Antiarthritic and Antinociceptive Properties of Ylang-Ylang (Cananga odorata) Essential Oil in Experimental Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and YEO Obtention
2.2. Animals
2.3. Zymosan-Induced Arthritis Model
2.4. Knee-Joint Edema and Mechanical Hyperalgesia in Animals Submitted to Zymosan-Induced Arthritis
2.5. Analysis of Leukocyte Infiltration into Articular Cavity of Animals Submitted to Zymosan-Induced Arthritis
2.6. Determination of Interleukin-6 Levels in Articular Cavity of Animals Submitted to Zymosan-Induced Arthritis
2.7. Histological Analysis
2.8. Model of Persistent Inflammation Induced by Complete Freund’s Adjuvant (CFA)
2.9. Acetic Acid-Induced Abdominal Writhing Model
2.10. Formalin-Induced Nociception Test
2.11. Statistical Analysis
3. Results
3.1. YEO Treatment Reduces Knee-Joint Edema Formation and Mechanical Hyperalgesia Induced by Zymosan
3.2. YEO Treatment Reduces Leukocyte Recruitment in a Zymosan-Induced Arthritis Model
3.3. YEO Treatment Reduces IL-6 Levels in a Zymosan-Induced Arthritis Model
3.4. YEO Reduces Cartilage Damage in Mice Submitted to Zymosan-Induced Arthritis
3.5. YEO Treatment Reduces Paw Edema and Mechanical Hyperalgesia in a CFA-Induced Persistent Inflammation Model
3.6. YEO Treatment Reduces Nociception in an Acetic Acid-Induced Abdominal Writhing Model
3.7. YEO Treatment Reduces Formalin-Induced Paw Nociception in Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varela, M.L.; Mogildea, M.; Moreno, I.; Lopes, A. Acute Inflammation and Metabolism. Inflammation 2018, 41, 1115–1127. [Google Scholar] [CrossRef]
- Souto, F.O.; Zarpelon, A.C.; Staurengo-Ferrari, L.; Fattori, V.; Casagrande, R.; Fonseca, M.J.V.; Cunha, T.M.; Ferreira, S.H.; Cunha, F.Q.; Verri, W.A. Quercetin Reduces Neutrophil Recruitment Induced by CXCL8, LTB4, and FMLP: Inhibition of Actin Polymerization. J. Nat. Prod. 2011, 74, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, F.V.S.; Kubes, P. Review Series HUMAN NEUTROPHILS Neutrophils and NETs in Modulating Acute and Chronic Inflammation. Blood 2019, 133, 2178–2185. [Google Scholar] [CrossRef]
- Rock, K.L.; Kono, H. The Inflammatory Response to Cell Death. Annu. Rev. Pathol. 2008, 3, 99–126. [Google Scholar] [CrossRef]
- Yeung, Y.T.; Aziz, F.; Guerrero-Castilla, A.; Arguelles, S. Signaling Pathways in Inflammation and Anti-Inflammatory Therapies. Curr. Pharm. Des. 2018, 24, 1449–1484. [Google Scholar] [CrossRef] [PubMed]
- Dudics, S.; Langan, D.; Meka, R.R.; Venkatesha, S.H.; Berman, B.M.; Che, C.T.; Moudgil, K.D. Natural Products for the Treatment of Autoimmune Arthritis: Their Mechanisms of Action, Targeted Delivery, and Interplay with the Host Microbiome. Int. J. Mol. Sci. 2018, 19, 2508. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.; Zhao, K.; Li, X.; Tan, Z.; Zhang, W.; Cai, Q.; Wu, X.; Mo, J.; Zhang, L. Chemical Constituents, Biological Activities and Anti-rheumatoid Arthritic Properties of Four Citrus Essential Oils. Phytother. Res. 2022, 36, 2908–2920. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.d.R.; Arantes, M.B.; de Faria Pereira, S.M.; da Cruz, L.L.; de Souza Passos, M.; de Moraes, L.P.; Vieira, I.J.C.; de Oliveira, D.B. Plants as Sources of Anti-Inflammatory Agents. Molecules 2020, 25, 3726. [Google Scholar] [CrossRef]
