Nat. Commun. 2023, 14, 3995. [Google Scholar] [CrossRef]
- Cang, Z.; Zhao, Y.; Almet, A.A.A.; Stabell, A.; Ramos, R.; Plikus, M.V.V.; Atwood, S.X.X.; Nie, Q. Screening cell-cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 2023, 20, 218–228. [Google Scholar] [CrossRef]
- Henikoff, S.; Smith, M.M. Histone Variants and Epigenetics. Cold Spring Harb. Perspect. Biol. 2015, 7, a019364. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Y.; Li, Y.E.; Lucero, J.; Behrens, M.M.; Ren, B. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat. Methods 2021, 18, 283–292. [Google Scholar] [CrossRef]
- Molnár, Z.; Clowry, G.J.; Šestan, N.; Alzu’Bi, A.; Bakken, T.; Hevner, R.F.; Hüppi, P.S.; Kostović, I.; Rakic, P.; Anton, E.S.; et al. New insights into the development of the human cerebral cortex. J. Anat. 2019, 235, 432–451. [Google Scholar] [CrossRef] [PubMed]
- Cadwell, C.R.; Bhaduri, A.; Mostajo-Radji, M.A.; Keefe, M.G.; Nowakowski, T.J. Development and Arealization of the Cerebral Cortex. Neuron 2019, 103, 980–1004. [Google Scholar] [CrossRef]
- Muñoz-Castro, C.; Noori, A.; Magdamo, C.G.; Li, Z.; Marks, J.D.; Frosch, M.P.; Das, S.; Hyman, B.T.; Serrano-Pozo, A. Cyclic multiplex fluorescent immunohistochemistry and machine learning reveal distinct states of astrocytes and microglia in normal aging and Alzheimer’s disease. J. Neuroinflammation 2022, 19, 30. [Google Scholar] [CrossRef]
- Muñoz-Castro, C.; Noori, A.; Hyman, B.T.; Serrano-Pozo, A. Cyclic Multiplex Fluorescent Immunohistochemistry Protocol to Phenotype Glial Cells in Formalin-Fixed Paraffin-Embedded Human Brain Sections. Methods Mol. Biol. 2023, 2593, 283–305. [Google Scholar] [PubMed]
- Lazarian, A.; Costa, A.P.; Fowler, B.; Zandkarimi, F.; McIntire, L.B. Comparison of lipidomic profiling and spatial distribution in brain of a genetic mouse model of Alzheimer’s disease using DESI Imaging Mass Spectrometry: Regional lipid dyshomeostasis in AD. Alzheimer’s Dement. 2022, 18, e069446. [Google Scholar] [CrossRef]
- Lv, Y.; Yan, S.; Deng, K.; Chen, Z.; Yang, Z.; Li, F.; Luo, Q. Unlocking the Molecular Variations of a Micron-Scale Amyloid Plaque in an Early Stage Alzheimer’s Disease by a Cellular-Resolution Mass Spectrometry Imaging Platform. ACS Chem. Neurosci. 2024, 15, 337–345. [Google Scholar] [CrossRef]
- Takeyama, E.; Islam, A.; Watanabe, N.; Tsubaki, H.; Fukushima, M.; Mamun, A.; Sato, S.; Sato, T.; Eto, F.; Yao, I.; et al. Dietary Intake of Green Nut Oil or DHA Ameliorates DHA Distribution in the Brain of a Mouse Model of Dementia Accompanied by Memory Recovery. Nutrients 2019, 11, 2371. [Google Scholar] [CrossRef]
- Hashimoto, M.; Bogdanovic, N.; Nakagawa, H.; Volkmann, I.; Aoki, M.; Winblad, B.; Sakai, J.; Tjernberg, L.O. Analysis of microdissected neurons by 18O mass spectrometry reveals altered protein expression in Alzheimer’s disease. J. Cell Mol. Med. 2012, 16, 1686–1700. [Google Scholar] [CrossRef]
- Bishay, J.; Beckett, T.L.; Lai, A.Y.; Hill, M.E.; McMahon, D.; McLaurin, J. Venular amyloid accumulation in transgenic Fischer 344 Alzheimer’s disease rats. Sci. Rep. 2022, 12, 15287. [Google Scholar] [CrossRef]
- Bishay, J.; Beckett, T.; Lai, A.Y.; Hill, M.E.; McMahon, D.; Simpson, C.; Hynynen, K.; McLaurin, J. Venular amyloid and its relationship with cerebral amyloid angiopathy in TGF344AD rats. Alzheimer’s Dement. 2020, 16, e042458. [Google Scholar] [CrossRef]
- Tjernberg, L. S3-03-01: Altered protein expression in pyramidal neurons in Alzheimer’s disease. Alzheimer’s Dement. 2011, 7 Pt 14, S490–S491. [Google Scholar] [CrossRef]
- Kaya, I.; Brinet, D.; Michno, W.; Başkurt, M.; Zetterberg, H.; Blenow, K.; Hanrieder, J. Novel Trimodal MALDI Imaging Mass Spectrometry (IMS3) at 10 μm Reveals Spatial Lipid and Peptide Correlates Implicated in Aβ Plaque Pathology in Alzheimer’s Disease. ACS Chem. Neurosci. 2017, 8, 2778–2790. [Google Scholar] [CrossRef]