- Tan, L.T.H.; Lee, L.H.; Yin, W.F.; Chan, C.K.; Abdul Kadir, H.; Chan, K.G.; Goh, B.H. Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang). Evid. Based Complement. Altern. Med. 2015, 2015, 896314. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, Y. Variation in Chemical Composition of Essential Oil of Ferulago Angulata Collected from West Parts of Iran. Pharm. Sci. 2016, 22, 16–21. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, I.W.; Arung, E.T.; Kim, Y.U. Antimicrobial and Antioxidant Properties of Medicinal Plants Used by the Bentian Tribe from Indonesia. Food Sci. Hum. Wellness 2014, 3, 191–196. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative Evaluation of 11 Essential Oils of Different Origin as Functional Antioxidants, Antiradicals and Antimicrobials in Foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Freitas Junior, R.A.; Lossavaro, P.K.M.B.; Kassuya, C.A.L.; Paredes-Gamero, E.J.; Farias Júnior, N.C.; Souza, M.I.L.; Silva-Comar, F.M.S.; Cuman, R.K.N.; Silva, D.B.; Toffoli-Kadri, M.C.; et al. Effect of Ylang-Ylang (Cananga odorata Hook. F. & Thomson) Essential Oil on Acute Inflammatory Response In Vitro and In Vivo. Molecules 2022, 27, 3666. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.M.; Hwang, J.K. Screening of Indonesian Medicinal Plants for Inhibitor Activity on Nitric Oxide Production of RAW264.7 Cells and Antioxidant Activity. Fitoterapia 2005, 76, 194–203. [Google Scholar] [CrossRef]
- Wei, A.; Shibamoto, T. Antioxidant/Lipoxygenase Inhibitory Activities and Chemical Compositions of Selected Essential Oils. J. Agric. Food. Chem. 2010, 58, 7218–7225. [Google Scholar] [CrossRef] [PubMed]
- Borgonetti, V.; López, V.; Galeotti, N. Ylang-Ylang (Cananga odorata (Lam.) Hook. f. & Thomson) Essential Oil Reduced Neuropathic-Pain and Associated Anxiety Symptoms in Mice. J. Ethnopharmacol. 2022, 294, 115362. [Google Scholar] [CrossRef] [PubMed]
- Möller, K.Ä.; Johansson, B.O.; Berge, O.G. Assessing Mechanical Allodynia in the Rat Paw with a New Electronic Algometer. J. Neurosci. Methods 1998, 84, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Pritzker, K.P.H.; Gay, S.; Jimenez, S.A.; Ostergaard, K.; Pelletier, J.P.; Revell, K.; Salter, D.; van den Berg, W.B. Osteoarthritis Cartilage Histopathology: Grading and Staging. Osteoarth. Cartil. 2006, 14, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Hunskaar, S.; Hole, K. The Formalin Test in Mice: Dissociation between Inflammatory and Non-Inflammatory Pain. Pain 1987, 30, 103–114. [Google Scholar] [CrossRef]
- Yamada, A.N.; Grespan, R.; Yamada, Á.T.; Silva, E.L.; Silva-Filho, S.E.; Damião, M.J.; de Oliveira Dalalio, M.M.; Bersani-Amado, C.A.; Cuman, R.K.N. Anti-Inflammatory Activity of Ocimum Americanum L. Essential Oil in Experimental Model of Zymosan-Induced Arthritis. Am. J. Chin. Med. 2013, 41, 913–926. [Google Scholar] [CrossRef] [PubMed]
- Kuraoka-Oliveira, Â.M.; Radai, J.A.S.; Leitão, M.M.; Lima Cardoso, C.A.; Silva-Filho, S.E.; Leite Kassuya, C.A. Anti-Inflammatory and Anti-Arthritic Activity in Extract from the Leaves of Eriobotrya japonica. J. Ethnopharmacol. 2020, 249, 112418. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Raucci, F.; Merlino, F.; Piccolo, M.; Ferraro, M.G.; Irace, C.; Santamaria, R.; Iqbal, A.J.; Novellino, E.; Grieco, P.; et al. Temporin L-Derived Peptide as a Regulator of the Acute Inflammatory Response in Zymosan-Induced Peritonitis. Biomed. Pharmacother. 2020, 123, 109788. [Google Scholar] [CrossRef] [PubMed]
- Drexler, S.K.; Kong, P.L.; Wales, J.; Foxwell, B.M. Cell Signalling in Macrophages, the Principal Innate Immune Effector Cells of Rheumatoid Arthritis. Arthritis Res. Ther. 2008, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Sharif, O.; Bolshakov, V.N.; Raines, S.; Newham, P.; Perkins, N.D. Transcriptional Profiling of the LPS Induced NF-ΚB Response in Macrophages. BMC Immunol. 2007, 8, 1. [Google Scholar] [CrossRef]
- Carvalho, A.M.S.; Heimfarth, L.; Santos, K.A.; Guimarães, A.G.; Picot, L.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans-Júnior, L.J. Terpenes as Possible Drugs for the Mitigation of Arthritic Symptoms—A Systematic Review. Phytomedicine 2019, 57, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Gegout, P.; Gillet, P.; Chevrier, D.; Guingamp, C.; Terlain, B.; Ne-Wier, P. Characterization of zymosan-induced arthritis in the rat: Effects on joint inflammation and cartilage metabolism. Life Sci. 1994, 55, 321–326. [Google Scholar] [CrossRef]
- Rocha, F.A.C.; Leite, A.K.R.M.; Pompeu, M.M.L.; Cunha, T.M.; Verri, W.A.; Soares, F.M.; Castro, R.R.; Cunha, F.Q. Protective Effect of an Extract from Ascaris Suum in Experimental Arthritis Models. Infect. Immun. 2008, 76, 2736–2745. [Google Scholar] [CrossRef]
- Guazelli, C.F.S.; Staurengo-Ferrari, L.; Zarpelon, A.C.; Pinho-Ribeiro, F.A.; Ruiz-Miyazawa, K.W.; Vicentini, F.T.M.C.; Vignoli, J.A.; Camilios-Neto, D.; Georgetti, S.R.; Baracat, M.M.; et al. Quercetin Attenuates Zymosan-Induced Arthritis in Mice. Biomed. Pharmacother. 2018, 102, 175–184. [Google Scholar] [CrossRef]
- Guerrero, A.T.G.; Cunha, T.M.; Verri, W.A.; Gazzinelli, R.T.; Teixeira, M.M.; Cunha, F.Q.; Ferreira, S.H. Toll-like Receptor 2/MyD88 Signaling Mediates Zymosan-Induced Joint Hypernociception in Mice: Participation of TNF-α, IL-1β and CXCL1/KC. Eur. J. Pharmacol. 2011, 674, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A. Neutrophils: Cinderella of Innate Immune System. Int. Immunopharmacol. 2010, 10, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; Ravella, S.; Virupannavar, S.; Shahrara, S. The Pathogenic Role of Angiogenesis in Rheumatoid Arthritis. Angiogenesis 2015, 18, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.; Smith, E.; Hoy, D.; Carmona, L.; Wolfe, F.; Vos, T.; Williams, B.; Gabriel, S.; Lassere, M.; Johns, N.; et al. The Global Burden of Rheumatoid Arthritis: Estimates from the Global Burden of Disease 2010 Study. Ann. Rheum. Dis. 2014, 73, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Xiaotian, C.; Lanyue, Z.; Chenyu, Q.; Zhiyun, D.; Peng, X.; Zhangmin, X. Chemical compositions of essential oil extracted from Lavandula angustifolia and its prevention of TPA-induced inflammation. Microchem. J. 2020, 153, 104458. [Google Scholar] [CrossRef]
- Huo, M.; Cui, X.; Xue, J.; Chi, G.; Gao, R.; Deng, X.; Guan, S.; Wei, J.; Soromou, L.W.; Feng, H.; et al. Anti-Inflammatory Effects of Linalool in RAW 264.7 Macrophages and Lipopolysaccharide-Induced Lung Injury Model. J. Surg. Res. 2013, 180, e47–e54. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Liu, C.; Yu, D.; Ma, L.; Zhang, Y.; Zhao, S. Correlation between Hyperalgesia and Upregulation of TNF- α and IL-1 β in Aqueous Humor and Blood in Second Eye Phacoemulsification: Clinical and Experimental Investigation. J. Immunol. Res. 2021, 2021, 7377685. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wang, X.; Xi, D.; Mo, J.; Wang, K.; Luo, S.; Wei, J.; Ren, Z.; Pang, H.; Luo, Y. Cordycepin Attenuates IFN-γ-Induced Macrophage IP-10 and Mig Expressions by Inhibiting STAT1 Activity in CFA-Induced Inflammation Mice Model. Inflammation 2020, 43, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Kamel, K.M.; Gad, A.M.; Mansour, S.M.; Safar, M.M.; Fawzy, H.M. Novel Anti-arthritic Mechanisms of Polydatin in Complete Freund’s Adjuvant-Induced Arthritis in Rats: Involvement of IL-6, STAT-3, IL-17, and NF-κB. Inflammation 2018, 41, 1974–1986. [Google Scholar] [CrossRef]
- Zaringhalam, J.; Nazemian, V.; Nasseri, B.; Manaheji, H. Effects of Mesenchymal Stem Cells Conditioned Medium on Behavioral Aspects of Inflammatory Arthritic Pain Induced by Complete Freund’s Adjuvant. J. Cell. Mol. Anesth. 2016, 1, 47–55. [Google Scholar] [CrossRef]
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The Etiology of Rheumatoid Arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef]