- Kakuda, N.; Miyasaka, T.; Iwasaki, N.; Nirasawa, T.; Wada-Kakuda, S.; Takahashi-Fujigasaki, J.; Murayama, S.; Ihara, Y.; Ikegawa, M. Distinct deposition of amyloid-β species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol. Commun. 2017, 5, 73. [Google Scholar] [CrossRef]
- Hong, J.H.; Kang, J.W.; Kim, D.K.; Baik, S.H.; Kim, K.H.; Shanta, S.R.; Jung, J.H.; Mook-Jung, I.; Kim, K.P. Global changes of phospholipids identified by MALDI imaging mass spectrometry in a mouse model of Alzheimer’s disease. J. Lipid Res. 2016, 57, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Kaya, I.; Zetterberg, H.; Blennow, K.; Hanrieder, J. Shedding Light on the Molecular Pathology of Amyloid Plaques in Transgenic Alzheimer’s Disease Mice Using Multimodal MALDI Imaging Mass Spectrometry. ACS Chem. Neurosci. 2018, 9, 1802–1817. [Google Scholar] [CrossRef] [PubMed]
- Phongpreecha, T.; Gajera, C.R.; Liu, C.C.; Vijayaragavan, K.; Chang, A.L.; Becker, M.; Fallahzadeh, R.; Fernandez, R.; Postupna, N.; Sherfield, E.; et al. Single-synapse analyses of Alzheimer’s disease implicate pathologic tau, DJ1, CD47, and ApoE. Sci. Adv. 2021, 7, eabk0473. [Google Scholar] [CrossRef]
- Vijayaragavan, K.; Cannon, B.J.; Tebaykin, D.; Bosse, M.; Baranski, A.; Oliveria, J.; Bukhari, S.A.; Mrdjen, D.; Corces, M.R.; McCaffrey, E.F.; et al. Single-cell spatial proteomic imaging for human neuropathology. Acta Neuropathol. Commun. 2022, 10, 158. [Google Scholar] [CrossRef]
- Moon, D.W.; Park, Y.H.; Lee, S.Y.; Lim, H.; Kwak, S.; Kim, M.S.; Kim, H.; Kim, E.; Jung, Y.; Hoe, H.-S.; et al. Multiplex Protein Imaging with Secondary Ion Mass Spectrometry Using Metal Oxide Nanoparticle-Conjugated Antibodies. ACS Appl. Mater Interfaces 2020, 12, 18056–18064. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Zamora, D.; Horowitz, M.S.; Jahanipour, J.; Calzada, E.; Li, X.; Keyes, G.S.; Murray, H.C.; Curtis, M.A.; Faull, R.M.; et al. ApoER2-Dab1 disruption as the origin of pTau-associated neurodegeneration in sporadic Alzheimer’s disease. Acta Neuropathol. Commun. 2023, 11, 197. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Keyes, G.S.; Calzada, E.; Horowitz, M.S.; Zamora, D.; Jahanipour, J.; Sedlock, A.; Indig, F.E.; Moaddel, R.; Kapogiannis, D.; et al. Lipid Peroxidation Induced ApoE Receptor-Ligand Disruption as a Unifying Hypothesis Underlying Sporadic Alzheimer’s Disease in Humans. J. Alzheimer’s Dis. 2022, 87, 1251–1290. [Google Scholar] [CrossRef]
- Rosenbloom, A.; Bonnett, S.; Conner, M.; Phan-Everson, T.; Lewis, Z.; Ong, G.; Liang, Y.; Brown, E.; Pan, L.; Wardhani, A.; et al. A complete pipeline for high-plex spatial proteomic profiling and analysis of neural cell phenotypes on the CosMx™ Spatial Molecular Imager and AtoMx™ Spatial Informatics Platform. Alzheimer’s Dement. 2023, 19, e076665. [Google Scholar] [CrossRef]
- Son, G.; Mladinov, M.; Pereira, F.; Li, S.H.; Tu, C.L.; Judge, G.; Yang, Y.; Suemoto, C.; Leite, R.; Paes, V.; et al. Spatially conserved pathoprotein profiling in the human suprachiasmatic nucleus in progressive Alzheimer’s disease stages. bioRxiv 2024, bioRxiv:2024.03.07.584000. [Google Scholar]
- Walker, J.M.; Orr, M.E.; Orr, T.C.; Crary, J.F.; Woodoff-Leith, E.; Teixeira-Yokoda, R.; Gupta, M.; Daoud, E.; Kautz, T.F.; Richardson, T.E. Hippocampal subregion-specific proteomic differences between Alzheimer disease (AD) and primary age-related tauopathy (PART). Alzheimer’s Dement. 2023, 19, e073721. [Google Scholar] [CrossRef]
- Walker, J.M.; Dehkordi, S.K.; Richardson, T.; Zare, H.; Orr, M.E. Differential protein expression identified by digital spatial profiling (DSP) in the hippocampi of resilient individuals. Alzheimer’s Dement. 2020, 16, e046444. [Google Scholar] [CrossRef]
- Son, G.; Mladinov, M.; Pereira, F.L.; Li, S.H.; Tu, C.; Spina, S.; Seeley, W.W.; Chang, W.; Grinberg, L.T. Anterior hypothalamic pathology in Alzheimer’s disease: A human postmortem study using spatial in-situ proteomics. Alzheimer’s Dement. 2022, 18, e060951. [Google Scholar] [CrossRef]
- Davila-Velderrain, J.; Mathys, H.; Mohammadi, S.; Ruzicka, B.; Jiang, X.; Ng, A.; Bennett, D.A.; Tsai, L.H.; Kellis, M. Single-cell anatomical analysis of human hippocampus and entorhinal cortex uncovers early-stage molecular pathology in Alzheimer’s disease. bioRxiv 2021, bioRxiv:2021.07.01.450715. [Google Scholar]
- Gabitto, M.I.; Travaglini, K.J.; Rachleff, V.M.; Kaplan, E.S.; Long, B.; Ariza, J.; Ding, Y.; Mahoney, J.T.; Dee, N.; Goldy, J.; et al. Integrated multimodal cell atlas of Alzheimer’s disease. Res. Sq. 2023. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.; Berackey, B.B.; Tran, K.M.; Gelber, A.; Yu, Z.; MacGregor, G.; Mukamel, E.A.; Tan, Z.; Green, K.; Xu, X. Single cell spatial transcriptomics reveals distinct patterns of dysregulation in non-neuronal and neuronal cells induced by the Trem2(R47H) Alzheimer’s risk gene mutation. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Cable, D.M.; Murray, E.; Shanmugam, V.; Zhang, S.; Zou, L.S.; Diao, M.; Chen, H.; Macosko, E.Z.; Irizarry, R.A.; Chen, F. Cell type-specific inference of differential expression in spatial transcriptomics. Nat. Methods 2022, 19, 1076–1087. [Google Scholar] [CrossRef]
- Zhang, G.W.; Xia, S.; Zhang, N.K.; Gao, F.; Zlokovic, B.V.; Zhang, L.I.; Zhao, Z.; Tao, H.W. Integrative mapping of spatial transcriptomic and amyloid pathology in Alzheimer’s disease at single-cell resolution. bioRxiv 2023, bioRxiv:2023.05.07.539389. [Google Scholar]
- Kwon, S.H.; Parthiban, S.; Tippani, M.; Divecha, H.R.; Eagles, N.J.; Lobana, J.S.; Williams, S.R.; Mak, M.; Bharadwaj, R.A.; Kleinman, J.E.; et al. Influence of Alzheimer’s Disease Related Neuropathology on Local Microenvironment Gene Expression in the Human Inferior Temporal Cortex. GEN Biotechnol. 2023, 2, 399–417. [Google Scholar] [CrossRef]
- Choi, H.; Lee, E.J.; Shin, J.S.; Kim, H.; Bae, S.; Choi, Y.; Lee, D.S. Spatiotemporal characterization of glial cell activation in an Alzheimer’s disease model by spatially resolved transcriptomics. Exp. Mol. Med. 2023, 55, 2564–2575. [Google Scholar] [CrossRef]
- Millet, A.; Ledo, J.H.; Tavazoie, S.F. An exhausted-like microglial population accumulates in aged and APOE4 genotype Alzheimer’s brains. Immunity 2024, 57, 153–170.e6. [Google Scholar] [CrossRef]
- Highet, B.; Dieriks, B.V.; Murray, H.C.; Faull, R.L.M.; Curtis, M.A. Huntingtin Aggregates in the Olfactory Bulb in Huntington’s Disease. Front Aging Neurosci. 2020, 12, 261. [Google Scholar] [CrossRef]
- Stevenson, T.J.; Murray, H.C.; Turner, C.; Faull, R.L.M.; Dieriks, B.V.; Curtis, M.A. α-synuclein inclusions are abundant in non-neuronal cells in the anterior olfactory nucleus of the Parkinson’s disease olfactory bulb. Sci. Rep. 2020, 10, 6682. [Google Scholar] [CrossRef] [PubMed]
- Rey, N.L.; Wesson, D.W.; Brundin, P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol. Dis. 2018, 109 Pt B, 226–248. [Google Scholar] [CrossRef]
- Tsuboi, Y.; Wszolek, Z.K.; Graff-Radford, N.R.; Cookson, N.; Dickson, D.W. Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol. Appl. Neurobiol. 2003, 29, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Mundiñano, I.-C.; Caballero, M.-C.; Ordóñez, C.; Hernandez, M.; DiCaudo, C.; Marcilla, I.; Erro, M.-E.; Tuñon, M.-T.; Luquin, M.-R. Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol. 2011, 122, 61–74. [Google Scholar] [CrossRef]
- Úbeda-Bañón, I.; Saiz-Sanchez, D.; Flores-Cuadrado, A.; Rioja-Corroto, E.; Gonzalez-Rodriguez, M.; Villar-Conde, S.; Astillero-Lopez, V.; Cabello-De La Rosa, J.P.; Gallardo-Alcañiz, M.J.; Vaamonde-Gamo, J.; et al. The human olfactory system in two proteinopathies: Alzheimer’s and Parkinson’s diseases. Transl. Neurodegener 2020, 9, 22. [Google Scholar] [CrossRef]