- Shah, S.M.M.; Sadiq, A.; Shah, S.M.H.; Ullah, F. Antioxidant, Total Phenolic Contents and Antinociceptive Potential of Teucrium Stocksianum Methanolic Extract in Different Animal Models. BMC Complement. Altern. Med. 2014, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Ballou, L.R.; Botting, R.M.; Goorha, S.; Zhang, J.; Vane, J.R. Nociception in cyclooxygenase isozyme-deficient mice. Proc. Natl. Acad. Sci. USA 2000, 29, 10272–10276. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.A.; Vale, M.L.; Thomazzi, S.M.; Paschoalato, A.B.P.; Poole, S.; Ferreira, S.H.; Cunha, F.Q. Involvement of Resident Macrophages and Mast Cells in the Writhing Nociceptive Response Induced by Zymosan and Acetic Acid in Mice. Eur. J. Pharmacol. 2000, 3, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Xie, J.; Deng, T.; Xie, X.; Liu, H.; Li, B.; Chen, M. Exposure to Both Formaldehyde and High Relative Humidity Exacerbates Allergic Asthma by Activating the TRPV4-P38 MAPK Pathway in Balb/c Mice. Environ. Pollut. 2020, 256, 113375. [Google Scholar] [CrossRef]
- Kaneko, M.; Hammond, D. Role of Spinal γ-Aminobutyric AcidAReceptors in Formalin-Induced Nociception in the Rat. J. Pharmacol. Exp. Ther. 1997, 282, 928–938. [Google Scholar] [PubMed]
Grade | Key Features | Associated Criteria (Tissue Reaction) |
---|---|---|
0 | Surface and cartilage morphology are intact | Matrix: normal architecture. Cells: intact, appropriate orientation. |
1 | Surface is intact | Matrix: superficial cartilage intact, little edema and/or fibrillation (abrasion), focal superficial matrix condensation. Cells: proliferation (clusters) and hypertrophy. |
2 | Surface exhibits discontinuity | Matrix: superficial discontinuity (erosion). Deep fibrillation near the bone. Cells: disorientation of chondrocyte columns, death, proliferation (clusters), and hypertrophy of chondrocytes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lossavaro, P.K.d.M.B.; Felipe, J.L.; Lencina, J.d.S.; Bonfá, I.S.; de Souza, K.F.S.; Machado, L.L.; Fernandes, M.M.L.; Ferreira, J.V.; Souza, M.I.L.; Candeloro, L.; et al. Antiarthritic and Antinociceptive Properties of Ylang-Ylang (Cananga odorata) Essential Oil in Experimental Models. Curr. Issues Mol. Biol. 2024, 46, 9033-9046. https://doi.org/10.3390/cimb46080534
Lossavaro PKdMB, Felipe JL, Lencina JdS, Bonfá IS, de Souza KFS, Machado LL, Fernandes MML, Ferreira JV, Souza MIL, Candeloro L, et al. Antiarthritic and Antinociceptive Properties of Ylang-Ylang (Cananga odorata) Essential Oil in Experimental Models. Current Issues in Molecular Biology. 2024; 46(8):9033-9046. https://doi.org/10.3390/cimb46080534
Chicago/Turabian StyleLossavaro, Paloma Kênia de Moraes Berenguel, Josyelen Lousada Felipe, Joyce dos Santos Lencina, Iluska Senna Bonfá, Kamylla Fernanda Souza de Souza, Lucas Luiz Machado, Mila Marluce Lima Fernandes, João Victor Ferreira, Maria Inês Lenz Souza, Luciane Candeloro, and et al. 2024. "Antiarthritic and Antinociceptive Properties of Ylang-Ylang (Cananga odorata) Essential Oil in Experimental Models" Current Issues in Molecular Biology 46, no. 8: 9033-9046. https://doi.org/10.3390/cimb46080534
APA StyleLossavaro, P. K. d. M. B., Felipe, J. L., Lencina, J. d. S., Bonfá, I. S., de Souza, K. F. S., Machado, L. L., Fernandes, M. M. L., Ferreira, J. V., Souza, M. I. L., Candeloro, L., Kassuya, C. A. L., Paredes-Gamero, E. J., Parisotto, E. B., Toffoli-Kadri, M. C., & Silva-Filho, S. E. (2024). Antiarthritic and Antinociceptive Properties of Ylang-Ylang (Cananga odorata) Essential Oil in Experimental Models. Current Issues in Molecular Biology, 46(8), 9033-9046. https://doi.org/10.3390/cimb46080534