- Bruce, K.D.; Zsombok, A.; Eckel, R.H. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front. Endocrinol. 2017, 8, 60. [Google Scholar] [CrossRef]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Snowden, S.G.; Ebshiana, A.A.; Hye, A.; An, Y.; Pletnikova, O.; O’brien, R.; Troncoso, J.; Legido-Quigley, C.; Thambisetty, M. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study. PLoS Med. 2017, 14, e1002266. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, C.; Tan, W. Brain Lipid Dynamics in Amyloid Precursor Protein/Presenilin 1 Mouse Model of Early Alzheimer’s Disease by Desorption Electrospray Ionization and Matrix Assisted Laser Desorption Ionization–Mass Spectrometry Imaging Techniques. J. Proteome Res. 2021, 20, 2643–2650. [Google Scholar] [CrossRef]
- Liu, W.; Cao, Y.; Lin, Y.; Tan, K.S.; Zhao, H.; Guo, H.; Tan, W. Enhancement of Fear Extinction Memory and Resistance to Age-Related Cognitive Decline in Butyrylcholinesterase Knockout Mice and (R)-Bambuterol Treated Mice. Biology 2021, 10, 404. [Google Scholar] [CrossRef]
- Rustenbeck, I.; Lenzen, S. Effect of lysophospholipids, arachidonic acid and other fatty acids on regulation of Ca2+ transport in permeabilized pancreatic islets. Cell Calcium 1992, 13, 193–202. [Google Scholar] [CrossRef]
- Malaplate-Armand, C.; Florent-Béchard, S.; Youssef, I.; Koziel, V.; Sponne, I.; Kriem, B.; Leininger-Muller, B.; Olivier, J.L.; Oster, T.; Pillot, T. Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol. Dis. 2006, 23, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xie, B.; Zou, Z.; Jiao, Y.; Lin, L.-E.; Chen, C.-L.; Hsu, C.-C.; Peng, J.; Yang, Z. Multimodal Imaging of Amyloid Plaques: Fusion of the Single-Probe Mass Spectrometry Image and Fluorescence Microscopy Image. Anal. Chem. 2019, 91, 12882–12889. [Google Scholar] [CrossRef] [PubMed]
- Grimm, M.O.; Grösgen, S.; Riemenschneider, M.; Tanila, H.; Grimm, H.S.; Hartmann, T. From brain to food: Analysis of phosphatidylcholins, lyso-phosphatidylcholins and phosphatidylcholin-plasmalogens derivates in Alzheimer’s disease human post mortem brains and mice model via mass spectrometry. J. Chromatogr. A. 2011, 1218, 7713–7722. [Google Scholar] [CrossRef] [PubMed]
- Rushworth, J.V.; Hooper N, M. Lipid Rafts: Linking Alzheimer’s Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes. Int. J. Alzheimer’s Dis. 2010, 2011, 603052. [Google Scholar] [CrossRef] [PubMed]
- Carlred, L.; Michno, W.; Kaya, I.; Sjövall, P.; Syvänen, S.; Hanrieder, J. Probing amyloid-beta pathology in transgenic Alzheimer’s disease (tgArcSwe) mice using MALDI imaging mass spectrometry. J. Neurochem. 2016, 138, 469–478. [Google Scholar] [CrossRef]
- Qian, X.; Harris, K.D.; Hauling, T.; Nicoloutsopoulos, D.; Muñoz-Manchado, A.B.; Skene, N.; Hjerling-Leffler, J.; Nilsson, M. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods 2020, 17, 101–106. [Google Scholar] [CrossRef]
- Chen, W.-T.; Lu, A.; Craessaerts, K.; Pavie, B.; Frigerio, C.S.; Corthout, N.; Qian, X.; Laláková, J.; Kühnemund, M.; Voytyuk, I.; et al. Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer’s Disease. Cell 2020, 182, 976–991.e19. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.F.; Croteau, D.L.; Jurek, A.; Andrusivova, Z.; Yang, B.; Wang, Y.; Ogedegbe, B.; Riaz, T.; Stoen, M.; Desler, C.; et al. Spatial Transcriptomics Reveals Genes Associated with Dysregulated Mitochondrial Functions and Stress Signaling in Alzheimer Disease. iScience 2020, 23, 101556. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhang, P.; Wang, Q.; Chiang, C.W.; Zhou, Y.; Hou, Y.; Xu, J.; Chen, R.; Zhang, B.; Lewis, S.J.; et al. Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 7. [Google Scholar] [CrossRef]
- Xu, J.; Mao, C.; Hou, Y.; Luo, Y.; Binder, J.L.; Zhou, Y.; Bekris, L.M.; Shin, J.; Hu, M.; Wang, F.; et al. Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease. Cell Rep. 2022, 41, 111717. [Google Scholar] [CrossRef]
Platform | Spatial Resolution | Molecular Class | Throughput | Image Area | Molecular Identity Confirmation Method | References |
---|---|---|---|---|---|---|
CyCIF | 1 µm | Protein | <100 | Slide Area | Fluorescence Imaging | [12] |
DESI IMS | 50 µm | Metabolite, Lipid, Protein | / | 50 μm × 50 μm | MS | [13] |
Immuno-SABER | 100 μm | Protein | <50 | 1 mm × 1 mm | Fluorescence Imaging | [14] |
LCM-MS | 10–50 μm | Metabolite, Lipid, Protein | <250 | Slide Area | MS | [15] |
MALDI IMS | 15 μm | Metabolite, Lipid, Protein | / | Slide Area | MS | [16] |
MIBI-TOF multiplex ion-beam | 260 nm | Metabolite, Lipid, Protein | <50 | Slide Area | MS | [17] |
microLESA | 110 μm | Protein | >2000 | Slide Area | MS | [18] |
MP-IHC | 10 µm | Protein | >100 Proteins | 10 μm × 10 μm | Fluorescence Imaging | [19] |
Nano-DESI MSI | 10 µm | Metabolite, Lipid, Protein | / | Slide Area | MS | [20] |
NanoPOTS | 100 µm | Protein | >2000 Proteins | Slide Area | MS | [21] |
DBiT-seq | 10 μm | RNA, Protein | <50 Proteins, Whole Transcriptome | 1 mm × 1 mm | Sequencing | [22] |
CosMX SMI | 50 nm | RNA, Protein | <200 Proteins, <1000 RNA | range 16–375 mm2 | Fluorescence Imaging | [23] |
GeoMX DSP | 50 μm | RNA, Protein | <2000 | 35.3 mm × 14.1 mm | Sequencing | [24] |
LCM-seq | 10–50 μm | RNA | <15000 | Slide Area | Sequencing | [25] |
MERFISH | 0.5 μm | RNA | <1000 | 40 μm × 40 μm | Fluorescence Imaging | [11] |
Slide-seq | 10 μm | RNA | Whole Transcriptome | Slide Area | Sequencing | [26] |
Stereo-seq | 0.5 μm | RNA | Whole Transcriptome | 13.2 cm × 13.2 cm | Sequencing | [27] |
Visium | 100 μm | RNA | Whole Transcriptome | 6.5 mm × 6.5 mm | Sequencing | [28] |
Xennium | 50 nm | RNA | <500 | 12 mm × 24 mm | Fluorescence Imaging | [29] |
ATAC–RNA-seq | 20 μm | RNA, Epigenetic | Whole Transcriptome | 100 × 100 Barcodes | Fluorescence Imaging | [30] |
Epigenomic MERFISH | 1 µm | Epigenetic and Protein | <200 | Slide Area | Fluorescence Imaging | [31] |
Author/s, Year | Sample | Platform | Findings | References |
---|---|---|---|---|
Muñoz-Castro C et al., 2022 | Human temporal association cortex | CyCIF | CyCIF technology enables comprehensive morphological characterization of astrocytes and microglia in the context of their spatial relationships with plaques and tangles in Alzheimer’s Disease brains, revealing three distinct glial phenotypes. | [71] |
Muñoz-Castro C et al, 2024 | Human temporal lobe | CyCIF | CyCIF technology allows the labeling of up to 16 antigens on the same tissue section, revealing the characterization of astrocytic and microglial responses in Alzheimer’s Disease pathology. | [72] |
Lazarian, Artur et al., 2022 | APP/PS1 mice coronal-cut brain slices | DESI IMS | DESI Imaging Mass Spectrometry (IMS) can be used to compare lipid species in wild-type (WT) and AD mouse brains across different ages, revealing regional dysregulation, particularly in the hypothalamus. | [73] |
Yueguang Lv et al., 2024 | APP/PS1 mice brains | DESI IMS | Segmented temperature-controlled DESI (STC-DESI) enables the identification of molecular changes associated with individual Aβ aggregates, revealing potential diagnostic and therapeutic targets such as carnosine and 5-caffeoylquinic acid (5-CQA) in AD pathology. | [74] |
Takeyama E et al., 2019 | SAMP8 mice Brains | DESI IMS | DESI-IMS can be used to observe the effects of supplementation with DHA-rich green nut oil (GNO) or docosahexaenoic acid (DHA) supplementation on DHA distribution in the brain, providing insights into potential therapeutic strategies for dementia prevention. | [75] |
Hashimoto M et al., 2012 | Human hippocampal cryosections | LCM-MS | LCM-MS technology can be used to reveal alterations in the proteome of specific neuronal populations, highlighting differences that cannot be detected through bulk analysis methods like Western blotting. | [76] |
Bishay J, et al., 2022 | Tgf344-AD rat brains | LCM-MS | LCM-MS technology can be used to analyze isolated cortical parenchymal plaques, arteriolar, and venular amyloids, revealing the presence of Aβ and proteins associated with AD in all samples. | [77] |
Bishay, Jossana et al., 2020 | Tgf344-AD rat brains | LCM-MS | LCM-MS technology can be used to identify amyloid-beta (Aβ) in cortical plaques, CAA, and venular amyloid samples, shedding light on the interplay between these vascular pathologies and AD progression. | [78] |
Lars Tjernberg et al., 2011 | Human hippocampal cryosections | LCM-MS | LCM-MS technology can be used to analyze alterations in pyramidal neurons from human brains, identify and quantify 150 proteins with altered expression in AD. | [79] |
Kaya I et al., 2017 | Tgarcswe mice brains | MALDI IMS | The MALDI-IMS paradigm can be used in negative- and positive-ion-mode lipid analysis and subsequent protein ion imaging on the same tissue section, allowing comprehensive, high-resolution molecular analysis of histological features at cellular length scales with high chemical specificity. | [80] |
Kakuda N, et al., 2017 | Human occipital cortex | MALDI IMS | MALDI-IMS technology enables the visualization of distinct depositions of truncated and/or modified Aβ species, particularly Aβ1–41, in a spacio-temporal specific manner. | [81] |
Hong JH et al., 2016 | 5xFAD mice brains | MALDI IMS | MALDI-IM technology enables the analysis and visualization of lipid profiles in different brain regions affected by AD pathology. | [82] |
Kaya I et al., 2018 | Tgarcswe mice brains | MALDI IMS | MALDI Imaging Mass Spectrometry (IMS) analyzes and investigates the molecular information associated with individual amyloid aggregates, revealing alterations in lipid species. | [83] |
Phongpreecha T et al., 2021 | Human brains from individuals with ADNC and LBD; PS/APP and C57Bl6 WT mice brains | MIBI-TOF | MIBI-TOF technology enables the measurement of multiple antibody probes in single-synapse events and provides comprehensive synaptic molecular characterization. | [84] |
Vijayaragavan K et al., 2022 | Human brains | MIBI-TOF | MIBI-TOF technology enables simultaneous quantitative imaging of multiple proteins in archival human hippocampal tissues, providing insights into neurodegenerative disorders and serving as a methodology for spatial proteomic analysis. | [85] |
Moon DW et al., 2020 | APP-C105 and 5xFAD Tg mice hippo-campal | Multiplex ion-beam | Multiplex ion-beam technology enables simultaneous imaging of multiple proteins at <300 nm spatial resolution without ion beam damage, revealing insights into protein cluster proximity and its relationship with aging and AD progression. | [86] |
Vijayaragavan K et al., 2022 | Human Brain | Multiplex ion-beam | multiplex ion-beam technology, enables simultaneous imaging of 36 proteins in human hippocampal tissues across various stages of Alzheimer’s Disease (AD) neuropathologic change, unveiling unique insights into proteopathies and cellular interactions in neurodegenerative disorders. | [85] |
Murray HC et al., 2022 | Human olfactory bulbs | MP-IHC | Multiplexed fluorescence-based immunohistochemistry (MP-IHC) allows high-content analysis of up to 100 markers on single tissue sections, with application demonstrated in characterizing human olfactory bulb anatomy and identifying differentially expressed biomarkers in Alzheimer’s Disease. | [19] |
Ramsden CE et al., 2023 | Human ventral entorhinal cortex (erc), prosubiculum (pros)-CA1border region, and temporal neocortex | MP-IHC | MP-IHC allows the characterization of apoer2 expression and the accumulation of pathway components in various regions affected by Alzheimer’s Disease. | [87] |
Ramsden CE et al., 2022 | Human coronal medial temporal lobe | MP-IHC | MP-IHC technology involves characterizing the expression of apoer2 and apoe in sporadic Alzheimer’s Disease. This study proposes a hypothesis based on lipid peroxidation and the disruption of the apoe/Reelin-apoer2-Dab1 signaling cascade. | [88] |
Alyssa Rosenbloom et al., 2023 | Adult mouse brain, mouse embryo, and AD-positive human brain | CosMx SMI | The CosMx SMI technology provides a spatial multi-omics platform capable of detecting over 68 proteins at subcellular resolution and capturing the complexity of neuronal and glial cellular activity within their full spatial context. | [89] |
Gowoon Son et al., 2024 | Human hypothalamus | GeoMX DSP | GeoMX DSP technology reveals that the suprachiasmatic nucleus (SCN) is vulnerable to AD-tau pathology and show immune dysregulation but is protected against ß-amyloid (Aß) accumulation, which may contribute to circadian rhythm disturbances in AD. | [90] |
Walker, J.M et al., 2023 | The entorhinal cortex, CA1 and CA2 hippocampal subregions | GeoMX DSP | GeoMX DSP technology compares protein expression differences in hippocampal subregions between Alzheimer’s Disease (AD) and primary age-related tauopathy (PART), identifying higher levels of synaptic markers in PART and higher levels of p-tau epitopes in AD. | [91] |
Walker, J.M et al., 2020 | Human hippocampus | GeoMX DSP | GeoMX DSP technology enables the analysis of protein expression in resilient individuals with Alzheimer’s Disease neuropathologic changes but no cognitive impairment, revealing patterns suggestive of reduced energetic and oxidative stress, increased synaptophysin (SYP) expression and the maintenance of neuronal synapses and connections compared to demented individuals. | [92] |
Son, G et al., 2022 | Human suprachiasmatic nucleus (SCN), supraoptic nucleus (SON), and periventricular nucleus (PV) in the anterior hypothalamus of brains | GeoMX DSP | GeoMX DSP technology lies in its ability to spatially assess tauopathy and tau-driven protein alterations in the anterior hypothalamic nuclei, especially the suprachiasmatic nucleus (SCN), uncovering elevated p-tau expression in Alzheimer’s Disease (AD) patients compared to controls, which may impact sleep regulation in AD. | [93] |
Jose Davila-Velderrain et al., 2021 | Human hippocampus and entorhinal cortex | LCM-seq | LCM-seq technology involves conducting a detailed single-cell transcriptomic analysis of the human hippocampus and entorhinal cortex, uncovering cell-type specific transcriptional changes throughout the progression of Alzheimer’s Disease. | [94] |
Gabitto MI, et al., 2023 | Human superior and middle temporal gyrus (MTG) | MERFISH | MERFISH technology involves utilizing single-cell and spatial genomics tools to investigate the impact of Alzheimer’s Disease progression on cell types in the middle temporal gyrus, revealing temporal changes in neuronal subtypes and glial states, with a subset of donors exhibiting severe cellular and molecular phenotypes correlated with cognitive decline. | [95] |
Johnston K, et al., 2023 | Trem2R47H and 5xFAD mice hippocampus and subiculum | MERFISH | MERFISH technology involves investigating cell-type-specific spatial transcriptomic changes induced by the Trem2R47H mutation in mouse brain sections, revealing consistent upregulation of Bdnf and Ntrk2 across cortical excitatory neuron types and spatially localized reductions in neuronal subpopulations. | [96] |
Cable DM, Murray E et al., 2022 | Mice hippocampus | Slide-seq | Slide-seq technology involves developing C-SIDE, a framework that models gene expression across cell types, enabling statistical inference for identifying differential expression in various contexts such as pathology, anatomical regions, cell-to-cell interactions, and cellular microenvironment, and it can specifically identify plaque-dependent immune activity in Alzheimer’s Disease and cellular interactions between tumor and immune cells. | [97] |
Guang-Wei Zhang et al., 2023 | 5xFAD mouse Brains | Sstereo-seq | Stereo-seq technology enables us to spatially profile whole-genome transcriptomics in the 5xfad mouse model, establishing a methodology for analyzing specific neuronal transcriptomic changes spatially correlated with amyloid pathology at single-cell resolution. | [98] |
Shuo Chen, Yuzhou Chang et al., 2022 | Human brains | Visium | Visium identifies unique marker genes for cortical layers and white matter, layer-specific differentially expressed genes (degs) in AD, and illustrates significant differences in specific cell types among cortical layers and white matter regions. | [28] |
Sang Ho Kwon et al., 2023 | Human brains | Visium | Visium technology enables us to assess spatial gene expression changes in AD brains relative to Aβ and hyperphosphorylated tau (ptau) pathology, revealing transcriptomic signatures associated with Aβ proximity in late-stage AD. | [99] |
Hongyoon Choi et al., 2023 | 5xFAD mice brains | Visium | Visium technology reveals regional changes at the molecular level, including early alterations in the white matter (WM) involving glial cell activation before the accumulation of amyloid plaques in the gray matter (GM), and identifying distinct spatial patterns of disease-associated microglia (dams). | [100] |
Alon Millet, Jose Henrique Ledo et al., 2024 | 5xFAD mice brain cortex and hippocampus; human brain of age-matched Alzheimer’s Disease APOE3/APOE3 carriers and APOE4/APOE4 carriers | Xenium | Xenium technology enables us to identify a reactive microglial population termed terminally inflammatory microglia (tims) characterized by inflammatory signals and cell-intrinsic stress markers, whose frequency increased with age and APOE4 burden, and was detectable in human AD patients’ brains. | [101] |
Items | Proteomics in Bodily Fluids (CSF, Blood) | Spatial Proteomics | Bulk Transcriptome | Single-Cell Transcriptome | Spatial Transcriptome |
---|---|---|---|---|---|
Analytic object | CSF, blood | Tissue | Tissue | Cell | Tissue |
Region | Not applicable | Identified directly | Not applicable | Presumed by the algorithm | Identified directly |
Advantage | Wide applicabilityLow sample size | Spatial resolution Direct visualization | The price is low | Cell resolution | Spatial resolution |
Limitation | Lack of spatial information | Sample volumesLong duration and limited throughput | Precision is low Lack of spatial information Resolution is low | Lack of spatial information | The resolution and hroughput are lower than single-cell transcriptome in most cases |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Shi, W.; Dong, Y.; Sun, Y.; Jin, Q. Spatial Multi-Omics in Alzheimer’s Disease: A Multi-Dimensional Approach to Understanding Pathology and Progression. Curr. Issues Mol. Biol. 2024, 46, 4968-4990. https://doi.org/10.3390/cimb46050298
Ma Y, Shi W, Dong Y, Sun Y, Jin Q. Spatial Multi-Omics in Alzheimer’s Disease: A Multi-Dimensional Approach to Understanding Pathology and Progression. Current Issues in Molecular Biology. 2024; 46(5):4968-4990. https://doi.org/10.3390/cimb46050298
Chicago/Turabian StyleMa, Yixiao, Wenting Shi, Yahong Dong, Yingjie Sun, and Qiguan Jin. 2024. "Spatial Multi-Omics in Alzheimer’s Disease: A Multi-Dimensional Approach to Understanding Pathology and Progression" Current Issues in Molecular Biology 46, no. 5: 4968-4990. https://doi.org/10.3390/cimb46050298
APA StyleMa, Y., Shi, W., Dong, Y., Sun, Y., & Jin, Q. (2024). Spatial Multi-Omics in Alzheimer’s Disease: A Multi-Dimensional Approach to Understanding Pathology and Progression. Current Issues in Molecular Biology, 46(5), 4968-4990. https://doi.org/10.3390/cimb46050298